Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Nano Lett ; 24(25): 7741-7747, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870320

RESUMO

The existence of fractionally quantized topological corner charge serves as a key indicator for two-dimensional (2D) second-order topological insulators (SOTIs), yet it has not been experimentally observed in realistic materials. Here, based on effective model analysis and symmetry arguments, we propose a strategy for achieving SOTI phases with in-gap corner states in 2D systems with antiferromagnetic (AFM) order. We discover that the band topology originates from the interplay between intrinsic spin-orbital coupling and interlayer AFM exchange interactions. Using first-principles calculations, we show that the 2D AFM SOTI phase can be realized in (MnBi2Te4)(Bi2Te3)m films. Moreover, we demonstrate that the SOTI states are linked to rotation topological invariants under 3-fold rotation symmetry C3, resulting in fractionally quantized corner charge, i.e., n3|e| (mod e). Due to the great achievements in (MnBi2Te4)(Bi2Te3)m systems, our results providing reliable material candidates for experimentally accessible AFM SOTIs should draw intense attention.

2.
Small ; : e2401929, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934508

RESUMO

Defective bismuth telluride (Bi2Te3) nanosheets, an artificial nanozyme mimicking haloperoxidase activity (hPOD), show promise as eco-friendly, bactericidal, and antimicrofouling materials by enhancing cytotoxic hypohalous acid production from halides and H2O2. Microscopic and spectroscopic characterization reveals that controlled NaOH (upto X = 250 µL) etching of the nearly inactive non-transition metal chalcogenide Bi2Te3 nanosheets creates controlled defects (d), such as Bi3+species, in d-Bi2Te3-X that induces enhanced hPOD activity. d-Bi2Te3-250 exhibits approximately eight-fold improved hPOD than the as-grown Bi2Te3 nanosheets. The antibacterial activity of d-Bi2Te3-250 nanozymes, studied by bacterial viability, show 1, and 45% viability for Staphylococcus aureus and Pseudomonas aeruginosa, respectively, prevalent in marine environments. The hPOD mechanism is confirmed using scavengers, implicating HOBr and singlet oxygen for the effect. The antimicrofouling property of the d-Bi2Te3-250 nanozyme has been studied on Pseudomonas aeruginosa biofilm in a lab setting by multiple assays, and also on titanium (Ti) plates coated with the nanozyme mixed commercial paint, exposed to seawater in a real setting. All studies, including direct microscopic evidence, exhibit inhibition of microfouling, up to ≈73%, in the presence of nanozymes. This approach showcases that defect engineering can induce antibacterial, and antimicrofouling activity in non-transition metal chalcogenides, offering an inexpensive alternative to noble metals.

3.
Nano Lett ; 23(24): 11395-11401, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38079217

RESUMO

Thermoelectric materials with high electrical conductivity and low thermal conductivity (e.g., Bi2Te3) can efficiently convert waste heat into electricity; however, in spite of favorable theoretical predictions, individual Bi2Te3 nanostructures tend to perform less efficiently than bulk Bi2Te3. We report a greater-than-order-of-magnitude enhancement in the thermoelectric properties of suspended Bi2Te3 nanoribbons, coated in situ to form a Bi2Te3/F4-TCNQ core-shell nanoribbon without oxidizing the core-shell interface. The shell serves as an oxidation barrier but also directly functions as a strong electron acceptor and p-type carrier donor, switching the majority carriers from a dominant n-type carrier concentration (∼1021 cm-3) to a dominant p-type carrier concentration (∼1020 cm-3). Compared to uncoated Bi2Te3 nanoribbons, our Bi2Te3/F4-TCNQ core-shell nanoribbon demonstrates an effective chemical potential dramatically shifted toward the valence band (by 300-640 meV), robustly increased Seebeck coefficient (∼6× at 250 K), and improved thermoelectric performance (10-20× at 250 K).

4.
Small ; 19(24): e2300654, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919261

RESUMO

The carrier concentration in n-type layered Bi2 Te3 -based thermoelectric (TE) material is significantly impacted by the donor-like effect, which would be further intensified by the nonbasal slip during grain refinement of crushing, milling, and deformation, inducing a big challenge to improve its TE performance and mechanical property simultaneously. In this work, high-energy refinement and hot-pressing are used to stabilize the carrier concentration due to the facilitated recovery of cation and anion vacancies. Based on this, combined with SbI3 doping and hot deformation, the optimized carrier concentration and high texture degree are simultaneously realized. As a result, a peak figure of merit (zT) of 1.14 at 323 K for Bi2 Te2.7 Se0.3  + 0.05 wt.% SbI3 sample with the high bending strength of 100 Mpa is obtained. Furthermore, a 31-couple thermoelectric cooling device consisted of n-type Bi2 Te2.7 Se0.3  + 0.05 wt.% SbI3 and commercial p-type Bi0.5 Sb1.5 Te3 legs is fabricated, which generates the large maximum temperature difference (ΔTmax ) of 85 K at a hot-side temperature of 343 K. Thus, the discovery of recovery effect in high energy refinement and hot-pressing has significant implications for improving TE performance and mechanical strength of n-type Bi2 Te3 , thereby promoting its applications in harsh conditions.

5.
Small ; 19(11): e2204850, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642858

RESUMO

Three-dimensional topological insulators (3D TI) exhibit conventional parabolic bulk bands and protected Dirac surface states. A thorough investigation of the different transport channels provided by the bulk and surface carriers using macroscopic samples may provide a path toward accessing superior surface transport properties. Bi2 Te3 materials make promising 3D TI models; however, due to their complicated defect chemistry, these materials have a high number of charge carriers in the bulk that dominate the transport, even as nanograined structures. To partially control the bulk charge carrier density, herein the synthesis of Te-enriched Bi2 Te3 nanoparticles is reported. The resulting nanoparticles are compacted into nanograined pellets of varying porosity to tailor the surface-to-volume ratio, thereby emphasizing the surface transport channels. The nanograined pellets are characterized by a combination of resistivity, Hall- and magneto-conductance measurements together with (THz) time-domain reflectivity measurements. Using the Hikami-Larkin-Nagaoka (HLN) model, a characteristic coherence length of ≈200 nm is reported that is considerably larger than the diameter of the nanograins. The different contributions from the bulk and surface carriers are disentangled by THz spectroscopy, thus emphasizing the dominant role of the surface carriers. The results strongly suggest that the surface transport carriers have overcome the hindrance imposed by nanoparticle boundaries.

6.
Small ; 19(14): e2205202, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36634999

RESUMO

Thermoelectric technology, which has been receiving attention as a sustainable energy source, has limited applications because of its relatively low conversion efficiency. To broaden their application scope, thermoelectric materials require a high dimensionless figure of merit (ZT). Porous structuring of a thermoelectric material is a promising approach to enhance ZT by reducing its thermal conductivity. However, nanopores do not form in thermoelectric materials in a straightforward manner; impurities are also likely to be present in thermoelectric materials. Here, a simple but effective way to synthesize impurity-free nanoporous Bi0.4 Sb1.6 Te3 via the use of nanoporous raw powder, which is scalably formed by the selective dissolution of KCl after collision between Bi0.4 Sb1.6 Te3 and KCl powders, is proposed. This approach creates abundant nanopores, which effectively scatter phonons, thereby reducing the lattice thermal conductivity by 33% from 0.55 to 0.37 W m-1 K-1 . Benefitting from the optimized porous structure, porous Bi0.4 Sb1.6 Te3 achieves a high ZT of 1.41 in the temperature range of 333-373 K, and an excellent average ZT of 1.34 over a wide temperature range of 298-473 K. This study provides a facile and scalable method for developing high thermoelectric performance Bi2 Te3 -based alloys that can be further applied to other thermoelectric materials.

7.
Small ; 19(35): e2300745, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37104824

RESUMO

Interfacial charge effects, such as band bending, modulation doping, and energy filtering, are critical for improving electronic transport properties of superlattice films. However, effectively manipulating interfacial band bending has proven challenging in previous studies. In this study, (1T'-MoTe2 )x (Bi2 Te3 )y superlattice films with symmetry-mismatch were successfully fabricated via the molecular beam epitaxy. This enables to manipulate the interfacial band bending, thereby optimizing the corresponding thermoelectric performance. These results demonstrate that the increase of Te/Bi flux ratio (R) effectively tailored interfacial band bending, resulting in a reduction of the interfacial electric potential from ≈127 meV at R = 16 to ≈73 meV at R = 8. It is further verified that a smaller interfacial electric potential is more beneficial for optimizing the electronic transport properties of (1T'-MoTe2 )x (Bi2 Te3 )y . Especially, the (1T'-MoTe2 )1 (Bi2 Te3 )12 superlattice film displays the highest thermoelectric power factor of 2.72 mW m-1 K-2 among all films, due to the synergy of modulation doping, energy filtering, and the manipulation of band bending. Moreover, the lattice thermal conductivity of the superlattice films is significantly reduced. This work provides valuable guidance to manipulate the interfacial band bending and further enhance the thermoelectric performances of superlattice films.

8.
Nanotechnology ; 34(25)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36944227

RESUMO

It has been highly demanded to optimize the charge carrier concentration in 2D Bi2Te3to achieve enhanced thermoelectric performance. This work reveals that, constructing 2D Bi2Te3/Si heterostructure with tuned interfacial electronic band structure can meet the above needs. When the work function in Si substrate is decreased from 4.6 to 4.06 eV, the charge carrier concentration and electron effective mass are increased simultaneously. Consequently, the electrical conductivity of 2D Bi2Te3on n++-Si has reaches up to 1250 S·cm-1, which is 90% higher than the counterpart on SiO2/Si substrate, although the Seebeck coefficient in these two samples is around -103µV·K-1. The resultant power factor of 2D Bi2Te3/n++-Si heterostructure is 13.4µW·cm-1·K-2, which is one of the best values among similar studies ever reported. This work demonstrates a facile way to improve thermoelectric properties via interfacial engineering in a heterostructure.

9.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177533

RESUMO

Lead sulfide colloidal quantum dots (PbS CQDs) are promising optoelectronic materials due to their unique properties, such as tunable band gap and strong absorption, which are of immense interest for application in photodetectors and solar cells. However, the tunable band gap of PbS CQDs would only cover visible short-wave infrared; the ability to detect longer wavelengths, such as mid- and long-wave infrared, is limited because they are restricted by the band gap of the bulk material. In this paper, a novel photodetector based on the synergistic effect of PbS CQDs and bismuth telluride (Bi2Te3) was developed for the detection of a mid-wave infrared band at room temperature. The device demonstrated good performance in the visible-near infrared band (i.e., between 660 and 850 nm) with detectivity of 1.6 × 1010 Jones at room temperature. It also exhibited photoelectric response in the mid-wave infrared band (i.e., between 4.6 and 5.1 µm). The facile fabrication process and excellent performance (with a response of up to 5.1 µm) of the hybrid Bi2Te3/PbS CQDS photodetector are highly attractive for many important applications that require high sensitivity and broadband light detection.

10.
Small ; 18(51): e2205624, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36328711

RESUMO

Electrical conductivity and dielectric parameters are general inherent features of materials. Controlling these characteristics through applied bias will add a new dimension to regulate the dynamic response of smart materials. Here, a fascinating electrical transport behavior is observed in topological insulator (TI) Bi2 Te3 nanorods, which will play a vital role in intelligent materials or devices as a unit for information reception, processing or feedback. The Bi2 Te3 nanorod aggregates exhibit a monotonic resistance response to voltage, with observed four-fold change of electrical conductivity in a small range electric field of 1 V mm-1 . The dielectric constant and dielectric loss of Bi2 Te3 nanorod composites also show strong dependences on bias voltage due to the unique electrical transport characteristics. The unique voltage-controlled electrical responses are attributed to the change of Fermi levels within the band structure of disordered TI nanorods, which are non-parallel to the applied electric field. The excellent controllable inherent characteristics through electric field endows Bi2 Te3 nanomaterials bright prospects for applications in smart devices and resistive random access memories.

11.
Small ; 18(10): e2106875, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34984821

RESUMO

Wearable thermoelectric generators have great potential to be utilized as the power supply for wearable electronics. However, the limited temperature difference across the thermoelectric generators significantly degrades the output performance, which is anticipated to be improved by enhancing the thermal radiation at the cold side without extra energy consumption. In this paper, the impact of thermal radiation on the performance of thermoelectric generators in different environments is simulated and the enhanced performance in a wearable thermoelectric generator combined with a radiative cooling coating is experimentally verified. Compared with the pristine device, the wearable thermoelectric generator with radiative cooling coating can not only achieve an ≈128% improvement of output power in exposed environments, but also exhibit an ≈96% improvement of output power in non-exposed environments. The indoor output performance of the wearable thermoelectric generator with a radiative cooling coating due to its stable voltage output is extensively investigated, which shows an output power density of ≈5.5 µW cm-2 at the indoor temperature of 295 K, doubled that without a radiative cooling coating. This work paves a new way for further enhancing the performance of thermoelectric generators via passive radiative cooling.


Assuntos
Dispositivos Eletrônicos Vestíveis , Temperatura Baixa , Fontes de Energia Elétrica , Eletrônica , Temperatura
12.
Nano Lett ; 21(3): 1327-1334, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33513015

RESUMO

In this work, we demonstrate that the nonsuperconducting single-layer FeTe can become superconducting when its structure is properly tuned by epitaxially growing it on Bi2Te3 thin films. The properties of the single-layer FeTe deviate strongly from its bulk counterpart, as evidenced by the emergence of a large superconductivity gap (3.3 meV) and an apparent 8 × 2 superlattice (SL). Our first-principles calculations indicate that the 8 × 2 SL and the emergence of the novel superconducting phase are essentially the result of the structural change in FeTe due to the presence of the underlying Bi2Te3 layer. The structural change in FeTe likely suppresses the antiferromagnetic order in the FeTe and leads to superconductivity. Our work clearly demonstrates that moiré pattern engineering in a heterostructure is a reachable dimension for investigating novel materials and material properties.

13.
Nano Lett ; 21(15): 6518-6524, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34319741

RESUMO

It is challenging to grow an epitaxial 4-fold compound superconductor (SC) on a 6-fold topological insulator (TI) platform due to the stringent lattice-matching requirement. Here, we demonstrate that Fe(Te,Se) can grow epitaxially on a TI (Bi2Te3) layer due to accidental, uniaxial lattice match, which is dubbed as "hybrid symmetry epitaxy". This new growth mode is critical to stabilizing robust superconductivity with TC as high as 13 K. Furthermore, the superconductivity in this FeTe1-xSex/Bi2Te3 system survives in the Te-rich phase with Se content as low as x = 0.03 but vanishes at Se content above x = 0.56, exhibiting a phase diagram that is quite different from that of the conventional Fe(Te,Se) systems. This unique heterostructure platform that can be formed in both TI-on-SC and SC-on-TI sequences opens a route to unprecedented topological heterostructures.

14.
Small ; 17(29): e2101328, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34142440

RESUMO

Bi2 Te3 has attracted great attention because of its excellent thermoelectric (TE) performance around room temperature. However, the TE property of the n-type Bi2 Te3 is still relatively low compared to the p-type counterpart, which seriously hinders its commercial application with a combination of the n-type and p-type materials. Herein, an effective process of Cl and W co-doping is employed into the n-type Bi2 Te3 materials to enhance its TE properties. The Bi1.996 W0.004 Te2.476 Cl0.024 Se0.5 sample achieves a peak and average ZT over 1.3 and 1.2, respectively, at temperature range of 300-575 K. A 24-leg TE module of this n-type material and a home-made p-type Bi2 Te3 sample can produce a high efficiency over 6% at a temperature gradient of 235 K, which possesses a 71% improvement compared with a commercial Bi2 Te3 module. This high performance is ascribed to the effect of the Cl and W doping. This co-doping not only significantly increases the Grüneisen parameter but also successfully induces interstitial atoms in the van der Waals gap, which lead to a low lattice thermal conductivity (κl ) of 0.31W m-1 K-1 and a boosted charge transport. This finding represents an important step to promote the development of the n-type Bi2 Te3 materials.

15.
Nanotechnology ; 32(43)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34284363

RESUMO

Bismuth telluride (Bi2Te3), as an emerging two-dimensional (2D) material, has attracted extensive attention from scientific researchers due to its excellent optoelectronic, thermoelectric properties and topological structure. However, the application research of Bi2Te3mainly focuses on thermoelectric devices, while the research on optoelectronic devices is scarce. In this work, the morphology evolution and growth mechanism of 2D Bi2Te3nanosheets with a thickness of 12 ± 3 nm were systematically studied by solvothermal method. Then, the Bi2Te3nanosheets were annealed at 350 °C for 1 h and applied to self-powered photoelectrochemical-type broadband photodetectors. Compared with the as-synthesized Bi2Te3photodetector, the photocurrent of the photodetector based on the annealed Bi2Te3is significantly enhanced, especially enhanced by 18.3 times under near-infrared light illumination. Furthermore, the performance of annealed Bi2Te3photodetector was systematically studied. The research results show that the photodetector not only has a broadband response from ultraviolet to near-infrared (365-850 nm) under zero bias voltage, but also obtains the highest responsivity of 6.6 mA W-1under green light with an incident power of 10 mW cm-2. The corresponding rise time and decay time are 17 ms and 20 ms, respectively. These findings indicate that annealed Bi2Te3nanosheets have great potential to be used as self-powered high-speed broadband photodetectors with high responsivity.

16.
Nano Lett ; 20(5): 3160-3168, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32207627

RESUMO

How an interfacial superconductivity emerges during the nucleation and epitaxy is of great importance not only for unveiling the physical insights but also for finding a feasible way to tune the superconductivity via interfacial engineering. In this work, we report the nanoscale creation of a robust and relatively homogeneous interfacial superconductivity (TC ≈ 13 K) on the epitaxial FeTe surface, by van der Waals epitaxy of single-quintuple-layer topological insulator Bi2Te3. Our study suggests that the superconductivity in the Bi2Te3/FeTe heterostructure is generated at the interface and that the superconductivity at the interface does not enhance or weaken with the increase of the Bi2Te3 thickness beyond 1 quintuple layer (QL). The observation of the topological surface states crossing Fermi energy in the Bi2Te3/FeTe heterostructure with the average Bi2Te3 thickness of about 20 QL provides further evidence that this heterostructure may potentially host Majorana zero modes.

17.
Nano Lett ; 18(5): 2879-2884, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29595988

RESUMO

Noble metals, like Ag and Au, are the most intensively studied plasmonic materials in the visible range. Plasmons in semiconductors, however, are usually believed to be in the infrared wavelength region due to the intrinsic low carrier concentrations. Herein, we observe the edge plasmon modes of Bi2Te3, a narrow-band gap semiconductor, in the visible spectral range using photoemission electron microscopy (PEEM). The Bi2Te3 nanoplates excited by 400 nm femtosecond laser pulses exhibit strong photoemission intensities along the edges, which follow a cos4 dependence on the polarization state of incident beam. Because of the phase retardation effect, plasmonic response along different edges can be selectively exited. The thickness-dependent photoemission intensities exclude the spin-orbit induced surface states as the origin of these plasmonic modes. Instead, we propose that the interband transition-induced nonequilibrium carriers might play a key role. Our results not only experimentally demonstrate the possibility of visible plasmons in semiconducting materials but also open up a new avenue for exploring the optical properties of topological insulator materials using PEEM.

18.
Nano Lett ; 18(3): 1819-1825, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29462550

RESUMO

Engineering the structure of materials endows them with novel physical properties across a wide range of length scales. With high in-plane stiffness and strength, but low flexural rigidity, two-dimensional (2D) materials are excellent building blocks for nanostructure engineering. They can be easily bent and folded to build three-dimensional (3D) architectures. Taking advantage of the large lattice mismatch between the constituents, we demonstrate a 3D heterogeneous architecture combining a basal Bi2Se3 nanoplate and wavelike Bi2Te3 edges buckling up and down forming periodic ripples. Unlike 2D heterostructures directly grown on substrates, the solution-based synthesis allows the heterostructures to be free from substrate influence during the formation process. The balance between bending and in-plane strain energies gives rise to controllable rippling of the material. Our experimental results show clear evidence that the wavelengths and amplitudes of the ripples are dependent on both the widths and thicknesses of the rippled material, matching well with continuum mechanics analysis. The rippled Bi2Se3/Bi2Te3 heterojunction broadens the horizon for the application of 2D materials heterojunction and the design and fabrication of 3D architectures based on them, which could provide a platform to enable nanoscale structure generation and associated photonic/electronic properties manipulation for optoelectronic and electromechanic applications.

19.
Nano Lett ; 17(1): 97-103, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28026959

RESUMO

In this work we present unique signatures manifested by the local electronic properties of the topological surface state in Bi2Te3 nanostructures as the spatial limit is approached. We concentrate on the pure nanoscale limit (nanoplatelets) with spatial electronic resolution down to 1 nm. The highlights include strong dependencies on nanoplatelet size: (1) observation of a phase separation of Dirac electrons whose length scale decreases as the spatial limit is approached, and (2) the evolution from heavily n-type to lightly n-type surface doping as nanoplatelet thickness increases. Our results show a new approach to tune the Dirac point together with reduction of electronic disorder in topological insulator (TI) nanostructured systems. We expect our work will provide a new route for application of these nanostructured Dirac systems in electronic devices.

20.
J Nanosci Nanotechnol ; 17(1): 741-48, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29633822

RESUMO

Bi2Te3 nanotubes are synthesized by a facile two-step hydrothermal method. Te nanotubes are prepared firstly and then used as a template to produce Bi2Te3 nanotubes. The structure and morphology of the synthesized nanotubes are characterized by X-ray diffraction, field emission scanning electron microscope, and transmission electron microscope. The synthesized Bi2Te3 nanotubes are several microns in length and about 400 nm in diameter. The growth process is investigated in detail under different experimental conditions. The formation mechanism of Bi2Te3 nanotubes from the Te nanotube template is proposed and discussed. Electrical property of single Bi2Te3 nanotube is investigated. The synthesis of smooth Bi2Te3 nanotubes opens up the opportunities of investigating novel physical phenomena of topological insulators with two independent surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA