Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Exp Cell Res ; 424(1): 113488, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736226

RESUMO

Glioma is difficult-to-treat because of its infiltrative nature and the presence of the blood-brain barrier. Temozolomide is the only FDA-approved drug for its management. Therefore, finding a novel chemotherapeutic agent for glioma is of utmost importance. Magnolol, a neolignan, has been known for its apoptotic role in glioma. In this work, we have explored a novel anti-glioma mechanism of Magnolol associated with its role in autophagy modulation. We found increased expression levels of Beclin-1, Atg5-Atg12, and LC3-II and lower p62 expression in Magnolol-treated glioma cells. PI3K/AKT/mTOR pathway proteins were also downregulated in Magnolol-treated glioma cells. Next, we treated the glioma cells with Insulin, a stimulator of PI3K/AKT/mTOR signaling, to confirm that Magnolol induced autophagy by inhibiting this pathway. Insulin reversed the effect on Magnolol-mediated autophagy induction. We also established the same in in vivo glioma model where Magnolol showed an anti-glioma effect by inducing autophagy. To confirm the cytotoxic effect of Magnolol-induced autophagy, we used Chloroquine, a late-stage autophagy inhibitor. Chloroquine efficiently reversed the anti-glioma effects of Magnolol both in vitro and in vivo. Our study revealed the cytotoxic effect of Magnolol-induced autophagy in glioma, which was not previously reported. Additionally, Magnolol showed no toxicity in non-cancerous cell lines as well as rat organs. Thus, we concluded that Magnolol is an excellent candidate for developing new therapeutic strategies for glioma management.


Assuntos
Antineoplásicos , Glioma , Insulinas , Lignanas , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/farmacologia , Lignanas/farmacologia , Lignanas/uso terapêutico , Glioma/tratamento farmacológico , Glioma/metabolismo , Autofagia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Insulinas/farmacologia , Insulinas/uso terapêutico , Linhagem Celular Tumoral , Apoptose
2.
Chem Biodivers ; : e202401450, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034294

RESUMO

Three new polyprenylated benzophenone derivatives named burlemarxione G-I (1-3) were isolated from C. burle-marxii trunks (compound 1) and leaves (compounds 2 and 3), along with the known compound burlemarxione F. Burlemarxione G (1) was isolated after methylation with diazomethane and it is the keto-enol tautomeric pair of burlemarxione F. Burlemarxione H (2) derives from burlemarxiones F and G, but it has additional rings due to cyclization of the prenyl group attached to C-5 that establishes new single bonds between C-1 and C-23, as well as, between C-24 and C-29. Burlemarxione I (3) has two additional cyclizations: the first encompasses the cyclization of the former isopentenyl group into an 11,11-dimethyl-six-membered ring, whereas the second produces additional rings due to the cyclization of the prenyl group attached to C-5 that establishes new single bonds between C-1 and C-23, as well as, between C-24 and C-29. All three compounds showed moderate anti-glioma activity. These results show that C. burle-marxii is an important source of sophisticated polyprenylated benzophenone derivatives.

3.
Bioorg Med Chem Lett ; 91: 129330, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201660

RESUMO

In continuation of our previous efforts for the development of potent small molecules against brain cancer, herein we synthesized seventeen new compounds and tested their anti-gliomapotential against established glioblastoma cell lines, namely, D54MG, U251, and LN-229 as well as patient derived cell lines (DB70 and DB93). Among them, the carboxamide derivatives, BT-851 and BT-892 were found to be the most active leads in comparison to our established hit compound BT#9.The SAR studies of our hit BT#9 compound resulted in the development of two new lead compounds by hit to lead strategy. The detailed biological studies are currently underway. The active compounds could possibly act as template for the future development of newer anti-glioma agents.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células
4.
J Nanobiotechnology ; 21(1): 253, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542285

RESUMO

Inhibition of tumor growth and normalization of immune responses in the tumor microenvironment (TME) are critical issues for improving cancer therapy. However, in the treatment of glioma, effective nanomedicine has limited access to the brain because of the blood-brain barrier (BBB). Previously, we demonstrated nano-sized ginseng-derived exosome-like nanoparticles (GENs) consisting of phospholipids including various bioactive components, and evaluated anti-tumor immune responses in T cells and Tregs to inhibit tumor progression. It was found that the enhanced targeting ability of GENs to the BBB and glioma induced a significant therapeutic effect and exhibited strong efficacy in recruiting M1 macrophage expression in the TME. GENs were demonstrated to be successful candidates in glioma therapeutics both in vitro and in vivo, suggesting excellent potential for inhibiting glioma progression and regulating tumor-associated macrophages (TAMs).


Assuntos
Exossomos , Glioma , Nanopartículas , Panax , Humanos , Barreira Hematoencefálica/metabolismo , Microambiente Tumoral , Exossomos/metabolismo , Glioma/patologia , Linhagem Celular Tumoral
5.
Chem Biodivers ; 20(8): e202300942, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37485637

RESUMO

Glioma is the most common brain tumor and its treatment options are limited. Abietic acid and dehydroabietic acid are tricyclic diterpenoid oxygen compounds with strong lip solubility and anti-glioma activity. In this study, novel rosin diterpenoid derivatives were designed and synthesized using abietic acid and dehydrogenated abietic acid as lead compounds and their activities against T98G, U87MG, and U251 cells were evaluated by CCK-8 methods. The in vivo activity of compounds with stronger activity in vitro was preliminarily studied through the Zebrafish model. The results showed that the IC50 values of B6, B8, B10, and B12 were 11.47 to 210.6 µM, which were exhibited higher antiproliferative potency against T98G, U87MG, and U251. The scratch experiment showed that B12 inhibited the migration of T98G in a time-dependent and concentration-dependent manner. The results of in vivo activity further explained that B12 could inhibit the proliferation of the T98G. The pKa values of B6, B8, B10, and B12 were 7.17 to 7.35, which were within the ideal range of glioma drugs. The ADME predictions indicated that these derivatives could pass through the blood-brain barrier. In addition, molecular docking primarily explained interaction between compounds and protein. These results suggested that B12 should be a promising candidate that merits further attention in the development of anti-glioma drugs.


Assuntos
Antineoplásicos , Diterpenos , Glioma , Animais , Simulação de Acoplamento Molecular , Peixe-Zebra , Glioma/tratamento farmacológico , Glioma/metabolismo , Diterpenos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Relação Estrutura-Atividade
6.
Mar Drugs ; 20(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35049907

RESUMO

Seven new xanthones, diaporthones A-G (1-7), together with 13 known analogues, including five mono- (8-14) and six dimeric xanthones (15-20), were obtained from the ascidian-derived fungus Diaporthe sp. SYSU-MS4722. Their planar structures were established by extensive spectroscopic analyses, including 1D and 2D NMR and high-resolution mass spectrometry (HR-ESIMS). The absolute configurations of 1-7 were clearly identified by X-ray crystallographic analysis and calculation of the ECD Spectra. Compounds 15-20 showed significant anti-inflammatory activity with IC50 values between 6.3 and 8.0 µM. In addition, dimeric xanthones (15-20) showed selective cytotoxicity against T98G cell lines with IC50 values ranging from 19.5 to 78.0 µM.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Fungos , Urocordados , Xantonas/farmacologia , Animais , Anti-Inflamatórios/química , Antineoplásicos/química , Organismos Aquáticos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Glioma/patologia , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Camundongos , Células RAW 264.7 , Relação Estrutura-Atividade , Xantonas/química
7.
J Cell Physiol ; 236(7): 5022-5035, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33368262

RESUMO

Glioblastoma is the most lethal tumor of the central nervous system, presenting a very poor prognostic, with a survival around 16 months. The interaction of mesenchymal stem cells and tumor cells has been studied, showing a bias in their role favoring or going against aggressiveness. Natural products such as flavonoids have showed their anticancer properties and the synergic potential with the activation of microenvironment cells to inhibit tumor progression. Agathisflavone is a flavonoid studied in neurodegenerative diseases and cancer. The present study investigated the effect of flavonoid in the viability of heterogeneous glioblastoma (GBM) cells considering a coculture or conditioned medium of mesenchymal stem cells (MSCs) effect, as well as the dose-dependent effect of this flavonoid in tumor migration and differentiation via STAT3. Agathisflavone (3-10 µM) induced dose-dependent toxicity to GL-15 and U373 human GBM cells, since 24 h after treatments. It was not toxic to human MSC but modified the pattern of interaction with GBM cells. Agathisflavone also inhibited migration and increased differentiation of human GBM cells, associated with the reduction on the expression of STAT3. These results demonstrate that the flavonoid agathisflavone had a direct anti-glioma effect. However, could be observed its effect in MSCs response that may have an impact in controlling GBM growth and aggressiveness, an important factor to consider for new therapies.


Assuntos
Antineoplásicos/farmacologia , Biflavonoides/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Células-Tronco Mesenquimais/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Glioblastoma/patologia , Humanos , Fator de Transcrição STAT3/metabolismo
8.
Bioorg Chem ; 117: 105468, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34768204

RESUMO

Clavipyrrine A (1), a novel polycyclic nitrogenous meroterpenoid with a pyrrolo[1,2-a]imidazole and a 10-membered carbocycle fused with an α,ß-epoxy-γ-lactone, was isolated from Clitocybe clavipes, a basidiomycete. X-ray crystallography and spectroscopic analysis were used to fully elucidate its structure. The biosynthetic origin of the pyrrole unit in this nitrogenous meroterpenoid was identified by incorporating 15N-labeled γ-aminobutyric acid. Compound 1 displayed promising anti-glioma activities and induced glioma cell apoptosis through inhibiting the JAK/STAT3 pathway and reinforcing SOCS1/3.


Assuntos
Agaricales/química , Antineoplásicos/farmacologia , Glioma/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Glioma/metabolismo , Humanos , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Modelos Moleculares , Estrutura Molecular , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade
9.
Drug Deliv ; 31(1): 2324716, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38555735

RESUMO

Annonaceous acetogenins (ACGs) have potent anti-tumor activity, and the problems of their low solubility, hemolysis, and in vivo delivery have been solved by encapsulation into nanoparticles. However, the high toxicity still limits their application in clinic. In this paper, the co-delivery strategy was tried to enhance the in vivo anti-tumor efficacy and reduce the toxic effects of ACGs. Ginsenoside Rh2, a naturally derived biologically active compound, which was reported to have synergistic effect with paclitaxel, was selected to co-deliver with ACGs. And due to its similarity with cholesterol in chemical structure, the co-loading liposomes, (ACGs + Rh2)-Lipo, were successfully constructed using Rh2 instead of cholesterol as the membrane material. The obtained (ACGs + Rh2)-Lipo and ACGs-Lipo had similar mean particle size (about 80 nm), similar encapsulation efficiency (EE, about 97%) and good stability. The MTS assay indicated that (ACGs + Rh2)-Lipo had stronger toxicity in vitro. In the in vivo study, in contrast to ACGs-Lipo, (ACGs + Rh2)-Lipo demonstrated an improved tumor targetability (3.3-fold in relative tumor targeting index) and significantly enhanced the antitumor efficacy (tumor inhibition rate, 72.9 ± 5.4% vs. 60.5 ± 5.4%, p < .05). The body weight change, liver index, and spleen index of tumor-bearing mice showed that Rh2 can attenuate the side effects of ACGs themselves. In conclusion, (ACGs + Rh2)-Lipo not only alleviated the toxicity of ACGs to the organism, but also enhanced their anti-tumor activity, which is expected to break through their bottleneck.


Assuntos
Acetogeninas , Ginsenosídeos , Glioma , Camundongos , Animais , Acetogeninas/farmacologia , Acetogeninas/química , Lipossomos , Glioma/tratamento farmacológico , Colesterol
10.
Eur J Med Chem ; 278: 116799, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39213937

RESUMO

Glioma, a common primary brain tumor, is highly infiltrative and invasive, often leading to drug resistance and recurrence. Therefore, the development of novel therapeutic agents is urgently needed. Pseudellone C is a novel marine triindole alkaloid. Screening of its antiproliferative activity against 55 cell lines revealed its anti-CNS cancer potential. A total of 42 derivatives of Pseudellone C were designed and synthesized, and their inhibitory activities against two human glioma cell lines (U-87MG and LN-229) were evaluated using the CCK-8 assay. Ten derivatives exhibited potent antiproliferative activity with IC50 values below 10 µmol, which are 18- to 39- fold more potent than Pseudellone C. Among these, derivative 4o demonstrated favorable blood-brain barrier permeability. Mechanistic studies revealed that 4o induces apoptosis primarily by activating the downstream caspase 3 cascade via the TNF/TNFR pathway. Structure-activity relationship correlations were systematically analyzed, and a pharmacophore model for further rational design was constructed.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Glioma , Transdução de Sinais , Humanos , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Glioma/tratamento farmacológico , Glioma/patologia , Glioma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estrutura Molecular , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Alcaloides Indólicos/síntese química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo
11.
J Control Release ; 368: 84-96, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331004

RESUMO

Ferroptosis has emerged as a promising therapeutic approach for glioma. However, its efficacy is often compromised by the activated GPX4-reduced glutathione (GSH) system and the poor brain delivery efficiency of ferroptosis inducers. Therefore, suppression of the GPX4-GSH axis to induce the accumulation of lipid peroxides becomes an essential strategy to augment ferroptosis. In this study, we present a metalloimmunological strategy to target the GPX4-GSH axis by inhibiting the cystine/glutamate antiporter system (system Xc-) and glutathione synthesis. To achieve this, we developed a complex of diethyldithiocarbamate (DDC) chelated with copper and ferrous ions (DDC/Cu-Fe) to trigger T-cell immune responses in the tumor microenvironment, as well as to inhibit tumor-associated macrophages, thereby alleviating immunosuppression. To enhance brain delivery, the DDC/Cu-Fe complex was encapsulated into a hybrid albumin and lactoferrin nanoparticle (Alb/LF NP), targeting the nutrient transporters (e.g., LRP-1 and SPARC) overexpressed in the blood-brain barrier (BBB) and glioma cells. The Alb/LF NP effectively promoted the brain accumulation of DDC/Cu-Fe, synergistically induced ferroptosis in glioma cells and activated anticancer immunity, thereby prolonging the survival of glioma-bearing mice. The nanoformulation of DDC/Cu-Fe provides a promising strategy that combines ferroptosis and metalloimmunology for glioma treatment.


Assuntos
Ferroptose , Glioma , Animais , Camundongos , Biomimética , Cobre , Albuminas , Ditiocarb , Glioma/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
12.
Plant Methods ; 20(1): 111, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054477

RESUMO

Clematis graveolens Lindl., an indigenous climbing plant found in the Himalayan areas, is used by local communities for the treatment of neck tumors. The objective of this work is to examine the comprehensive metabolomic profile, antioxidant capability, in vitro and in silico anti-glioma effects on U-87 human glioma cell lines of the crude extract and fractions from C. graveolens. Liquid chromatography coupled with mass spectroscopy (LC-MS/MS) was used to establish detailed metabolite profiling of C. graveolens. The assessment of cell cytotoxicity was conducted using MTT cell viability assay on U-87 and BHK-21. Through molecular docking studies, the mode of inhibition and binding interaction between identified compounds and target proteins were also determined to evaluate the in vitro results. The use of LC-MS/MS-based global natural products social (GNPS) molecular networking analysis resulted in the identification of 27 compounds. The crude extract, ethyl acetate fraction, and chloroform fraction exhibited significant inhibitory activity against the U-87 cell lines, with IC50 values of 112.0, 138.1, and 142.7 µg/mL, respectively. The ethyl acetate fraction exhibited significant inhibitory concentration for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity and the metal chelation activity with IC50 value of 39.50 µg/mL, 32.27 µg/mL, and 53.46 µg/mL, respectively. The crude extract showed maximum total phenolic, and total flavonoid concentration measuring 338.7 µg GAE/mg, and 177.04 µg QE/mg, respectively. The findings of this study indicate that C. graveolens consists of a diverse range of active phytoconstituents that possess antioxidant and anti-glioma properties.

13.
Nat Prod Res ; 37(17): 2817-2823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36268558

RESUMO

Three new compounds, arneatas A-C (1-3), together with three known compounds (4-6) were isolated from the roots of Arnebia guttata Bunge. The structures were established on the basis of extensive spectroscopic data including NMR and HRESIMS. All the new compounds (1-3) were tested for their cytotoxic activity against two glioma cell lines (U118-MG and U373-MG) in vitro after treatment for 48 h. Compound 1 exhibited moderate cytotoxic activity against U118-MG and U373-MG glioma cell lines, with IC50 values of 10.4 and 17.5 µM, respectively.

14.
J Control Release ; 358: 681-705, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37196900

RESUMO

Gliomas are the most aggressive and lethal tumors of the central nervous system, for which few therapeutic options exist. Surgical resection is the primary treatment for most gliomas; however, tumor recurrence is nearly inevitable. Emerging nanobiotechnology-based strategies have shown great prospects for early glioma diagnosis, physiological barrier traversing, postoperative regrowth suppression, and microenvironment remodeling. Herein, we focus on the postoperative scenario and summarize the key properties of the glioma microenvironment, especially its immune peculiarities. We elucidate the challenges of managing recurrent glioma. We also discuss the potential of nanobiotechnology in addressing the therapeutic challenges of recurrent glioma, including optimizing the design of drug delivery systems, enhancing intracranial accumulation, and restoring the anti-glioma immune response. The development of these technologies offers new opportunities for accelerating the drug development process and treating recurrent glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Microambiente Tumoral
15.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166782, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37286145

RESUMO

Temozolomide (TMZ) is the leading chemotherapeutic agent used for glioma therapy due to its good oral absorption and blood-brain barrier permeability. However, its anti-glioma efficacy may be limited due to its adverse effects and resistance development. O6-Methylguanine-DNA-methyltransferase (MGMT), an enzyme associated with TMZ resistance, is activated via the NF-κB pathway, which is found to be upregulated in glioma. TMZ also upregulates NF-κB signaling like many other alkylating agents. Magnolol (MGN), a natural anti-cancer agent, has been reported to inhibit NF-κB signaling in multiple myeloma, cholangiocarcinoma, and hepatocellular carcinoma. MGN has already shown promising results in anti-glioma therapy. However, the synergistic action of TMZ and MGN has not been explored. Therefore, we investigated the effect of TMZ and MGN treatment in glioma and observed their synergistic pro-apoptotic action in both in vitro and in vivo glioma models. To explore the mechanism of this synergistic action, we found that MGN inhibits MGMT enzyme both in vitro and in vivo glioma. Next, we established the link between NF-κB signaling and MGN-induced MGMT inhibition in glioma. MGN inhibits the phosphorylation of p65, a subunit of NF-κB, and its nuclear translocation to block NF-κB pathway activation in glioma. MGN-induced NF-κB inhibition results in the transcriptional inhibition of MGMT in glioma. TMZ and MGN combinatorial treatment also impedes p65 nuclear translocation to inhibit MGMT in glioma. We observed a similar effect of TMZ and MGN treatment in the rodent glioma model. Thus, we concluded that MGN potentiates TMZ-induced apoptosis in glioma by inhibiting NF-κB pathway-mediated MGMT activation.


Assuntos
Glioma , NF-kappa B , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , NF-kappa B/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Metilases de Modificação do DNA/uso terapêutico , Proteínas Supressoras de Tumor/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/uso terapêutico
16.
Pharmaceutics ; 15(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678895

RESUMO

Peptide monomers can either self-assemble with themselves enacting a solo-component assembly or they can co-assemble by interacting with other suitable partners to mediate peptide co-assembly. Peptide co-assemblies represent an innovative class of naive, multifunctional, bio-inspired supramolecular constructs that result in the production of nanostructures with widespread functional, structural, and chemical multiplicity. Herein, the co-assembly of novel chimeric peptides (conjugates of T7 (HAIYPRH)/t-Lyp-1 (CGNKRTR) peptides and aurein 1.2 (GLFDIIKKIAESF)) has been explored as a means to produce glioma theranostics exhibiting combinatorial chemo-phototherapy. Briefly, we have reported here the design and solid phase synthesis of a naive generation of twin-functional peptide drugs incorporating the blood-brain barrier (BBB) and glioma dual-targeting functionalities along with anti-glioma activity (G-Anti G and B-Anti G). Additionally, we have addressed their multicomponent co-assembly and explored their potential application as glioma drug delivery vehicles. Our naive peptide drug-based nanoparticles (NPs) successfully demonstrated a heightened glioma-specific delivery and anti-glioma activity. Multicomponent indocyanine green (ICG)-loaded peptide co-assembled NPs (PINPs: with a hydrodynamic size of 348 nm and a zeta-potential of 5 mV) showed enhanced anti-glioma responses in several cellular assays involving C6 cells. These included a mass demolition with no wound closure (i.e., a 100% cell destruction) and around 63% collaborative chemo-phototoxicity (with both a photothermal and photodynamic effect) after near infrared (NIR) 808 laser irradiation. The dual targeting ability of peptide bioconjugates towards both the BBB and glioma cells, presents new opportunities for designing tailored and better peptide-based nanostructures or nanophototheranostics for glioma.

17.
Eur J Med Chem ; 229: 114070, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34968902

RESUMO

Celastrol, a quinone methide triterpenoid, possesses potential anti-glioma activity. However, its relatively low activity limit its application as an effective agent for glioma treatment. In search for effective anti-glioma agents, this work designed and synthesized two series of celastrol C-3 OH and C-20 COOH derivatives 4a-4o and 6a-6o containing 1, 2, 3-triazole moiety. Their anti-glioma activities against four human glioma cell lines (A172, LN229, U87, and U251) were then evaluated using MTT assay in vitro. Results showed that compound 6i (IC50 = 0.94 µM) exhibited substantial antiproliferative activity against U251 cell line, that was 4.7-fold more potent than that of celastrol (IC50 = 4.43 µM). In addition, compound 6i remarkably inhibited the colony formation and migration of U251 cells. Further transmission electron microscopy and mitochondrial depolarization assays in U251 cells indicated that the potent anti-glioma activity of 6i was attributed to necroptosis. Mechanism investigation revealed that compound 6i induced necroptosis mainly by activating the RIP1/RIP3/MLKL pathway. Additionally, compound 6i exerted acceptable BBB permeability in mice and inhibited U251 cell proliferation in an in vivo zebrafish xenograft model, obviously. In summary, compound 6i might be a promising lead compound for potent celastrol derivatives as anti-glioma agents.


Assuntos
Antineoplásicos/síntese química , Glioma/tratamento farmacológico , Necroptose/efeitos dos fármacos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Triterpenos Pentacíclicos/síntese química , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Xenoenxertos , Humanos , Masculino , Camundongos , Triterpenos Pentacíclicos/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade , Cicatrização/efeitos dos fármacos , Peixe-Zebra
18.
Ann Med ; 54(1): 2549-2561, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36120909

RESUMO

A series of N-(4-chlorophenyl) substituted pyrano[2,3-c]pyrazoles was synthesised and screened for their potential to inhibit kinases and exhibit anticancer activity against primary patient-derived glioblastoma 2D cells and 3D neurospheres. A collection of 10 compounds was evaluated against glioma cell lines, with compound 4j exhibiting promising glioma growth inhibitory properties. Compound 4j was screened against 139 purified kinases and exhibited low micromolar activity against kinase AKT2/PKBß. AKT signalling is one of the main oncogenic pathways in glioma and is often targeted for novel therapeutics. Indeed, AKT2 levels correlated with glioma malignancy and poorer patient survival. Compound 4j inhibited the 3D neurosphere formation in primary patient-derived glioma stem cells and exhibited potent EC50 against glioblastoma cell lines. Although exhibiting potency against glioma cells, 4j exhibited significantly less cytotoxicity against non-cancerous cells even at fourfold-fivefold the concentration. Herein we establish a novel biochemical kinase inhibitory function for N-(4-chlorophenyl) substituted pyrano[2,3-c]pyrazoles and further report their anti-glioma activity in vitro for the first time.KEY MESSAGEAnti-glioma pyrano[2,3-c]pyrazole 4j inhibited the 3D neurosphere formation in primary patient-derived glioma stem cells. 4j also displayed PKBß/AKT2 inhibitory activity. 4j is nontoxic towards non-cancerous cells.


Assuntos
Glioblastoma , Glioblastoma/tratamento farmacológico , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia
19.
Adv Mater ; 34(3): e2106194, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34726310

RESUMO

Nanoparticles have been explored in glioblastomas as they can traverse the blood-brain barrier and target glioblastoma selectively. However, direct observation of nanoparticle trafficking into glioblastoma cells and their underlying intracellular fate after systemic administration remains uncharacterized. Here, based on high-resolution transmission electron microscopy experiments of an intracranial glioblastoma model, it is shown that ligand-modified nanoparticles can traverse the blood-brain barrier, endocytose into the lysosomes of glioblastoma cells, and undergo endolysosomal escape upon photochemical ionization. Moreover, an optimal dose of metronomic chemotherapy using dual-drug-loaded nanocarriers can induce an augmented antitumor effect directly on tumors, which has not been recognized in previous studies. Metronomic chemotherapy enhances antitumor effects 3.5-fold compared with the standard chemotherapy regimen using the same accumulative dose in vivo. This study provides a conceptual framework that can be used to develop metronomic nanoparticle regimens as a safe and viable therapeutic strategy for treating glioblastomas and other advanced-stage solid tumors.


Assuntos
Glioblastoma , Nanopartículas , Barreira Hematoencefálica , Endocitose , Glioblastoma/tratamento farmacológico , Humanos , Nanopartículas/química
20.
ACS Appl Mater Interfaces ; 13(23): 26682-26693, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34061501

RESUMO

Glioma is one of the most lethal and complex tumors, and thus, an effective drug delivery system must selectively target the tumor sites and release its cargos in a controlled manner. For the first time, we combined chemotherapeutic agent doxorubicin (DOX) and chemosensitizer lonidamine (LND) to synergistically treat glioma. We also designed and prepared multitargeted redox-sensitive liposomes (Lip-SPG) co-modified with glucose and triphenylphosphonium (TPP) to effectively deliver DOX and LND for anti-glioma therapy. The anti-glioma evaluation shows that DOX and LND have a synergistic effect and Lip-SPG could further enhance their cooperation. In vitro, Lip-SPG could increase the cellular uptake and mitochondrial uptake on bEnd.3 cells and C6 cells with multitargeting ability on the brain, tumor, and mitochondria mediated by glucose and TPP. Lip-SPG can also escape from lysosomes before entering the mitochondria. The anti-glioma efficacy in vitro shows that Lip-SPG can inhibit tumor cell proliferation and induce apoptosis. In addition, Lip-SPG have a remarkable interference to mitochondria, such as reducing intracellular ATP production, inducing ROS generation, and promoting mitochondrial membrane potential depolarization. Furthermore, in vivo, the introduction of PEGylation via glutathione-sensitive disulfide bonds endows Lip-SPG with favorable pharmacokinetic properties, brain targeting ability, low toxicity to normal tissues, and great anti-glioma efficacy with the survival time extended from 19 to 39 days. In conclusion, Lip-SPG are an effective delivery system for synergistically treating glioma with DOX and LND.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Glucose/química , Lipossomos/administração & dosagem , Compostos Organofosforados/química , Apoptose , Doxorrubicina/administração & dosagem , Glioma/patologia , Humanos , Indazóis/administração & dosagem , Lipossomos/química , Oxirredução , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA