Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 518
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant Cell Physiol ; 65(7): 1149-1159, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38581668

RESUMO

Establishment of arbuscular mycorrhiza relies on a plant signaling pathway that can be activated by fungal chitinic signals such as short-chain chitooligosaccharides and lipo-chitooligosaccharides (LCOs). The tomato LysM receptor-like kinase SlLYK10 has high affinity for LCOs and is involved in root colonization by arbuscular mycorrhizal fungi (AMF); however, its role in LCO responses has not yet been studied. Here, we show that SlLYK10 proteins produced by the Sllyk10-1 and Sllyk10-2 mutant alleles, which both cause decreases in AMF colonization and carry mutations in LysM1 and 2, respectively, have similar LCO-binding affinities compared to the WT SlLYK10. However, the mutant forms were no longer able to induce cell death in Nicotiana benthamiana when co-expressed with MtLYK3, a Medicago truncatula LCO co-receptor, while they physically interacted with MtLYK3 in co-purification experiments. This suggests that the LysM mutations affect the ability of SlLYK10 to trigger signaling through a potential co-receptor rather than its ability to bind LCOs. Interestingly, tomato lines that contain a calcium (Ca2+) concentration reporter [genetically encoded Ca2+ indicators (GECO)], showed Ca2+ spiking in response to LCO applications, but this occurred only in inner cell layers of the roots, while short-chain chitooligosaccharides also induced Ca2+ spiking in the epidermis. Moreover, LCO-induced Ca2+ spiking was decreased in Sllyk10-1*GECO plants, suggesting that the decrease in AMF colonization in Sllyk10-1 is due to abnormal LCO signaling.


Assuntos
Micorrizas , Proteínas de Plantas , Raízes de Plantas , Transdução de Sinais , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Micorrizas/fisiologia , Quitina/metabolismo , Lipopolissacarídeos/farmacologia , Oligossacarídeos/metabolismo , Mutação/genética , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Nicotiana/metabolismo , Quitosana/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/enzimologia
2.
New Phytol ; 243(2): 720-737, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38812277

RESUMO

During arbuscular mycorrhizal (AM) symbiosis, plant innate immunity is modulated to a prime state to allow for fungal colonization. The underlying mechanisms remain to be further explored. In this study, two rice genes encoding LysM extracellular (LysMe) proteins were investigated. By obtaining OsLysMepro:GUS transgenic plants and generating oslysme1, oslysme2 and oslysme1oslysme2 mutants via CRISPR/Cas9 technique, OsLysMe genes were revealed to be specifically induced in the arbusculated cells and mutations in either gene caused significantly reduced root colonization rate by AM fungus Rhizophagus irregularis. Overexpression of OsLysMe1 or OsLysMe2 dramatically increased the colonization rates in rice and Medicago truncatula. The electrophoretic mobility shift assay and dual-luciferase reporter assay supported that OsLysMe genes are regulated by OsWRI5a. Either OsLysMe1 or OsLysMe2 can efficiently rescue the impaired AM phenotype of the mtlysme2 mutant, supporting a conserved function of LysMe across monocotyledonous and dicotyledonous plants. The co-localization of OsLysMe proteins with the apoplast marker SP-OsRAmy3A implies their probable localization to the periarbuscular space (PAS) during symbiosis. Relative to the fungal biomass marker RiTEF, some defense-related genes showed disproportionately high expression levels in the oslysme mutants. These data support that rice plants deploy two OsLysMe proteins to facilitate AM symbiosis, likely by diminishing plant defense responses.


Assuntos
Regulação da Expressão Gênica de Plantas , Mutação , Micorrizas , Oryza , Proteínas de Plantas , Simbiose , Micorrizas/fisiologia , Oryza/microbiologia , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutação/genética , Plantas Geneticamente Modificadas , Medicago truncatula/microbiologia , Medicago truncatula/genética , Motivos de Aminoácidos , Espaço Extracelular/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Fungos
3.
New Phytol ; 243(6): 2401-2415, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39073209

RESUMO

Mycorrhizal associations are key mutualisms that shape the structure of forest communities and multiple ecosystem functions. However, we lack a framework for predicting the varying dominance of distinct mycorrhizal associations in an integrated proxy of multifunctionality across ecosystems. Here, we used the datasets containing diversity of mycorrhizal associations and 18 ecosystem processes related to supporting, provisioning, and regulating services to examine how the dominance of ectomycorrhiza (EcM) associations affects ecosystem multifunctionality in subtropical mountain forests in Southwest China. Meanwhile, we synthesized the prevalence of EcM-dominant effects on ecosystem functioning in forest biomes. Our results demonstrated that elevation significantly modified the distributions of EcM trees and fungal dominance, which in turn influenced multiple functions simultaneously. Multifunctionality increased with increasing proportion of EcM associations, supporting the ectomycorrhizal-dominance hypothesis. Meanwhile, we observed that the impacts of EcM dominance on individual ecosystem functions exhibited different relationships among forest biomes. Our findings highlight the importance of ectomycorrhizal dominance in regulating multifunctionality in subtropical forests. However, this ectomycorrhizal feedback in shaping ecosystem functions cannot necessarily be generalized across forests. Therefore, we argue that the predictions for ecosystem multifunctionality in response to the shifts of mycorrhizal composition could vary across space and time.


Assuntos
Florestas , Micorrizas , Micorrizas/fisiologia , Clima Tropical , China , Ecossistema , Modelos Biológicos , Árvores/microbiologia , Árvores/fisiologia , Biodiversidade , Altitude
4.
New Phytol ; 242(4): 1576-1588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38173184

RESUMO

Phosphorus (P) for carbon (C) exchange is the pivotal function of arbuscular mycorrhiza (AM), but how this exchange varies with soil P availability and among co-occurring plants in complex communities is still largely unknown. We collected intact plant communities in two regions differing c. 10-fold in labile inorganic P. After a 2-month glasshouse incubation, we measured 32P transfer from AM fungi (AMF) to shoots and 13C transfer from shoots to AMF using an AMF-specific fatty acid. AMF communities were assessed using molecular methods. AMF delivered a larger proportion of total shoot P in communities from high-P soils despite similar 13C allocation to AMF in roots and soil. Within communities, 13C concentration in AMF was consistently higher in grass than in blanketflower (Gaillardia aristata Pursh) roots, that is P appeared more costly for grasses. This coincided with differences in AMF taxa composition and a trend of more vesicles (storage structures) but fewer arbuscules (exchange structures) in grass roots. Additionally, 32P-for-13C exchange ratios increased with soil P for blanketflower but not grasses. Contrary to predictions, AMF transferred proportionally more P to plants in communities from high-P soils. However, the 32P-for-13C exchange differed among co-occurring plants, suggesting differential regulation of the AM symbiosis.


Assuntos
Carbono , Micorrizas , Fósforo , Solo , Micorrizas/fisiologia , Micorrizas/metabolismo , Fósforo/metabolismo , Carbono/metabolismo , Solo/química , Brotos de Planta/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Isótopos de Carbono , Plantas/metabolismo , Plantas/microbiologia , Meio Ambiente , Poaceae/metabolismo
5.
New Phytol ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803107

RESUMO

Phosphate starvation response (PHR) transcription factors play essential roles in regulating phosphate uptake in plants through binding to the P1BS cis-element in the promoter of phosphate starvation response genes. Recently, PHRs were also shown to positively regulate arbuscular mycorrhizal colonization in rice and lotus by controlling the expression of many symbiotic genes. However, their role in arbuscule development has remained unclear. In Medicago, we previously showed that arbuscule degradation is controlled by two SPX proteins that are highly expressed in arbuscule-containing cells. Since SPX proteins bind to PHRs and repress their activity in a phosphate-dependent manner, we investigated whether arbuscule maintenance is also regulated by PHR. Here, we show that PHR2 is a major regulator of the phosphate starvation response in Medicago. Knockout of phr2 showed reduced phosphate starvation response, symbiotic gene expression, and fungal colonization levels. However, the arbuscules that formed showed less degradation, suggesting a negative role for PHR2 in arbuscule maintenance. This was supported by the observation that overexpression of PHR2 led to enhanced degradation of arbuscules. Although many arbuscule-induced genes contain P1BS elements in their promoters, we found that the P1BS cis-elements in the promoter of the symbiotic phosphate transporter PT4 are not required for arbuscule-containing cell expression. Since both PHR2 and SPX1/3 negatively affect arbuscule maintenance, our results indicate that they control arbuscule maintenance partly via different mechanisms. While PHR2 potentiates symbiotic gene expression and colonization, its activity in arbuscule-containing cells needs to be tightly controlled to maintain a successful symbiosis in Medicago.

6.
New Phytol ; 241(4): 1393-1400, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013492

RESUMO

Chitin oligomers (COs) are among the most common and active fungal elicitors of plant responses. Short-chain COs from symbiotic arbuscular mycorrhizal fungi activate accommodation responses in the host root, while long-chain COs from pathogenic fungi are acknowledged to trigger defence responses. The modulation of intracellular calcium concentration - a common second messenger in a wide variety of plant signal transduction processes - plays a central role in both signalling pathways with distinct signature features. Nevertheless, mounting evidence suggests that plant immunity and symbiosis signalling partially overlap at multiple levels. Here, we elaborate on recent findings on this topic, highlighting the nonbinary nature of chitin-based fungal signals, their perception and their interpretation through Ca2+ -mediated intracellular signals. Based on this, we propose that plant perception of symbiotic and pathogenic fungi is less clear-cut than previously described and involves a more complex scenario in which partially overlapping and blurred signalling mechanisms act upstream of the unambiguous regulation of gene expression driving accommodation or defence responses.


Assuntos
Micorrizas , Simbiose , Simbiose/fisiologia , Cálcio/metabolismo , Raízes de Plantas/metabolismo , Micorrizas/fisiologia , Quitina/metabolismo , Plantas/metabolismo , Imunidade Vegetal
7.
Mol Ecol ; 33(15): e17441, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923648

RESUMO

Rocky habitats, globally distributed ecosystems, harbour diverse biota, including numerous endemic and endangered species. Vascular plants thriving in these environments face challenging abiotic conditions, requiring diverse morphological and physiological adaptations. Their engagement with the surrounding microbiomes is, however, equally vital for their adaptation, fitness, and long-term survival. Nevertheless, there remains a lack of understanding surrounding this complex interplay within this fascinating biotic ecosystem. Using microscopic observations and metabarcoding analyses, we examined the fungal abundance and diversity in the root system of the rock-dwelling West Carpathian endemic shrub, Daphne arbuscula (Thymelaeaceae). We explored the diversification of root-associated fungal communities in relation to microclimatic variations across the studied sites. We revealed extensive colonization of the Daphne roots by diverse taxonomic fungal groups attributed to different ecological guilds, predominantly plant pathogens, dark septate endophytes (DSE), and arbuscular mycorrhizal fungi (AMF). Notably, differences in taxonomic composition and ecological guilds emerged between colder and warmer microenvironments. Apart from omnipresent AMF, warmer sites exhibited a prevalence of plant pathogens, while colder sites were characterized by a dominance of DSE. This mycobiome diversification, most likely triggered by the environment, suggests that D. arbuscula populations in warmer areas may be more vulnerable to fungal diseases, particularly in the context of global climate change.


Assuntos
Daphne , Ecossistema , Micorrizas , Raízes de Plantas , Micorrizas/genética , Micorrizas/classificação , Raízes de Plantas/microbiologia , Daphne/microbiologia , Daphne/genética , Micobioma/genética , Fungos/classificação , Fungos/genética , Endófitos/genética , Adaptação Fisiológica/genética
8.
J Exp Bot ; 75(16): 5021-5036, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38726891

RESUMO

The REQUIRED FOR ARBUSCULAR MYCORRHIZATION1 (RAM1) transcription factor from the GRAS family is well known for its role as a master regulator of the arbuscular mycorrhizal (AM) symbiosis in dicotyledonous and monocotyledonous species, being essential in transcriptional reprogramming for the development and functionality of the arbuscules. In tomato, SlGRAS27 is the putative orthologue of RAM1 (here named SlRAM1), but has not yet been characterized. A reduced colonization of the root and impaired arbuscule formation were observed in SlRAM1-silenced plants, confirming the functional conservation of the RAM1 orthologue in tomato. However, unexpectedly, SlRAM1-overexpressing (UBIL:SlRAM1) plants also showed decreased mycorrhizal colonization. Analysis of non-mycorrhizal UBIL:SlRAM1 roots revealed an overall regulation of AM-related genes and a reduction of strigolactone biosynthesis. Moreover, external application of the strigolactone analogue GR244DO almost completely reversed the negative effects of SlRAM1 overexpression on the frequency of mycorrhization. However, it only partially recovered the pattern of arbuscule distribution observed in control plants. Our results strongly suggest that SlRAM1 has a dual regulatory role during mycorrhization and, in addition to its recognized action as a positive regulator of arbuscule development, it is also involved in different mechanisms for the negative regulation of mycorrhization, including the repression of strigolactone biosynthesis.


Assuntos
Micorrizas , Proteínas de Plantas , Solanum lycopersicum , Fatores de Transcrição , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Micorrizas/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Simbiose , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/genética
9.
Glob Chang Biol ; 30(1): e17030, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010627

RESUMO

Nitrogen (N) deposition increases soil carbon (C) storage by reducing microbial activity. These effects vary in soil beneath trees that associate with arbuscular (AM) and ectomycorrhizal (ECM) fungi. Variation in carbon C and N uptake traits among microbes may explain differences in soil nutrient cycling between mycorrhizal associations in response to high N loads, a mechanism not previously examined due to methodological limitations. Here, we used quantitative Stable Isotope Probing (qSIP) to measure bacterial C and N assimilation rates from an added organic compound, which we conceptualize as functional traits. As such, we applied a trait-based approach to explore whether variation in assimilation rates of bacterial taxa can inform shifts in soil function under chronic N deposition. We show taxon-specific and community-wide declines of bacterial C and N uptake under chronic N deposition in both AM and ECM soils. N deposition-induced reductions in microbial activity were mirrored by declines in soil organic matter mineralization rates in AM but not ECM soils. Our findings suggest C and N uptake traits of bacterial communities can predict C cycling feedbacks to N deposition in AM soils, but additional data, for instance on the traits of fungi, may be needed to connect microbial traits with soil C and N cycling in ECM systems. Our study also highlights the potential of employing qSIP in conjunction with trait-based analytical approaches to inform how ecological processes of microbial communities influence soil functioning.


Assuntos
Micorrizas , Micorrizas/fisiologia , Árvores/microbiologia , Nitrogênio , Solo , Microbiologia do Solo , Bactérias , Carbono
10.
Biometals ; 37(1): 185-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37792256

RESUMO

Cr (VI) hampers plant growth and yield by reducing essential nutrient uptake as it competes for phosphate and sulfate transporters. Nitric oxide (NO) and mycorrhization play important roles in mitigating Cr (VI) toxicity. Present study aimed to compare the potential of AMF (Arbuscular mycorrhizal fungi)-Rhizoglomus intraradices and NO (0.25 mM) in alleviating Cr (VI) stress (0, 10 and 20 mg/kg) in two differentially tolerant pigeonpea genotypes (Pusa 2001 and AL 201). Cr (VI) toxicity reduced growth, mycorrhizal colonization, nutrient uptake, and overall productivity by inducing reactive oxygen species (ROS) generation, with AL 201 more sensitive than Pusa 2001. NO and AM enhanced activities of soil enzymes, thereby increasing nutrients availability as well as their uptake, with AM more effective than NO. Both amendments reduced oxidative stress and restricted Cr (VI) uptake by increasing the activities of antioxidant and S- assimilatory enzymes, with Pusa 2001 more responsive than AL 201. NO was relatively more efficient in regulating cysteine-H2S system by increasing the activities of biosynthetic enzymes (ATP-sulfurylase (ATPS), O-acetylserine thiol lyase (OASTL), D-cysteine desulfhydrase (DCD) and L-cysteine desulfhydrase (LCD), while AM significantly increased glutathione reductase (GR), γ-glutamylcysteine synthetase (γ-ECS) enzymes activities and resultant glutathione (GSH), phytochelatins (PCs), and non-protein thiols (NP-SH) synthesis. Moreover, co-application of NO and AM proved to be highly beneficial in negating the toxic effects of Cr (VI) due to functional complementarity between them. Study suggested the combined use of NO and AM as a useful strategy in re-establishing pigeonpea plants growing in Cr (VI)-stressed environments.


Assuntos
Cromo , Micorrizas , Cromo/toxicidade , Cisteína , Óxido Nítrico/farmacologia , Compostos de Sulfidrila , Solo , Cistationina gama-Liase , Glutationa/metabolismo , Genótipo
11.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161289

RESUMO

Receptor-like kinases (RLKs) are key cell signaling components. The rice ARBUSCULAR RECEPTOR-LIKE KINASE 1 (OsARK1) regulates the arbuscular mycorrhizal (AM) association postarbuscule development and belongs to an undefined subfamily of RLKs. Our phylogenetic analysis revealed that ARK1 has an ancient paralogue in spermatophytes, ARK2 Single ark2 and ark1/ark2 double mutants in rice showed a nonredundant AM symbiotic function for OsARK2 Global transcriptomics identified a set of genes coregulated by the two RLKs, suggesting that OsARK1 and OsARK2 orchestrate symbiosis in a common pathway. ARK lineage proteins harbor a newly identified SPARK domain in their extracellular regions, which underwent parallel losses in ARK1 and ARK2 in monocots. This protein domain has ancient origins in streptophyte algae and defines additional overlooked groups of putative cell surface receptors.


Assuntos
Micorrizas/metabolismo , Oryza/enzimologia , Filogenia , Receptores Proteína Tirosina Quinases/metabolismo , Sequência de Aminoácidos , Domínios Proteicos , Receptores Proteína Tirosina Quinases/química
12.
Mycorrhiza ; 34(3): 173-180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643436

RESUMO

Taxus, a genus of conifers known for its medicinal significance, faces various conservation challenges with several species classified under different threat categories by the IUCN. The overharvesting of bark and leaves for the well-known chemotherapy drug paclitaxel has resulted in its population decline. Exploring the mycorrhizal relationship in Taxus is of utmost importance, as mycorrhizal fungi play pivotal roles in nutrition, growth, and ecological resilience. Taxus predominantly associates with arbuscular mycorrhizal fungi (AM), and reports suggest ectomycorrhizal (EM) or dual mycorrhizal associations as well. This review consolidates existing literature on mycorrhizal associations in Taxus species, focusing on structural, physiological, and molecular aspects. AM associations are well-documented in Taxus, influencing plant physiology and propagation. Conversely, EM associations remain relatively understudied, with limited evidence suggesting their occurrence. The review highlights the importance of further research to elucidate dual mycorrhizal associations in Taxus, emphasizing the need for detailed structural and physiological examinations to understand their impact on growth and survival.


Assuntos
Micorrizas , Simbiose , Taxus , Micorrizas/fisiologia , Taxus/microbiologia , Raízes de Plantas/microbiologia
13.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255984

RESUMO

Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient uptake, growth, and resistance to (a)biotic stressors. Harnessing this symbiotic interaction using molecular and systems biology approaches presents promising opportunities for sustainable and economically-viable agricultural practices. Research in this area aims to identify and manipulate specific genes and pathways involved in the symbiotic interaction, leading to improved cereal and oilseed crop yields and nutrient acquisition. This review provides an overview of the research frontier on utilizing molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Moreover, we address the mechanistic insights and molecular determinants underpinning this exchange. We conclude with an overview of current efforts to harness mycorrhizal diversity to improve cereal and oilseed health through systems biology.


Assuntos
Micorrizas , Simbiose , Grão Comestível , Estruturas Vegetais , Biologia de Sistemas
14.
Plant J ; 109(6): 1559-1574, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34953105

RESUMO

KARRIKIN INSENSITIVE2 (KAI2) is an α/ß-hydrolase required for plant responses to karrikins, which are abiotic butenolides that can influence seed germination and seedling growth. Although represented by four angiosperm species, loss-of-function kai2 mutants are phenotypically inconsistent and incompletely characterised, resulting in uncertainties about the core functions of KAI2 in plant development. Here we characterised the developmental functions of KAI2 in the grass Brachypodium distachyon using molecular, physiological and biochemical approaches. Bdkai2 mutants exhibit increased internode elongation and reduced leaf chlorophyll levels, but only a modest increase in water loss from detached leaves. Bdkai2 shows increased numbers of lateral roots and reduced root hair growth, and fails to support normal root colonisation by arbuscular-mycorrhizal (AM) fungi. The karrikins KAR1 and KAR2 , and the strigolactone (SL) analogue rac-GR24, each elicit overlapping but distinct changes to the shoot transcriptome via BdKAI2. Finally, we show that BdKAI2 exhibits a clear ligand preference for desmethyl butenolides and weak responses to methyl-substituted SL analogues such as GR24. Our findings suggest that KAI2 has multiple roles in shoot development, root system development and transcriptional regulation in grasses. Although KAI2-dependent AM symbiosis is likely conserved within monocots, the magnitude of the effect of KAI2 on water relations may vary across angiosperms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Proteínas de Arabidopsis/fisiologia , Brachypodium/genética , Furanos , Lactonas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Piranos , Simbiose
15.
BMC Genomics ; 24(1): 53, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709253

RESUMO

BACKGROUND: Arbuscular mycorrhizal (AM) fungi are arguably the most important symbionts of plants, offering a range of benefits to their hosts. However, the provisioning of these benefits does not appear to be uniform among AM fungal individuals, with genetic variation between fungal symbionts having a substantial impact on plant performance. Interestingly, genetic variation has also been reported within fungal individuals, which contain millions of haploid nuclei sharing a common cytoplasm. In the model AM fungus, Rhizophagus irregularis, several isolates have been reported to be dikaryotes, containing two genetically distinct types of nuclei recognized based on their mating-type (MAT) locus identity. However, their extremely coenocytic nature and lack of a known single nucleus stage has raised questions on the origin, distribution and dynamics of this genetic variation. RESULTS: Here we performed DNA and RNA sequencing at the mycelial individual, single spore and single nucleus levels to gain insight into the dynamic genetic make-up of the dikaryote-like R. irregularis C3 isolate and the effect of different host plants on its genetic variation. Our analyses reveal that parallel spore and root culture batches can have widely variable ratios of two main genotypes in C3. Additionally, numerous polymorphisms were found with frequencies that deviated significantly from the general genotype ratio, indicating a diverse population of slightly different nucleotypes. Changing host plants did not show consistent host effects on nucleotype ratio's after multiple rounds of subculturing. Instead, we found a major effect of host plant-identity on allele-specific expression in C3. CONCLUSION: Our analyses indicate a highly dynamic/variable genetic organization in different isolates of R. irregularis. Seemingly random fluctuations in nucleotype ratio's upon spore formation, recombination events, high variability of non-tandemly repeated rDNA sequences and host-dependent allele expression all add levels of variation that may contribute to the evolutionary success of these widespread symbionts.


Assuntos
Glomeromycota , Micorrizas , Humanos , Alelos , Micorrizas/genética , Polimorfismo Genético , Plantas/genética , Simbiose/genética , Raízes de Plantas
16.
Ecol Lett ; 26(11): 1862-1876, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37766496

RESUMO

Mycorrhizal symbioses are known to strongly influence plant performance, structure plant communities and shape ecosystem dynamics. Plant mycorrhizal traits, such as those characterising mycorrhizal type (arbuscular (AM), ecto-, ericoid or orchid mycorrhiza) and status (obligately (OM), facultatively (FM) or non-mycorrhizal) offer valuable insight into plant belowground functionality. Here, we compile available plant mycorrhizal trait information and global occurrence data ( ∼ 100 million records) for 11,770 vascular plant species. Using a plant phylogenetic mega-tree and high-resolution climatic and edaphic data layers, we assess phylogenetic and environmental correlates of plant mycorrhizal traits. We find that plant mycorrhizal type is more phylogenetically conserved than plant mycorrhizal status, while environmental variables (both climatic and edaphic; notably soil texture) explain more variation in mycorrhizal status, especially FM. The previously underestimated role of environmental conditions has far-reaching implications for our understanding of ecosystem functioning under changing climatic and soil conditions.


Assuntos
Micorrizas , Micorrizas/genética , Ecossistema , Filogenia , Microbiologia do Solo , Plantas , Solo/química
17.
Plant Cell Physiol ; 64(9): 955-966, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279572

RESUMO

Strigolactones (SLs) are root-secreted small molecules that influence organisms living in the rhizosphere. While SLs are known as germination stimulants for root parasitic plants and as hyphal branching factors for arbuscular mycorrhizal fungi, recent studies have also identified them as chemoattractants for parasitic plants, sensors of neighboring plants and key players in shaping the microbiome community. Furthermore, the discovery of structurally diverged SLs, including so-called canonical and non-canonical SLs in various plant species, raises the question of whether the same SLs are responsible for their diverse functions 'in planta' and the rhizosphere or whether different molecules play different roles. Emerging evidence supports the latter, with each SL exhibiting different activities as rhizosphere signals and plant hormones. The evolution of D14/KAI2 receptors has enabled the perception of various SLs or SL-like compounds to control downstream signaling, highlighting the complex interplay between plants and their rhizosphere environment. This review summarizes the recent advances in our understanding of the diverse functions of SLs in the rhizosphere.


Assuntos
Reguladores de Crescimento de Plantas , Rizosfera , Plantas/microbiologia , Lactonas
18.
Plant Cell Physiol ; 64(8): 850-857, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37300552

RESUMO

Many plants associate with arbuscular mycorrhizal (AM) fungi for nutrient acquisition, and most legumes also associate with nitrogen-fixing rhizobial bacteria for nitrogen acquisition. The association of plants with AM fungi and rhizobia depends on the perception of lipo-chitooligosaccharides (LCOs) produced by these micro-symbionts. Recent studies reveal that cereals can perceive LCOs better in soil deprived of phosphate (Pi) and nitrogen to activate symbiosis signaling and form efficient AM symbiosis. Nevertheless, the Pi deficiency in the soil hinders the symbiotic association of legumes with rhizobia, ultimately reducing nitrogen fixation. Here, we discuss a mechanistic overview of the factors regulating root nodule symbiosis under Pi-deficient conditions and further emphasize the possible ways to overcome this hurdle. Ignoring the low Pi problem not only can compromise the functionality of the nitrogen cycle by nitrogen fixation through legumes but can also put food security at risk globally. This review aims to bring the scientific community's attention toward the detrimental response of legumes toward Pi-deficient soil for the formation of root nodule symbiosis and hence reduced nitrogen fixation. In this review, we have highlighted the recent studies that have advanced our understanding of these critical areas and discussed some future directions. Furthermore, this review highlights the importance of communicating science with farmers and the agriculture community to fully harness the potential of the symbiotic association of plants in nutrient-deficient soil for sustainable agriculture.


Assuntos
Fabaceae , Micorrizas , Rhizobium , Simbiose/fisiologia , Solo , Fosfatos , Micorrizas/fisiologia , Plantas , Fabaceae/microbiologia , Fixação de Nitrogênio , Quitina , Agricultura
19.
BMC Plant Biol ; 23(1): 603, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030972

RESUMO

BACKGROUND: Plant respiratory burst oxidase homolog (Rboh) gene family produces reactive oxygen species (ROS), and it plays key roles in plant-microbe interaction. Most Rboh gene family-related studies mainly focused on dicotyledonous plants; however, little is known about the roles of Rboh genes in gramineae. RESULTS: A total of 106 Rboh genes were identified in seven gramineae species, including Zea mays, Sorghum bicolor, Brachypodium distachyon, Oryza sativa, Setaria italica, Hordeum vulgare, and Triticum aestivum. The Rboh protein sequences showed high similarities, suggesting that they may have conserved functions across different species. Duplication mode analysis detected whole-genome/segmental duplication (WGD)/(SD) and dispersed in the seven species. Interestingly, two local duplication (LD, including tandem and proximal duplication) modes were found in Z. mays, S. italica and H. vulgare, while four LD were detected in T. aestivum, indicating that these genes may have similar functions. Collinearity analysis indicated that Rboh genes are at a stable evolution state in all the seven species. Besides, Rboh genes from Z. mays were closely related to those from S. bicolor, consistent with the current understanding of plant evolutionary history. Phylogenetic analysis showed that the genes in the subgroups I and II may participate in plant-AM fungus symbiosis. Cis-element analysis showed that different numbers of elements are related to fungal induction in the promoter region. Expression profiles of Rboh genes in Z. mays suggested that Rboh genes had distinct spatial expression patterns. By inoculation with AM fungi, our transcriptome analysis showed that the expression of Rboh genes varies upon AM fungal inoculation. In particularly, ZmRbohF was significantly upregulated after inoculation with AM fungi. pZmRbohF::GUS expression analyses indicated that ZmRbohF was induced by arbuscular mycorrhizal fungi in maize. By comparing WT and ZmRbohF mutant, we found ZmRbohF had limited impact on the establishment of maize-AM fungi symbiosis, but play critical roles in regulating the proper development of arbuscules. CONCLUSIONS: This study provides a comprehensive analysis of the evolution relationship of Rboh genes in seven gramineae species. Results showed that several Rboh genes regulate maize-AM fungal symbiosis process. This study provides valuable information for further studies of Rboh genes in gramineae.


Assuntos
Micorrizas , Micorrizas/fisiologia , Zea mays/metabolismo , Filogenia , Simbiose , Raízes de Plantas/genética , Regulação da Expressão Gênica de Plantas
20.
Planta ; 258(2): 32, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37368074

RESUMO

MAIN CONCLUSION: Tomato plant acclimation to a mild water stress implied tissue-specific hormonal and nutrient adjustments, being the root one of the main modulators of this response. Phytohormones are key regulators of plant acclimation to water stress. However, it is not yet clear if these hormonal responses follow specific patterns depending on the plant tissue. In this study, we evaluated the organ-specific physiological and hormonal responses to a 14 day-long mild water stress in tomato plants (Solanum lycopersicum cv. Moneymaker) in the presence or absence of the arbuscular mycorrhizal fungus Rhizoglomus irregulare, a frequently used microorganism in agriculture. Several physiological, production, and nutritional parameters were evaluated throughout the experiments. Additionally, endogenous hormone levels in roots, leaves, and fruits at different developmental stages were quantified by ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Water deficit drastically reduced shoot growth, while it did not affect fruit production. In contrast, fruit production was enhanced by mycorrhization regardless of the water treatment. The main tissue affected by water stress was the root system, where huge rearrangements in different nutrients and stress-related and growth hormones took place. Abscisic acid content increased in every tissue and fruit developmental stage, suggesting a systemic response to drought. On the other hand, jasmonate and cytokinin levels were generally reduced upon water stress, although this response was dependent on the tissue and the hormonal form. Finally, mycorrhization improved plant nutritional status content of certain macro and microelements, specially at the roots and ripe fruits, while it affected jasmonate response in the roots. Altogether, our results suggest a complex response to drought that consists in systemic and local combined hormonal and nutrient responses.


Assuntos
Micorrizas , Solanum lycopersicum , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Desidratação , Espectrometria de Massas em Tandem , Aclimatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA