Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 246: 118130, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191042

RESUMO

Silybum marianum L. Gaertn. or milk thistle is an energy-produced weed that has been shown to be tolerant of heavy metal-contaminated soils. In the present study, its cultivation was studied in soils laboratory-spiked (artificial) with Cu and Zn solutions. Meanwhile, plant growing on naturally contaminated soils of Mediterranean regions, both urban and rural, was investigated. The metal concentrations spiked in artificial polluted soils were estimated to be roughly equivalent to those in naturally contaminated soils. Plants grown in artificially contaminated soils incorporated the metal added to the soils more rapidly and in higher proportions. The contamination of soil samples was carried out using different chemical reagents, salts containing the metals with oxidation number II, highlighting the fact that the reagent containing the metal is crucial regarding artificial soil pollution. Statistically significant differences were observed between the individual pollution patterns, as far as plant metals uptake concern. It was also found that the aged, contaminated soils transfer lower levels of metals to the plants. Therefore, aging or weathering of contamination alters toxicity levels in the soil environment by determining transport and uptake into the soil-to-plant system. Eventually, from the present research, it emerged the fact that in urban soils that have aged perennial pollution, the uptake of metals by plants is probably lower than in rural ones. Furthermore, with proper management, it is possible to grow plants, with low nutrient requirements, in urban soils by adopting smart, green and eco-friendly techniques, enhancing sustainable cultivation in the framework of circular economy.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Biodegradação Ambiental , Metais Pesados/análise , Plantas , Poluentes do Solo/análise
2.
J Environ Manage ; 369: 122280, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39226813

RESUMO

Soil nitrogen addition induces the generation and proliferation of some bacterial virulence, yet the interactive mechanisms between the two remain unclear. Here we investigated the variation of virulence genes (VGs) abundance during soil nitrogen transformation, and explored the biological mechanism and key pathways involved in the regulation of VGs by nitrogen transformation. The results showed that the diversity and abundance of virulence genes in soil under high nitrogen input (100 mg/kg) were markedly higher than those under low nitrogen input (50 mg/kg), suggesting a trade-off between the prevalence of virulence genes and nitrogen metabolism. Nutritional/metabolic factor, regulation, immune modulation and motility were the dominant virulence types. Linear regression analysis showed that soil nitrogen mineralization and nitrification rate were closely correlated with the abundance of virulence genes, mainly involving adherence, nutritional/metabolic factors and immune modulation (p < 0.05). Structural equations indicated that microbial community succession associated with nitrogen transformation largely contributed to the changes in VGs abundance. Metagenomic analysis revealed that major virulence genes pilE, pchB, and galE were regulated by nitrogen-functional genes gdh, ureC, and amoC, implying that microbial nitrogen transformation influences immune modulation, nutritional/metabolic factors, and adherence-like virulence. The meta-transcriptome reiterated their co-regulation, and the key pathway may be glutamate/urea> α-ketoglutarate/ammonia > pyruvate/amino acid. The outcome provides strong evidence on the linkage between microbial nitrogen transformation and pathogenic virulence factors development in the soil environment, which will aid in the effective suppression of the prevalence of soil pathogenic virulence.

3.
J Environ Manage ; 361: 121197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820791

RESUMO

Heavy metal pollution of agricultural soil is a major global concern, prompting the establishment of maximum allowable limits (MALs) to ensure food safety and protect human health. This study collected and compared MALs for six heavy metals (As, Cd, Hg, Pb, Zn, and Cu) in agricultural soils from representative countries and organizations (EU and WHO/FAO). The research evaluated the critical health risks and efficacy of these MALs under the hypothetical scenario of metals concentrations reaching the maximum allowable level. Safe thresholds for heavy metals were then derived based on maximum acceptable health risk levels. The comparative analysis revealed significant variations in the specific limit values and terms of MALs across countries and organizations, even for the same metal. This suggests that there is no consensus among countries and organizations regarding the level of metal-related health risks. Furthermore, the risk analysis of metal concentrations reaching the maximum level accentuated heightened risks associated with As, suggesting that the current risk of soil As exposure was underestimated, particularly for children. However, soil Cu, Cd, and Zn limits generally resulted in low health risks, implying that the current limits may overestimate their hazard. Overall, the results highlight that the current MALs for soil heavy metals may not fully safeguard human health. There is a critical need to optimize current soil MALs based on localized risks and the actual impact of these metals on human health. It is suggested to appropriately lower the limits of metals (such as As) whose impact on health risks is underestimated, and cautiously increase the limits of metals (such as Cu, Cd, and Zn) that currently pose minor health risks. This approach aims to reduce both over and insufficient protection problems of soil heavy metal MALs, emphasizing the importance of considering the locality in setting these limits.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/análise , Medição de Risco , Poluentes do Solo/análise , Humanos , Solo/química , Monitoramento Ambiental
4.
Environ Geochem Health ; 46(8): 281, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963650

RESUMO

The interaction between nanoscale copper oxides (nano-CuOs) and soil matrix significantly affects their fate and transport in soils. This study investigates the retention of nano-CuOs and Cu2+ ions in ten typical agricultural soils by employing the Freundlich adsorption model. Retention of nano-CuOs and Cu2+ in soils was well fitted by the Freundlich model. The retention parameters (KD, KF, and N) followed an order of CuO NTs > CuO NPs > Cu2+, highlighting significant impact of nano-CuOs morphology. The KF and N values of CuO NPs/Cu2+ were positively correlated with soil pH and electrical conductivity (EC), but exhibited a weaker correlation for CuO NTs. Soil pH and/or EC could be used to predict KF and N values of CuO NPs or CuO NTs, with additional clay content should be included for Cu2+.The different relationship between retention parameters and soil properties may suggest that CuO NTs retention mainly caused by agglomeration, whereas adsorption and agglomeration were of equal importance to CuO NPs. The amendment of Ca2+ at low and medium concentration promoted retention of nano-CuOs in alkaline soils, but reduced at high concentration. These findings provided critical insights into the fate of nano-CuOs in soil environments, with significant implications for environmental risk assessment and soil remediation strategies.


Assuntos
Agricultura , Cobre , Poluentes do Solo , Solo , Cobre/química , Solo/química , Poluentes do Solo/química , Concentração de Íons de Hidrogênio , Adsorção , Nanopartículas Metálicas/química , Condutividade Elétrica , Tamanho da Partícula
5.
Environ Geochem Health ; 46(6): 210, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822873

RESUMO

The presence of heavy metals in soil has gained considerable attention due to their potential risks to ecosystems and human health. In this study, a thorough soil investigation was performed in the hilly region of central Hainan, which was formerly regarded as an area with the highest ecological environmental quality. A total of 7094 soil samples were systematically collected with high density over a large area. Simultaneously, a detailed investigation was conducted on the surrounding environment of each sampling point, including environmental factors such as soil, land use and crop types. The soil samples were analysed for heavy metals, pH, organic matter, and other parameters. The soil heavy metal pollution level, ecological risk and health risk were evaluated using the geo-accumulation index and the potential ecological risk index. The findings showed that the average contents of the heavy metals As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in the soil were 1.68, 0.042, 24.2, 6.49, 0.0319, 7.06, 29.6 and 49.8 mg·kg-1 respectively. Except for Hg, the mean values of the other heavy metals were either lower than or similar to the background values of Hainan. Also, only a few localised areas showed contamination by heavy metals. The primary sources of heavy metals, identified by a positive matrix factorisation model, could be categorised into four types: natural sources related to the soil formation process from acidic intrusive rocks (such as granite); natural sources primarily influenced by atmospheric deposition; anthropogenic sources associated with agricultural activities; and natural sources related to the soil formation process from middle-mafic intrusive rocks and black shales. The correlation analysis and variance analysis findings suggested that the content of heavy metals in the soil was primarily associated with the parent rock. The study area generally had low heavy metal levels and was not significantly polluted. However, agricultural activities still affected the enrichment of heavy metals. Therefore, it is imperative to remain vigilant about the ecological risks linked to soil heavy metals while continuing land development and expanding agricultural activities in the future. These findings indicate that conducting high-density soil surveys can enhance our understanding of regional soil heavy metals and enable reliable recommendations for agricultural planning. Whether in areas with low pollution risk or potential pollution risk, it is recommended that high-density soil surveys be conducted provide scientific guidance for further agricultural development.


Assuntos
Monitoramento Ambiental , Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/análise , China , Poluentes do Solo/análise , Medição de Risco , Solo/química , Humanos
6.
Environ Geochem Health ; 46(3): 91, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367072

RESUMO

The pollution of heavy metals (HMs) in agricultural soils profoundly threatens national food safety, and the mobility and environmental behaviors of HMs are closely implicated in crop safety. Here, we assessed the pollution level and mobility of ten HMs and explored their environmental behaviors in the soils of three different land uses from a main crop production zone in eastern China. The concentrations of HMs in the soils were higher in the farmland than the woodland and wasteland, and Cd showed a relatively higher pollution and ecological risk levels compared to other metals. Cadmium was dominated by the reducible (41%) and exchangeable (23%) fractions, and the rest of HMs were mainly in the residual fraction (> 60%). The significant correlation between the exchangeable and DGT-labile Cd indicates relatively higher mobility of Cd in the soils. Soil pH, organic matters and mineral elements had significant correlation with the exchangeable and reducible fractions of most of the HMs (e.g., Cd, Co, Mn, Ni, Pb and V; p < 0.05), indicating their good predictors of the HMs mobility. However, this was not the case for the DGT-labile fraction, which suggests a marked difference in the controlling mechanisms of the mobility versus potential bioavailability of HMs in the soils. The results of this study indicate that both the chemically extracted fractions and the bioavailable fractions of HMs need be considered when effectively assessing the safety of agricultural soils.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Cádmio , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , China , Metais Pesados/análise , Medição de Risco
7.
Environ Monit Assess ; 196(5): 493, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691227

RESUMO

The widespread use of rare earth elements (REEs) across various industries makes them a new type of pollutant. Additionally, REEs are powerful indicators of geochemical processes. As one of the two main rivers in the Aral Sea, identifying the geochemical behavior of REEs in agricultural soils of the Syr Darya River is of great significance for subsequent indicative studies. In this study, the geochemical characteristics, influencing factors, and potential application significance of REEs in agricultural soils from three sampling areas along the Syr Darya River were analyzed using soil geography and elemental geochemical analyses. The results showed that the highest total concentration of REEs in the agricultural soil was in Area I, with a mean value of 142.49 µg/g, followed by Area III with a mean value of 124.56 µg/g, and the lowest concentration was in Area II with a mean value of 122.48 µg/g. The agricultural soils in the three regions were enriched in light rare earth elements (LREEs), with mean L/H values of 10.54, 10.13, and 10.24, respectively. The differentiation between light and heavy rare earth elements (HREEs) was also high. The concentration of REEs in agricultural soil along the Syr Darya River was primarily influenced by minerals such as monazite and zircon, rather than human activities (the pollution index of all REEs was less than 1.5). The relationship between Sm and Gd can differentiate soils impacted by agricultural activities from natural background soils. The results of this study can serve as a basis for indicative studies of REEs in Central Asia.


Assuntos
Agricultura , Monitoramento Ambiental , Metais Terras Raras , Rios , Poluentes do Solo , Solo , Metais Terras Raras/análise , Solo/química , Rios/química , Poluentes do Solo/análise
8.
Bull Environ Contam Toxicol ; 112(2): 35, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353745

RESUMO

This work evaluated the biochemical responses of the endogeic earthworm Balanteodrilus extremus exposed for 14 and 48 days (d) to soils collected from two tropical agricultural systems: maize-sorghum (MS) and soybean-sorghum (SS). A soil without agricultural management (WAM) and the use of pesticides was selected as a reference. The presence of organochlorine (OC) and organophosphate (OP) pesticide residues was quantified in MS and SS soils. Biomarkers of detoxification [glutathione S transferase (GST)], neurotoxicity [acetylcholinesterase (AChE)] and oxidative stress [superoxide dismutase (SOD), catalase (CAT) and lipoperoxidation (LPO)] were evaluated in B. extremus. The concentration of OP pesticide residues was higher in SS than in MS. Activity of AChE in B. extremus exposed to SS soil for 14 d was significantly more inhibited (78%) than in MS soil (68%). B. extremus has been shown to be a good bioindicator of contaminated soils in tropical regions.


Assuntos
Ascomicetos , Oligoquetos , Resíduos de Praguicidas , Sorghum , Animais , Solo , Acetilcolinesterase , Agricultura , Grão Comestível , Glycine max , Zea mays
9.
Waste Manag Res ; 42(8): 634-650, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38520089

RESUMO

The extensive use of plastic materials and their improper disposal results in high amounts of plastic waste in the environment. Aging of plastics leads to their breakdown into smaller particles, such as microplastics (MPs) and nanoplastics. This research investigates plastics used in agricultural practices as they contribute to MP pollution in agricultural soils. The distribution and characteristics of MPs in agricultural soils were evaluated. In addition, the effect of MPs on soil properties, the relationship between MPs and metals in soil, the effect of MPs on the fate of pesticides in agricultural soils and the influence of MPs on plant growth were analysed, discussing legume, cereal and vegetable crops. Finally, a brief description of the main methods of chemical analysis and identification of MPs is presented. This study will contribute to a better understanding of MPs in agricultural soils and their effect on the soil-plant system. The changes induced by MPs in soil parameters can lead to potential benefits as it is possible to increase the availability of micronutrients and reduce plant uptake of toxic elements. Furthermore, although plastic pollution remains an emerging threat to soil ecosystems, their presence may result in benefits to agricultural soils, highlighting the principles of the circular economy.


Assuntos
Agricultura , Microplásticos , Poluentes do Solo , Solo , Agricultura/métodos , Solo/química , Poluentes do Solo/análise , Microplásticos/análise , Plásticos , Monitoramento Ambiental , Produtos Agrícolas
10.
J Environ Sci (China) ; 141: 277-286, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408828

RESUMO

The dissemination of antibiotic resistance genes (ARGs) in soil has become a global environmental issue. Vermicomposting is gaining prominence in agricultural practices as a soil amendment to improve soil quality. However, its impact on soil ARGs remains unclear when it occurs in farmland. We comprehensively explored the evolution and fate of ARGs and their hosts in the field soil profiles under vermicompost application for more than 3 years. Vermicompost application increased several ARG loads in soil environment but decreased the high-risk bla-ARGs (blaampC, blaNDM, and blaGES-1) by log(0.04 - 0.43). ARGs in soil amended with vermicompost primarily occurred in topsoil (approximately 1.04-fold of unfertilized soil), but it is worth noting that their levels in the 40-60 cm soil layer were the same or even less than in the unfertilized soil. The microbial community structure changed in soil profiles after vermicompost application. Vermicompost application altered the microbial community structure in soil profiles, showing that the dominant bacteria (i.e., Proteobacteria, Actinobacteriota, Firmicutes) were decreased 2.62%-5.48% with the increase of soil depth. A network analysis further revealed that most of ARG dominant host bacteria did not migrate from surface soil to deep soil. In particular, those host bacteria harboring high-risk bla-ARGs were primarily concentrated in the surface soil. This study highlights a lower risk of the propagation of ARGs caused by vermicompost application and provides a novel approach to reduce and relieve the dissemination of ARGs derived from animals in agricultural production.


Assuntos
Antibacterianos , Solo , Animais , Solo/química , Genes Bacterianos , Esterco/análise , Microbiologia do Solo , Bactérias/genética , Produtos Agrícolas
11.
Environ Sci Technol ; 57(25): 9277-9286, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37307015

RESUMO

The spatial variation and temporal trends of legacy and emerging per- and polyfluoroalkyl substances (PFASs) from 2011 to 2021 in agricultural soils of Eastern China, which is one of the largest PFAS production and consumption regions in the world, were evaluated. We found that PFOS concentration decreased by 28.2% during this period. Given that agricultural soils are sinks for persistent organic pollutants (POPs), our results suggest that the implementation of the Stockholm Convention and its indirect effects, combined with a voluntary phaseout, are effective for controlling PFOS pollution in agricultural soils in China. In addition, our results show that 19 out of 28 PFASs were detected in >40% of the samples, with concentrations being 17.6-1950 pg/g with a median of 373 pg/g. Further, legacy PFASs were major components, accounting for 63.8% of total PFASs. Based on the source appointment of PFASs via the Positive Matrix Factorization (PMF) model, the contribution ratio of consumer product industries has steadily increased from 6.10 to 26.2%, while both legacy and novel fluoropolymer industries have declined from 24.2 to 1.50 and 19.1 to 5.40%, further confirming the effectiveness of the Convention.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Monitoramento Ambiental , Solo , Fluorocarbonos/análise , China , Polímeros de Fluorcarboneto , Poluentes Químicos da Água/análise
12.
Environ Res ; 220: 115222, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610537

RESUMO

Soil colloids have been shown to play a critical role in soil phosphorus (P) mobility and transport. However, identifying the potential mechanisms behind colloidal P (Pcoll) release and the key influencing factors remains a blind spot. Herein, a machine learning approach (random forest (RF) coupled with partial dependence plot analyses) was applied to determine the effects of different soil physicochemical parameters on Pcoll content in three colloidal subfractions (i.e., nano- (NC): 1-20 nm, fine- (FC): 20-220 nm and medium-sized colloids (MC): 220-450 nm) based on a regional dataset of 12 farmlands in Zhejiang Province, China. RF successfully predicted Pcoll content (R2 = 0.98). Results showed that colloidal- organic carbon (OCcoll) and minerals were the major determinants of total Pcoll content (1-450 nm); their critical values for increasing Pcoll release were 87.0 mg L-1 for OCcoll, 11.0 mg L-1 for iron (Fecoll) or aluminium (Alcoll), 2.6 mg L-1 for calcium (Cacoll), 9.0 mg L-1 for magnesium (Mgcoll), 2.5 mg L-1 for silicon (Sicoll), and 1.4 mg L-1 for manganese (Mncoll). Among three colloidal subfractions, the major factors determining Pcoll were soil Olsen-P (POlsen; 125.0 mg kg-1), Cacoll (2.5 mg L-1), and colloidal P saturation (21.0%) in NC; Mncoll (1.5 mg L-1), Mgcoll (6.8 mg L-1), and POlsen (135.0 mg kg-1) in FC; while Mncoll (1.5 mg L-1), Alcoll (2.5 mg L-1), and Fecoll (3.8 mg L-1) in MC, respectively. OCcoll had a considerable effect in the three fractions, with critical values of 80.0 mg L-1 in NC or FC, and 50.0 mg L-1 in MC. Our study concluded that the information gleaned using the RF model can be used as crucial evidence to identify the key determinants of different size fractionated Pcoll contents. However, we still need to discover one or more easy-to-measure parameters that can help us better predict Pcoll.


Assuntos
Fósforo , Solo , Solo/química , Fósforo/análise , Agricultura , Minerais , Coloides
13.
Environ Res ; 233: 116520, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37390951

RESUMO

Antibiotics pollution is a growing environmental issue, as high amounts of these compounds are found in soil, water and sediments. This work studies the adsorption/desorption of the macrolide antibiotic clarithromycin (CLA) for 17 agricultural soils with different edaphic characteristics. The research was carried out using batch-type experiments, with an additional assessment of the specific influence of pH for 6 of the soils. The results show that CLA adsorption reaches between 26 and 95%. In addition, the fit of the experimental data to adsorption models provided values between 1.9 and 19.7 Ln µmol1-n kg-1 for the KF, Freundlich affinity coefficient, and between 2.5 and 10.5 L kg-1 for Kd, distribution constant of Linear model. Regarding the linearity index, n, it varied between 0.56 and 1.34. Desorption showed lower scores than adsorption, with an average of 20%, and with values of 3.1 and 93.0 Ln µmol1-n kg-1 for KF(des) and 4.4 and 95.0 L kg-1 for Kd(des). The edaphic characteristics with the highest influence on adsorption were the silt fraction content and the exchangeable Ca content, while in the case of desorption, they were the total nitrogen, organic carbon, and exchangeable Ca and Mg contents. Regarding the pH, within the range studied (between 3 and 10), its value did not decisively affect the adsorption/desorption process. Overall, the set of these results could be of help to program appropriate measures leading to the retention/elimination of this antibiotic when it reaches the environment as a pollutant.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Solo/química , Claritromicina , Adsorção , Poluentes do Solo/análise , Antibacterianos , Concentração de Íons de Hidrogênio
14.
Environ Res ; 223: 115443, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36781014

RESUMO

Some Escherichia coli serotypes are important human pathogens causing diarrhea or in some cases, life threatening diseases. E. coli is also a typical indicator microorganism, routinely used for assessing the microbiological quality of water especially to indicate fecal contamination. The soil is a sink and route of transmission to water and food resources and it is thus important to understand the survival of enterotoxigenic E. coli strains in soil. This study monitored the survival of six E. coli strains in sandy and loam soil. Furthermore, since biochar is a commonly used soil conditioner, the study investigated the impact of biochar amendment (15%) on the survival of the E. coli strains in (biochar-amended) sandy and loam soils. Addition of biochar affected the physicochemical properties of both soils, altering potassium levels, calcium, magnesium, sodium as well as levels of other metal ions. It increased the organic matter of loam soil from 44 g/dm3 to 52 g/dm3, and increased the pH of both sandy and loam soils. Survival and persistence of the E. coli strains generally varied according to soil type, with strains generally surviving better (P ≤ 0.05) in loam soil compared to in sandy soil. In loam soil and biochar amended loam soils, E. coli strains remained culturable until the 150th day with counts ranging between 3.00 and 5.94 ± 0.04 log CFU/g. The effects of biochar on the physicochemical properties of soil and the response of the E. coli strains to biochar amendment was variable depending on soil type.


Assuntos
Escherichia coli Enterotoxigênica , Poluentes do Solo , Humanos , Solo/química , Carvão Vegetal/química , Areia , Poluentes do Solo/análise
15.
Ecotoxicol Environ Saf ; 249: 114436, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36525951

RESUMO

The concentrations of trace elements in agricultural soils directly affect the ecological security and quality of agricultural products. A comprehensive study aimed at quantitatively analyze the effects of anthropogenic and natural environmental factors on the spatial distribution of heavy metals (HMs) and selenium (Se) in agricultural soils in a typical grain producing area of China. Factors considered in this study were parent rock, soil physicochemical properties, topography, precipitation, mine activity, and vegetation. Results showed that the median values of Zn, Cd, Cr, and Cu of 111 topsoil samples exceeded the background values of Guangxi province but were lower than the relevant national soil quality standards, and 85% of soil samples were classified as having rich Se levels (0.40 -3.0 mg kg-1). The potential ecological risk index of soil heavy metals as a whole was low, with Cd in 9% of the samples posing moderate ecological risk. The concentrations of heavy metals and Se were relatively high in soils from shale rock. Soil properties, mainly Fe2O3 and Mn played a dominant role on soil HMs and Se concentrations. Based on GeoDetector, we found that the interaction effects of two factors on the spatial differentiation of soil HMs and Se were greater than their sum effect. Among the factors, Mn enhanced the explanatory power of the model the most when interacting with other factors for soil Zn; the greatest interactive effect was between distance from mining area and Mn for Cd (q = 0.70); Fe2O3 significantly promoted the spatial differentiation of soil Cr, Cu and Se when interacting with other factors (q > 0.50). These findings contribute to a better understanding of the factors that drive the distribution of HMs and Se in agricultural soils.


Assuntos
Metais Pesados , Selênio , Poluentes do Solo , Oligoelementos , Solo/química , Oligoelementos/análise , Cádmio , Monitoramento Ambiental/métodos , China , Poluentes do Solo/análise , Medição de Risco , Metais Pesados/análise
16.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615629

RESUMO

The adsorption-desorption processes of organic pollutants into the soil are one of the main factors influencing their potential environmental risks and distribution in the environment. In the present work, the adsorption-desorption behavior of an antibiotic, trimethoprim (TMP), and two of its main metabolites, 3-desmethyltrimethoprim (DM-TMP) and 4-hydroxytrimethoprim (OH-TMP), were assessed in three Mediterranean agricultural soils with different physicochemical characteristics. Results showed that the adsorption kinetic is performed in two steps: external sorption and intraparticle diffusion. The adsorptions of the studied compounds in soils were similar and fitted to the three models but were better fitted to a linear model. In the case of DM-TMP and OH-TMP, their adsorptions were positively correlated with the soil organic matter. In addition, desorption was higher in less organic matter soil (from 1.3 to 30.9%). Furthermore, the desorptions measured for the TMP metabolites were lower than those measured in the case of TMP (from 2.0 and 4.0% for OH-TMP and DM-TMP, respectively, to 9.0% for TMP).


Assuntos
Poluentes do Solo , Solo , Solo/química , Trimetoprima , Adsorção , Poluentes do Solo/análise , Termodinâmica
17.
Environ Geochem Health ; 45(3): 881-897, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35348989

RESUMO

Evaluating heavy metal pollution level in the soils and apportioning the source-specific health risk of heavy metals are critical for proposing environmental protection and remediation strategies to protection human health. This study explored heavy metal pollution and associated source-specific health risks in a typical rural industrial area, southwestern China. A total of 105 topsoil samples were collected and the concentrations of heavy metals, including As, Cd, Cr, Cu, Ni, Pb and Zn, were determined. Pollution load index and enrichment factors were used to evaluate the pollution level of heavy metals. Positive matrix factorization (PMF) model was applied to apportion the heavy metals and the associated source-specific health risks to adults and children were estimated via combining the PMF model with the health risk assessment. The results indicated that the soils were highly polluted by multiple heavy metals, especially for Cd, with the EF values of 24.94 and 22.55 in the upstream and downstream areas, respectively. Source apportionment results showed that atmospheric deposition, smelting activities, fertilizer and sewage application, and agrochemical utilization were the main anthropogenic sources, with the contributions of 37.11%, 23.69%, 19.69%, and 19.51%, respectively. Source-specific risk assessment identified atmospheric deposition as the priority source for the non-carcinogenic (NCR) and carcinogenic risks (CR) in the study area, with the contribution of 43.71% and 52.52% for adults, and 44.29% and 52.58% for children, respectively. Moreover, non-carcinogenic and carcinogenic risks posed to children (NCR: 2.84; CR: 1.31 × 10-4) from four sources was higher than those posed to adults (NCR: 0.29; CR: 5.86 × 10-5). The results of source-specific health risk assessment provided the valuable information on the priority sources for pollution preventing and risk controlling.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Solo , Monitoramento Ambiental , Cádmio/análise , Incerteza , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise
18.
Environ Geochem Health ; 45(6): 3069-3087, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36153764

RESUMO

As-containing chemical weapons (CWs) and their degraded products pose a great threat to the environment and to human health. In this study, concentration and distribution characteristics, source identification, and health risk assessments were determined for As, Cr, Ni, Cu, Zn, Cd and Pb in environmental samples from Lianhuapao (LHP), a typical site of Japanese abandoned chemical weapons (JACWs) in China. The results show that the concentration levels of As, Cr and Ni in the LHP soils are abnormally high, with 69.57%, 83.33% and 91.67%, respectively, of the total sample exceeding the risk screening values for soil contamination of agricultural land. As levels in water samples were generally within safety limits, with the exception of perched water in the core contamination area. In the study area, none of the dominant plant species were enriched with As, except for the Pteris vittata L. Pentavalent arsenic was found to be the predominant arsenic species in the topsoil and water samples. Source identification using statistical approaches indicated that the concentrations of As, Pb, Cu, Cd and Zn are likely influenced by JACWs, while Cr and Ni levels may be related to the natural weathering process. The total concentrations of As, Cr and Ni showed a significant degree of contamination, but only As displayed high potential ecological risk. The calculated indexes of health risk evaluation strongly indicate an unacceptable carcinogenic risk (1E-04) to children, and higher non-carcinogenic risk, relative to that of adults. Our data indicate that the health risk from the resulting As contamination is still a cause for concern, although the JACWs were excavated decades ago from these soils.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Arsênio/análise , Cádmio , China , Monitoramento Ambiental/métodos , Chumbo , Metais Pesados/análise , Medição de Risco , Solo/química , Poluentes do Solo/análise , Água
19.
Environ Geochem Health ; 45(6): 3521-3539, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36371766

RESUMO

In this study, the contents of heavy metals (HMs) such as Al, Cd, Co, Cr, Cu Fe, Mn, Ni, Pb and Zn in soil samples collected from 403 sampling locations of the agricultural lands of Adiyaman Province (Türkiye) were determined by Inductively Coupled Plasma‒Optical Emission Spectrometry (ICP‒OES). The mean concentrations of Al, Cd, Co Cr, Cu Fe, Mn, Ni, Pb and Zn HMs were detected 28,986, 3.60, 15, 127, 52.67, 45,830, 817, 62.40, 10.75 and 66.25 mg kg-1, respectively. These results showed that the average concentrations of Cd, Cr, Cu, Fe, Mn and Ni exceeded the Upper continental crust average. To determine and to evaluate the contamination status and distribution of HMs in agricultural soils, metal pollution parameters such as enrichment factor (EF), geoaccumulation index (Igeo), contamination factor (Cf), pollution load index, potential ecological risk factor (Er), and potential ecological risk index (RI) were used. Factor analyses (FA) and principal component analyses (PCA) indicated that Cd, Cr and Ni levels were influenced by anthropogenic sources, Fe by both lithological and anthropogenic sources, and other HMs by lithogenic origins. For both children and adults, the hazard index (HI) and total hazard index (THI) values of HMs were < 1, suggesting that non-carcinogenic health risks to residents through ingestion, inhalation pathways, and dermal contact were currently absent. In addition, the cumulative carcinogenic risk (CCR) results were within the acceptable risk range (10-4 to 10-6). The results showed that children were more sensitive to the non-carcinogenic and carcinogenic effects of HMs.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Monitoramento Ambiental/métodos , Cádmio/análise , Chumbo/análise , Medição de Risco , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Solo/química , Carcinógenos/análise , China
20.
Environ Geochem Health ; 45(7): 4549-4563, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36856885

RESUMO

Consumption of food grown in contaminated soils may be a significant human exposure pathway to pollutants, including toxic elements. This study aimed to investigate the pollution level of trace elements in farmland soil and crops collected in orchards from Ponce Enriquez, one of the Ecuador's most important gold mining areas. The concentration of arsenic (As), cadmium (Cd), chrome (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) was analyzed in soil and crop samples (celery, chives, corn, herbs, lettuce, turnips, green beans, cassava, and carrots). In addition, a probabilistic human health risk assessment, in terms of hazard quotients (HQ) and cancer risk (CR), was conducted to assess the potential risk related to local crop ingestion. The contents of As, Cr, Cu, and Ni in soils exceeded the Ecuadorian quality guidelines for agricultural soils. The trace elements concentration in local crops was higher than the maximum permissible levels set by the Food and Agriculture Organization of the United Nations (FAO). The HQ and CR of local crop ingestion were several orders higher than the safe exposure threshold, mainly for lettuce, chives, and turnips. Our results revealed that inhabitants of the study area are exposed to developing carcinogenic and non-carcinogenic effects due to long-term food consumption with high trace elements. This study sheds light on the need to assess further the quality of agricultural soils and crops grown in mining areas with signs of contamination to guarantee consumer food safety.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Oligoelementos , Humanos , Metais Pesados/toxicidade , Metais Pesados/análise , Solo , Equador , Fazendas , Monitoramento Ambiental , Produtos Agrícolas , Medição de Risco , Arsênio/toxicidade , Verduras , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA