Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 452
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
FASEB J ; 38(1): e23366, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102957

RESUMO

Cytokinins (CKs) are a class of growth-promoting signaling molecules that affect multiple cellular and developmental processes. These phytohormones are well studied in plants, but their presence continues to be uncovered in organisms spanning all kingdoms, which poses new questions about their roles and functions outside of plant systems. Cytokinin production can be initiated by one of two different biosynthetic enzymes, adenylate isopentenyltransfases (IPTs) or tRNA isopentenyltransferases (tRNA-IPTs). In this study, the social amoeba, Dictyostelium discoideum, was used to study the role of CKs by generating deletion and overexpression strains of its single adenylate-IPT gene, iptA. The life cycle of D. discoideum is unique and possesses both single- and multicellular stages. Vegetative amoebae grow and divide while food resources are plentiful, and multicellular development is initiated upon starvation, which includes distinct life cycle stages. CKs are produced in D. discoideum throughout its life cycle and their functions have been well studied during the later stages of multicellular development of D. discoideum. To investigate potential expanded roles of CKs, this study focused on vegetative growth and early developmental stages. We found that iptA-deficiency results in cytokinesis defects, and both iptA-deficiency and overexpression results in dysregulated tricarboxylic acid (TCA) cycle and amino acid metabolism, as well as increased levels of adenosine monophosphate (AMP). Collectively, these findings extend our understanding of CK function in amoebae, indicating that iptA loss and overexpression alter biological processes during vegetative growth that are distinct from those reported during later development.


Assuntos
Dictyostelium , Dictyostelium/genética , Citocinese , Citocininas/genética , Citocininas/metabolismo , RNA de Transferência/metabolismo , Aminoácidos/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(43): e2116122119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252029

RESUMO

Low-molecular-weight natural products from microbes are indispensable in the development of potent drugs. However, their biological roles within an ecological context often remain elusive. Here, we shed light on natural products from eukaryotic microorganisms that have the ability to transition from single cells to multicellular organisms: the social amoebae. These eukaryotes harbor a large number of polyketide biosynthetic genes in their genomes, yet virtually none of the corresponding products can be isolated or characterized. Using complementary molecular biology approaches, including CRISPR-Cas9, we generated polyketide synthase (pks5) inactivation and overproduction strains of the social amoeba Dictyostelium discoideum. Differential, untargeted metabolomics of wild-type versus mutant fruiting bodies allowed us to pinpoint candidate metabolites derived from the amoebal PKS5. Extrachromosomal expression of the respective gene led to the identification of a yellow polyunsaturated fatty acid. Analysis of the temporospatial production pattern of this compound in conjunction with detailed bioactivity studies revealed the polyketide to be a spore germination suppressor.


Assuntos
Amoeba , Produtos Biológicos , Dictyostelium , Policetídeos , Amoeba/genética , Produtos Biológicos/metabolismo , Dictyostelium/fisiologia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(36): e2205856119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037367

RESUMO

Protists are important regulators of microbial communities and key components in food webs with impact on nutrient cycling and ecosystem functioning. In turn, their activity is shaped by diverse intracellular parasites, including bacterial symbionts and viruses. Yet, bacteria-virus interactions within protists are poorly understood. Here, we studied the role of bacterial symbionts of free-living amoebae in the establishment of infections with nucleocytoplasmic large DNA viruses (Nucleocytoviricota). To investigate these interactions in a system that would also be relevant in nature, we first isolated and characterized a giant virus (Viennavirus, family Marseilleviridae) and a sympatric potential Acanthamoeba host infected with bacterial symbionts. Subsequently, coinfection experiments were carried out, using the fresh environmental isolates as well as additional amoeba laboratory strains. Employing fluorescence in situ hybridization and qPCR, we show that the bacterial symbiont, identified as Parachlamydia acanthamoebae, represses the replication of the sympatric Viennavirus in both recent environmental isolates as well as Acanthamoeba laboratory strains. In the presence of the symbiont, virions are still taken up, but viral factory maturation is inhibited, leading to survival of the amoeba host. The symbiont also suppressed the replication of the more complex Acanthamoeba polyphaga mimivirus and Tupanvirus deep ocean (Mimiviridae). Our work provides an example of an intracellular bacterial symbiont protecting a protist host against virus infections. The impact of virus-symbiont interactions on microbial population dynamics and eventually ecosystem processes requires further attention.


Assuntos
Amoeba , Vírus Gigantes , Mimiviridae , Simbiose , Amoeba/microbiologia , Amoeba/virologia , Ecossistema , Vírus Gigantes/genética , Hibridização in Situ Fluorescente , Mimiviridae/genética
4.
J Biol Chem ; 299(12): 105376, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866633

RESUMO

Legionella pneumophila is an environmental bacterium, which replicates in amoeba but also in macrophages, and causes a life-threatening pneumonia called Legionnaires' disease. The opportunistic pathogen employs the α-hydroxy-ketone compound Legionella autoinducer-1 (LAI-1) for intraspecies and interkingdom signaling. LAI-1 is produced by the autoinducer synthase Legionella quorum sensing A (LqsA), but it is not known, how LAI-1 is released by the pathogen. Here, we use a Vibrio cholerae luminescence reporter strain and liquid chromatography-tandem mass spectrometry to detect bacteria-produced and synthetic LAI-1. Ectopic production of LqsA in Escherichia coli generated LAI-1, which partitions to outer membrane vesicles (OMVs) and increases OMV size. These E. coli OMVs trigger luminescence of the V. cholerae reporter strain and inhibit the migration of Dictyostelium discoideum amoeba. Overexpression of lqsA in L.pneumophila under the control of strong stationary phase promoters (PflaA or P6SRNA), but not under control of its endogenous promoter (PlqsA), produces LAI-1, which is detected in purified OMVs. These L. pneumophila OMVs trigger luminescence of the Vibrio reporter strain and inhibit D. discoideum migration. L. pneumophila OMVs are smaller upon overexpression of lqsA or upon addition of LAI-1 to growing bacteria, and therefore, LqsA affects OMV production. The overexpression of lqsA but not a catalytically inactive mutant promotes intracellular replication of L. pneumophila in macrophages, indicating that intracellularly produced LA1-1 modulates the interaction in favor of the pathogen. Taken together, we provide evidence that L. pneumophila LAI-1 is secreted through OMVs and promotes interbacterial communication and interactions with eukaryotic host cells.


Assuntos
Legionella pneumophila , Percepção de Quorum , Humanos , Proteínas de Bactérias/genética , Dictyostelium , Escherichia coli , Legionella , Legionella pneumophila/fisiologia , Doença dos Legionários/microbiologia
5.
Infect Immun ; 92(10): e0018324, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39235225

RESUMO

Naegleria fowleri (N. fowleri) infection via the upper respiratory tract causes a fatal CNS disease known as primary amoebic meningoencephalitis (PAM). The robust in vivo immune response to N. fowleri infection underlies the immunopathology that characterizes the disease. However, little is known about why this pathogen evades immune control. Infections occur in seemingly healthy individuals and effective clinical options are lacking, thus a nearly 98% fatality rate. It is unclear how or if host factors may contribute to susceptibility or disease exacerbation, yet mechanistic studies of the in vivo immune response and disease progression are hampered by a lack of tools. In this study, we have generated monoclonal antibodies to N. fowleri surface antigens and shown them to be excellent tools for studying the in vivo immune response. We also identified one monoclonal, 2B6, with potent inherent anti-amoebastatic activity in vitro. This antibody is also able to therapeutically prolong host survival in vivo and furthermore, recombinant antibodies with an isotype more capable of directing immune effector activity further improved survival when given therapeutically. Thus, we report the generation of a novel monoclonal antibody to N. fowleri that can enhance beneficial immune functions, even when given therapeutically during disease. We believe this provides evidence for the potential of therapeutic antibody treatments in PAM.IMPORTANCENaegleria fowleri (N. fowleri) is a free-living amoeba that is found ubiquitously in warm freshwater. While human exposure is common, it rarely results in pathogenesis. However, when N. fowleri gains access to the upper airway, specifically the olfactory mucosa, infection leads to a lethal disease known as primary amoebic meningoencephalitis (PAM). As a free-living amoeba, N. fowleri does not need a mammalian host; indeed, it can be accurately described as an accidental opportunistic pathogen. While most opportunistic infections occur in humans who are immunocompromised, there are no reported immune dysfunctions associated with N. fowleri infection. Therefore, the basis for N. fowleri opportunism is not known, and the reasons why some humans develop PAM while others do not are simply not well understood. It is reasonable to speculate that local or acute immune failures, potentially even a lack of prior adaptive immunity, are related to disease susceptibility. Careful immune profiling and characterization of the in vivo immune response to N. fowleri in a mammalian host are desperately needed to understand which host factors are critical to defense, and how these responses might be compromised in a way that results in lethal infection. To identify genes and pathways that provide resistance against in vivo N. fowleri infection, we generated surface reactive monoclonal antibodies (Abs) that provide rapid amoeba detection and quantification in vivo. Interestingly, N. fowleri binding Abs have been readily detected in the serum and saliva of humans and animals suggesting that non-lethal exposure drives a humoral immune response against the amoeba. Yet, how Abs might interact with Naegleria in vivo or contribute to preventing lethal infection is not well understood. In this study, we have generated and characterized a monoclonal antibody (Ab), Clone 2B6, that recognizes a glycosylated surface antigen present in cultured in vitro N. fowleri as well as mouse passaged N. fowleri. When clone 2B6 binds to N. fowleri, it inhibits amoeba motility and feeding behavior, leading to strong growth inhibition. Mice treated systemically and intracerebrally with Ab displayed a delayed disease onset and prolonged survival. In addition, we found that enhancing immune-directed effector activity via antibody isotype could further enhance survival without obvious immunopathogenic side effects. These findings show the potential for antibody treatment as an additional therapeutic to those used currently in PAM.


Assuntos
Anticorpos Monoclonais , Anticorpos Antiprotozoários , Infecções Protozoárias do Sistema Nervoso Central , Naegleria fowleri , Naegleria fowleri/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Infecções Protozoárias do Sistema Nervoso Central/imunologia , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Camundongos , Anticorpos Antiprotozoários/imunologia , Meningoencefalite/imunologia , Meningoencefalite/parasitologia , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Amebíase/imunologia , Amebíase/parasitologia , Humanos , Antígenos de Protozoários/imunologia , Feminino
6.
Mol Microbiol ; 120(2): 194-209, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429596

RESUMO

Lipid droplets (LDs) are dynamic and versatile organelles present in most eukaryotic cells. LDs consist of a hydrophobic core of neutral lipids, a phospholipid monolayer coat, and a variety of associated proteins. LDs are formed at the endoplasmic reticulum and have diverse roles in lipid storage, energy metabolism, membrane trafficking, and cellular signaling. In addition to their physiological cellular functions, LDs have been implicated in the pathogenesis of several diseases, including metabolic disorders, cancer, and infections. A number of intracellular bacterial pathogens modulate and/or interact with LDs during host cell infection. Members of the genera Mycobacterium, Legionella, Coxiella, Chlamydia, and Salmonella exploit LDs as a source of intracellular nutrients and membrane components to establish their distinct intracellular replicative niches. In this review, we focus on the biogenesis, interactions, and functions of LDs, as well as on their role in lipid metabolism of intracellular bacterial pathogens.


Assuntos
Dieta , Gotículas Lipídicas , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos
7.
J Virol ; 97(2): e0182422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36728417

RESUMO

Among the most intriguing structural features in the known virosphere are mimivirus surface fibrils, proteinaceous filaments approximately 150 nm long, covering the mimivirus capsid surface. Fibrils are important to promote particle adhesion to host cells, triggering phagocytosis and cell infection. However, although mimiviruses are one of the most abundant viral entities in a plethora of biomes worldwide, there has been no comparative analysis on fibril organization and abundance among distinct mimivirus isolates. Here, we describe the isolation and characterization of Megavirus caiporensis, a novel lineage C mimivirus with surface fibrils organized as "clumps." This intriguing feature led us to expand our analyses to other mimivirus isolates. By employing a combined approach including electron microscopy, image processing, genomic sequencing, and viral prospection, we obtained evidence of at least three main patterns of surface fibrils that can be found in mimiviruses: (i) isolates containing particles with abundant fibrils, distributed homogeneously on the capsid surface; (ii) isolates with particles almost fibrilless; and (iii) isolates with particles containing fibrils in abundance, but organized as clumps, as observed in Megavirus caiporensis. A total of 15 mimivirus isolates were analyzed by microscopy, and their DNA polymerase subunit B genes were sequenced for phylogenetic analysis. We observed a unique match between evolutionarily-related viruses and their fibril profiles. Biological assays suggested that patterns of fibrils can influence viral entry in host cells. Our data contribute to the knowledge of mimivirus fibril organization and abundance, as well as raising questions on the evolution of those intriguing structures. IMPORTANCE Mimivirus fibrils are intriguing structures that have drawn attention since their discovery. Although still under investigation, the function of fibrils may be related to host cell adhesion. In this work, we isolated and characterized a new mimivirus, called Megavirus caiporensis, and we showed that mimivirus isolates can exhibit at least three different patterns related to fibril organization and abundance. In our study, evolutionarily-related viruses presented similar fibril profiles, and such fibrils may affect how those viruses trigger phagocytosis in amoebas. These data shed light on aspects of mimivirus particle morphology, virus-host interactions, and their evolution.


Assuntos
Mimiviridae , Proteínas do Capsídeo/genética , Genoma Viral , Microscopia Eletrônica , Mimiviridae/genética , Mimiviridae/ultraestrutura , Filogenia
8.
J Eukaryot Microbiol ; 71(3): e13020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38240465

RESUMO

Biological soil crusts represent a rich habitat for diverse and complex eukaryotic microbial communities. A unique but extremely common habitat is the urban sidewalk and its cracks that collect detritus. While these habitats are ubiquitous across the globe, little to no work has been conducted to characterize protists found there. Amoeboid protists are major predators of bacteria and other microbial eukaryotes in these microhabitats and therefore play a substantial ecological role. From sidewalk crack soil crusts, we have isolated three naked amoebae with finely tapered subpseudopodia, and a simple life cycle consisting of a trophic amoeba and a cyst stage. Using a holistic approach including light, electron, and fluorescence microscopy as well as phylogenetics using the ribosomal small subunit rRNA gene and phylogenomics using 230 nuclear genes, we find that these amoeboid organisms fail to match any previously described eukaryote genus. However, we determined the amoebae belong to the amoebozoan lineage Variosea based on phylogenetics. The molecular analyses place our isolates in two novel genera forming a grade at the base of the variosean group Protosteliida. These three novel varioseans among two novel genera and species are herein named "Kanabo kenzan" and "Parakanabo toge."


Assuntos
Amebozoários , Filogenia , Amebozoários/classificação , Amebozoários/genética , Amebozoários/isolamento & purificação , Solo/parasitologia , Ecossistema , DNA de Protozoário/genética , Cidades
9.
J Eukaryot Microbiol ; 71(2): e13010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37941507

RESUMO

Rhabdamoeba marina is a unique and poorly reported amoeba with an uncertain phylogenetic position. We successfully cultured R. marina from coastal seawater in Japan and performed a molecular phylogenetic analysis using the small subunit ribosomal RNA (SSU rRNA) gene sequence. Our phylogenetic analysis showed that R. marina branched as a basal lineage of Chlorarachnea, a group of marine photosynthetic algae belonging to the phylum Cercozoa within the supergroup Rhizaria. By comparing the ecological and morphological characteristics of R. marina with those of photosynthetic chlorarachneans and other cercozoans, we gained insight into the evolution and acquisition of plastids in Chlorarachnida.


Assuntos
Cercozoários , Rhizaria , Filogenia , DNA Ribossômico/genética , DNA de Protozoário/genética , Cercozoários/genética
10.
J Eukaryot Microbiol ; 71(4): e13031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725295

RESUMO

The salamander, Ambystoma annulatum, is considered a "species of special concern" in the state of Arkansas, USA, due to its limited geographic range, specialized habitat requirements and low population size. Although metazoan parasites have been documented in this salamander species, neither its native protists nor microbiome have yet been evaluated. This is likely due to the elusive nature and under-sampling of the animal. Here, we initiate the cataloguing of microbial associates with the identification of a new heterlobosean species, Naegleria lustrarea n. sp. (Excavata, Discoba, Heterolobosea), isolated from feces of an adult A. annulatum.


Assuntos
Ambystoma , Fezes , Naegleria , Animais , Arkansas , Fezes/parasitologia , Ambystoma/parasitologia , Naegleria/isolamento & purificação , Naegleria/classificação , Filogenia
11.
Intern Med J ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39431453

RESUMO

Granulomatous amoebic encephalitis is a rare but likely under-recognised form of subacute, usually fatal, encephalitis. We present an illustrative case report and literature review of Australian cases, summarising clinical features, diagnostic methods, treatment and outcomes.

12.
Neuropathology ; 44(1): 68-75, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37381626

RESUMO

A 76-year-old female with no apparent immunosuppressive conditions and no history of exposure to freshwater and international travel presented with headache and nausea 3 weeks before the presentation. On admission, her consciousness was E4V4V6. Cerebrospinal fluid analysis showed pleocytosis with mononuclear cell predominance, elevated protein, and decreased glucose. Despite antibiotic and antiviral therapy, her consciousness and neck stiffness gradually worsened, right eye-movement restriction appeared, and the right direct light reflex became absent. Brain magnetic resonance imaging revealed hydrocephalus in the inferior horn of the left lateral ventricle and meningeal enhancement around the brainstem and cerebellum. Tuberculous meningitis was suspected, and pyrazinamide, ethambutol, rifampicin, isoniazid, and dexamethasone were started. In addition, endoscopic biopsy was performed from the white matter around the inferior horn of the left lateral ventricle to exclude brain tumor. A brain biopsy specimen revealed eosinophilic round cytoplasm with vacuoles around blood vessels, and we diagnosed with amoebic encephalitis. We started azithromycin, flucytosine, rifampicin, and fluconazole, but her symptoms did not improve. She died 42 days after admission. In autopsy, the brain had not retained its structure due to autolysis. Hematoxylin and eosin staining of her brain biopsy specimen showed numerous amoebic cysts in the perivascular brain tissue. Analysis of the 16S ribosomal RNA region of amoebas from brain biopsy and autopsy specimens revealed a sequence consistent with Balamuthia mandrillaris. Amoebic meningoencephalitis can present with features characteristic of tuberculous meningitis, such as cranial nerve palsies, hydrocephalus, and basal meningeal enhancement. Difficulties in diagnosing amoebic meningoencephalitis are attributed to the following factors: (1) excluding tuberculous meningitis by microbial testing is difficult, (2) amoebic meningoencephalitis has low incidence and can occur without obvious exposure history, (3) invasive brain biopsy is essential in diagnosing amoebic meningoencephalitis. We should recognize the possibility of amoebic meningoencephalitis when evidence of tuberculosis meningitis cannot be demonstrated.


Assuntos
Amebíase , Amoeba , Balamuthia mandrillaris , Infecções Protozoárias do Sistema Nervoso Central , Hidrocefalia , Encefalite Infecciosa , Tuberculose Meníngea , Humanos , Feminino , Idoso , Tuberculose Meníngea/diagnóstico , Tuberculose Meníngea/patologia , Infecções Protozoárias do Sistema Nervoso Central/diagnóstico , Rifampina , Amebíase/diagnóstico , Amebíase/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encefalite Infecciosa/diagnóstico , Encefalite Infecciosa/patologia , Hidrocefalia/patologia
13.
J Invertebr Pathol ; 206: 108160, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38925365

RESUMO

The production demand of edible snails in the Mediterranean area is very high and the attention to snail borne diseases is increasing. Following mass mortality events, we have analyzed 240 samples of Cornu aspersum collected from farms across Italy. Anatomopathological examination showed the presence of alterations of the gastro-intestinal apparatus and of the digestive gland, while histopathological examination revealed the presence of Rickettsia-like organisms (RLOs) in 70% (168/240) of cases and Giemsa positive amoebae in the remaining 30% (72/240) of cases. RLOs were localized mainly at the level of the DG, where regressive changes or nodular inflammation was observed. TEM examination of RLOs samples revealed the presence of many rod-shaped electron dense microorganisms. Amoebal infection occurred in the kidney, intestine, lung, the DG and were associated to regressive events or infiltrative/nodular and encapsulation like inflammation. To date it is still unclear if the pathogens detected could represent a risk for humans and animals, therefore further studies are needed to better elucidate this point.


Assuntos
Caramujos , Animais , Itália/epidemiologia , Caramujos/parasitologia , Caramujos/microbiologia , Rickettsia/isolamento & purificação , Fazendas
14.
J Fish Dis ; 47(6): e13933, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38400598

RESUMO

Nodular gill disease (NGD) is an emerging condition associated with amoeba trophozoites in freshwater salmonid farms. However, unambiguous identification of the pathogens still must be achieved. This study aimed to identify the amoeba species involved in periodic NGD outbreaks in two rainbow trout (Oncorhynchus mykiss) farms in Northeastern Italy. During four episodes (February-April 2023), 88 fish were euthanized, and their gills were evaluated by macroscopic, microscopic and histopathological examination. The macroscopic and microscopic severity of the lesions and the degree of amoebae infestation were scored and statistically evaluated. One gill arch from each animal was put on non-nutrient agar (NNA) Petri dishes for amoeba isolation, cultivation and subsequent identification with SSU rDNA sequencing. Histopathology confirmed moderate to severe lesions consistent with NGD and mild to moderate amoeba infestation. The presence of amoebae was significantly correlated with lesion severity. Light microscopy of cultured amoebae strains and SSU rDNA analysis revealed the presence of a previously characterized amoeba Naegleria sp. strain GERK and several new strains: two strains from Hartmannelidae, three vannelid amoebae from the genus Ripella and cercozoan amoeba Rosculus. Despite the uncertainty in NGD etiopathogenesis and amoebae pathogenic role, identifying known and new amoebae leans towards a possible multi-aetiological origin.


Assuntos
Amebíase , Doenças dos Peixes , Brânquias , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/parasitologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/epidemiologia , Itália , Amebíase/veterinária , Amebíase/parasitologia , Brânquias/parasitologia , Brânquias/patologia , Amoeba/genética , Amoeba/isolamento & purificação , Amoeba/classificação , Aquicultura , Amebozoários/genética , Amebozoários/isolamento & purificação , Amebozoários/classificação , Amebozoários/fisiologia , Filogenia
15.
Parasitol Res ; 123(9): 323, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254717

RESUMO

Vermamoeba vermiformis (V. vermiformis) is one of the most common free-living amoeba (FLA) and is frequently found in environments such as natural freshwater areas, surface waters, soil, and biofilms. V. vermiformis has been reported as a pathogen with pathogenic potential for humans and animals. The aim is to report a case of non-Acanthamoeba keratitis in which V. vermiformis was the etiological agent, identified by culture and molecular techniques. Our case was a 48-year-old male patient with a history of trauma to his eye 10 days ago. The patient complained of eye redness and purulent discharge. A slit-lamp examination of the eye revealed a central corneal ulcer with peripheral infiltration extending into the deep stroma. The corneal scraping sample taken from the patient was cultured on a non-nutritious agar plate (NNA). Amoebae were evaluated according to morphological evaluation criteria. It was investigated by PCR method and confirmed by DNA sequence analysis. Although no bacterial or fungal growth was detected in the routine microbiological evaluation of the corneal scraping sample that was cultured, amoeba growth was detected positively in the NNA culture. Meanwhile, Acanthamoeba was detected negative by real-time PCR. However, V. vermiformis was detected positive with the specific PCR assay. It was confirmed by DNA sequence analysis to be considered an etiological pathogenic agent. Thus, topical administration of chlorhexidine gluconate %0.02 (8 × 1) was initiated. Clinical regression was observed 72 h after chlorhexidine initiation, and complete resolution of keratitis with residual scarring was noticed in 5 weeks. In conclusion, corneal infections due to free-living amoebae can occur, especially in poor hygiene. Although Acanthamoeba is the most common keratitis due to amoeba, V. vermiformis is also assumed to associate keratitis in humans. Clinicians should also be aware of other amoebic agents, such as V. vermiformis, in keratitis patients.


Assuntos
Amebíase , Pessoa de Meia-Idade , Humanos , Masculino , Amebíase/parasitologia , Amebíase/diagnóstico , Amebíase/tratamento farmacológico , Ceratite/parasitologia , Ceratite/microbiologia , Ceratite/tratamento farmacológico , Ceratite/diagnóstico , Ceratite por Acanthamoeba/parasitologia , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/diagnóstico , Córnea/parasitologia , Córnea/patologia , Córnea/microbiologia , Reação em Cadeia da Polimerase
16.
Mol Microbiol ; 118(5): 552-569, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36164821

RESUMO

Type 6 secretion systems (T6SSs) are specialized multiprotein complexes that inject protein effectors into prokaryotic and/or eukaryotic cells. We previously described the role of the T6SS of the phytopathogen Xanthomonas citri pv. citri as an anti-eukaryotic nanoweapon that confers resistance to predation by the amoeba Dictyostelium discoideum. Transcription of the X. citri T6SS genes is induced by a signaling cascade involving the Ser/Thr kinase PknS and the extracytoplasmic function sigma factor EcfK. Here, we used a strain overexpressing a phosphomimetic constitutively active version of EcfK (EcfKT51E ) to identify the EcfK regulon, which includes a previously uncharacterized transcription factor of the AraC-family (TagK), in addition to T6SS genes and genes encoding protein homeostasis factors. Functional studies demonstrated that TagK acts downstream of EcfK, binding directly to T6SS gene promoters and inducing T6SS expression in response to contact with amoeba cells. TagK controls a small regulon, consisting of the complete T6SS, its accessory genes and additional genes encoded within the T6SS cluster. We conclude that a singular regulatory circuit consisting of a transmembrane kinase (PknS), an alternative sigma factor (EcfK) and an AraC-type transcriptional regulator (TagK) promotes expression of the X. citri T6SS in response to a protozoan predator.


Assuntos
Dictyostelium , Sistemas de Secreção Tipo VI , Xanthomonas , Fator sigma/genética , Fator sigma/metabolismo , Fator de Transcrição AraC/genética , Regulação Bacteriana da Expressão Gênica/genética , Dictyostelium/genética , Dictyostelium/metabolismo , Células Eucarióticas , Eucariotos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Xanthomonas/genética , Xanthomonas/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Antimicrob Agents Chemother ; 67(2): e0150622, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36688657

RESUMO

Primary amoebic meningoencephalitis is a rare but fatal central nervous system (CNS) disease caused by the "brain-eating amoeba" Naegleria fowleri. A major obstacle is the requirement for drugs with the ability to cross the blood-brain barrier, which are used in extremely high doses, cause severe side effects, and are usually ineffective. We discovered that the 4-aminomethylphenoxy-benzoxaborole AN3057 exhibits nanomolar potency against N. fowleri, and experimental treatment of infected mice significantly prolonged survival and demonstrated a 28% relapse-free cure rate.


Assuntos
Amebíase , Infecções Protozoárias do Sistema Nervoso Central , Meningoencefalite , Naegleria fowleri , Animais , Camundongos , Amebíase/tratamento farmacológico , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Barreira Hematoencefálica
18.
Small ; 19(23): e2207360, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36869412

RESUMO

Nature provides a successful evolutionary direction for single-celled organisms to solve complex problems and complete survival tasks - pseudopodium. Amoeba, a unicellular protozoan, can produce temporary pseudopods in any direction by controlling the directional flow of protoplasm to perform important life activities such as environmental sensing, motility, predation, and excretion. However, creating robotic systems with pseudopodia to emulate environmental adaptability and tasking capabilities of natural amoeba or amoeboid cells remains challenging. Here, this work presents a strategy that uses alternating magnetic fields to reconfigure magnetic droplet into Amoeba-like microrobot, and the mechanisms of pseudopodia generation and locomotion are analyzed. By simply adjusting the field direction, microrobots switch in monopodia, bipodia, and locomotion modes, performing all pseudopod operations such as active contraction, extension, bending, and amoeboid movement. The pseudopodia endow droplet robots with excellent maneuverability to adapt to environmental variations, including spanning 3D terrains and swimming in bulk liquids. Inspired by the "Venom," the phagocytosis and parasitic behaviors have also been investigated. Parasitic droplets inherit all the capabilities of amoeboid robot, expanding their applicable scenarios such as reagent analysis, microchemical reactions, calculi removal, and drug-mediated thrombolysis. This microrobot may provide fundamental understanding of single-celled livings, and potential applications in biotechnology and biomedicine.


Assuntos
Amoeba , Locomoção , Fenômenos Físicos , Pseudópodes , Campos Magnéticos
19.
Proc Biol Sci ; 290(2003): 20230977, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37464760

RESUMO

The social amoeba Dictyostelium discoideum engages in a complex relationship with bacterial endosymbionts in the genus Paraburkholderia, which can benefit their host by imbuing it with the ability to carry prey bacteria throughout its life cycle. The relationship between D. discoideum and Paraburkholderia has been shown to take place across many strains and a large geographical area, but little is known about Paraburkholderia's potential interaction with other dictyostelid species. We explore the ability of three Paraburkholderia species to stably infect and induce bacterial carriage in other dictyostelid hosts. We found that all three Paraburkholderia species successfully infected and induced carriage in seven species of Dictyostelium hosts. While the overall behaviour was qualitatively similar to that previously observed in infections of D. discoideum, differences in the outcomes of different host/symbiont combinations suggest a degree of specialization between partners. Paraburkholderia was unable to maintain a stable association with the more distantly related host Polysphondylium violaceum. Our results suggest that the mechanisms and evolutionary history of Paraburkholderia's symbiotic relationships may be general within Dictyostelium hosts, but not so general that it can associate with hosts of other genera. Our work further develops an emerging model system for the study of symbiosis in microbes.


Assuntos
Amoeba , Burkholderiaceae , Dictyostelium , Bactérias , Amoeba/microbiologia , Filogenia
20.
J Virol ; 96(7): e0185321, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35297671

RESUMO

Medusavirus, a giant virus, is phylogenetically closer to eukaryotes than the other giant viruses and has been recently classified as an independent species. However, details of its morphology and maturation process in host cells remain unclear. Here, we investigated the particle morphology of medusavirus inside and outside infected cells using conventional transmission electron microscopy (C-TEM) and cryo-electron microscopy (cryo-EM). The C-TEM of amoebae infected with the medusavirus showed four types of particles, i.e., pseudo-DNA-empty (p-Empty), DNA-empty (Empty), semi-DNA-full (s-Full), and DNA-full (Full). Time-dependent changes in the four types of particles and their intracellular localization suggested a new maturation process for the medusavirus. Viral capsids and viral DNAs are produced independently in the cytoplasm and nucleus, respectively, and only the empty particles located near the host nucleus can incorporate the viral DNA into the capsid. Therefore, all four types of particles were found outside the cells. The cryo-EM of these particles showed that the intact virus structure, covered with three different types of spikes, was preserved among all particle types, although with minor size-related differences. The internal membrane exhibited a structural array similar to that of the capsid, interacted closely with the capsid, and displayed open membrane structures in the Empty and p-Empty particles. The results suggest that these open structures in the internal membrane are used for an exchange of scaffold proteins and viral DNA during the maturation process. This new model of the maturation process of medusavirus provides insight into the structural and behavioral diversity of giant viruses. IMPORTANCE Giant viruses exhibit diverse morphologies and maturation processes. In this study, medusavirus showed four types of particle morphologies, both inside and outside the infected cells, when propagated in amoeba culture. Time-course analysis and intracellular localization of the medusavirus in the infected cells suggested a new maturation process via the four types of particles. Like the previously reported pandoravirus, the viral DNA of medusavirus is replicated in the host's nucleus. However, viral capsids are produced independently in the host cytoplasm, and only empty capsids near the nucleus can take up viral DNA. As a result, many immature particles were released from the host cell along with the mature particles. The capsid structure is well conserved among the four types of particles, except for the open membrane structures in the empty particles, suggesting that they are used to exchange scaffold proteins for viral DNAs. These findings indicate that medusavirus has a unique maturation process.


Assuntos
Vírus Gigantes , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , DNA Viral/metabolismo , Genoma Viral , Vírus Gigantes/genética , Vírus Gigantes/metabolismo , Vírus Gigantes/ultraestrutura , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA