Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(6): 1185-1191, 2023 Dec 25.
Artigo em Zh | MEDLINE | ID: mdl-38151942

RESUMO

A novel structural dynamics test method and device were designed to test the biomechanical effects of dynamic axial loading on knee cartilage and meniscus. Firstly, the maximum acceleration signal-to-noise ratio of the experimental device was calculated by applying axial dynamic load to the experimental device under unloaded condition with different force hammers. Then the experimental samples were divided into non-specimen group (no specimen loaded), sham specimen group (loaded with polypropylene samples) and bovine knee joint specimen group (loaded with bovine knee joint samples) for testing. The test results show that the experimental device and method can provide stable axial dynamic load, and the experimental results have good repeatability. The final results confirm that the dynamic characteristics of experimental samples can be distinguished effectively by this device. The experimental method proposed in this study provides a new way to further study the biomechanical mechanism of knee joint structural response under axial dynamic load.


Assuntos
Articulação do Joelho , Menisco , Animais , Bovinos , Fenômenos Biomecânicos , Articulação do Joelho/fisiologia , Fenômenos Mecânicos , Suporte de Carga
2.
J Exp Bot ; 71(3): 997-1009, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31616944

RESUMO

Computational tools that allow in silico analysis of the role of cell growth and division on photosynthesis are scarce. We present a freely available tool that combines a virtual leaf tissue generator and a two-dimensional microscale model of gas transport during C3 photosynthesis. A total of 270 mesophyll geometries were generated with varying degrees of growth anisotropy, growth extent, and extent of schizogenous airspace formation in the palisade mesophyll. The anatomical properties of the virtual leaf tissue and microscopic cross-sections of actual leaf tissue of tomato (Solanum lycopersicum L.) were statistically compared. Model equations for transport of CO2 in the liquid phase of the leaf tissue were discretized over the geometries. The virtual leaf tissue generator produced a leaf anatomy of tomato that was statistically similar to real tomato leaf tissue. The response of photosynthesis to intercellular CO2 predicted by a model that used the virtual leaf tissue geometry compared well with measured values. The results indicate that the light-saturated rate of photosynthesis was influenced by interactive effects of extent and directionality of cell growth and degree of airspace formation through the exposed surface of mesophyll per leaf area. The tool could be used further in investigations of improving photosynthesis and gas exchange in relation to cell growth and leaf anatomy.


Assuntos
Modelos Biológicos , Fotossíntese , Folhas de Planta/metabolismo , Algoritmos , Anisotropia , Simulação por Computador , Solanum lycopersicum , Células do Mesofilo , Folhas de Planta/citologia
3.
Work ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38875068

RESUMO

BACKGROUND: Functional Capacity Evaluation (FCE) is a crucial component within return-to-work decision making. However, clinician-based physical FCE interpretation may introduce variability and biases. The rise of technological applications such as machine learning and artificial intelligence, could ensure consistent and precise results. OBJECTIVE: This review investigates the application of information and communication technologies (ICT) in physical FCEs specific for return-to-work assessments. METHODS: Adhering to the PRISMA guidelines, a search was conducted across five databases, extracting study specifics, populations, and technological tools employed, through dual independent reviews. RESULTS: Nine studies were identified that used ICT in FCEs. These technologies included electromyography, heart rate monitors, cameras, motion detectors, and specific software. Notably, although some devices are commercially available, these technologies were at a technology readiness level of 5-6 within the field of FCE. A prevailing trend was the combined use of diverse technologies rather than a single, unified solution. Moreover, the primary emphasis was on the application of technology within study protocols, rather than a direct evaluation of the technology usability and feasibility. CONCLUSION: The literature underscores limited ICT integration in FCEs. The current landscape of FCEs, marked by a high dependence on clinician observations, presents challenges regarding consistency and cost-effectiveness. There is an evident need for a standardized technological approach that introduces objective metrics to streamline the FCE process and potentially enhance its outcomes.

4.
Accid Anal Prev ; 200: 107555, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531282

RESUMO

Developing vehicle finite element (FE) models that match real accident-involved vehicles is challenging. This is related to the intricate variety of geometric features and components. The current study proposes a novel method to efficiently and accurately generate case-specific buck models for car-to-pedestrian simulations. To achieve this, we implemented the vehicle side-view images to detect the horizontal position and roundness of two wheels to rectify distortions and deviations and then extracted the mid-section profiles for comparative calculations against baseline vehicle models to obtain the transformation matrices. Based on the generic buck model which consists of six key components and corresponding matrices, the case-specific buck model was generated semi-automatically based on the transformation metrics. Utilizing this image-based method, a total of 12 vehicle models representing four vehicle categories including family car (FCR), Roadster (RDS), small Sport Utility Vehicle (SUV), and large SUV were generated for car-to-pedestrian collision FE simulations in this study. The pedestrian head trajectories, total contact forces, head injury criterion (HIC), and brain injury criterion (BrIC) were analyzed comparatively. We found that, even within the same vehicle category and initial conditions, the variation in wrap around distance (WAD) spans 84-165 mm, in HIC ranges from 98 to 336, and in BrIC fluctuates between 1.25 and 1.46. These findings highlight the significant influence of vehicle frontal shape and underscore the necessity of using case-specific vehicle models in crash simulations. The proposed method provides a new approach for further vehicle structure optimization aiming at reducing pedestrian head injury and increasing traffic safety.


Assuntos
Lesões Encefálicas , Traumatismos Craniocerebrais , Pedestres , Humanos , Acidentes de Trânsito/prevenção & controle , Veículos Automotores , Traumatismos Craniocerebrais/prevenção & controle , Fenômenos Biomecânicos , Caminhada/lesões
5.
J Struct Biol ; 183(3): 501-511, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23810923

RESUMO

OBJECTIVE: Trauma-associated cartilage fractures occur in children and adolescents with clinically significant incidence. Several studies investigated biomechanical injury by compressive forces but the injury-related stress has not been investigated extensively. In this study, we hypothesized that the biomechanical stress occurring during compressive injury predetermines the biomechanical, biochemical, and structural consequences. We specifically investigated whether the stress-vs-time signal correlated with the injurious damage and may allow prediction of cartilage matrix fracturing. METHODS: Superficial and deeper zones disks (SZDs, DZDs; immature bovine cartilage) were biomechanically characterized, injured (50% compression, 100%/s strain-rate), and re-characterized. Correlations of the quantified functional, biochemical and histological damage with biomechanical parameters were zonally investigated. RESULTS: Injured SZDs exhibited decreased dynamic stiffness (by 93.04±1.72%), unresolvable equilibrium moduli, structural damage (2.0±0.5 on a 5-point-damage-scale), and 1.78-fold increased sGAG loss. DZDs remained intact. Measured stress-vs-time-curves during injury displayed 4 distinct shapes, which correlated with histological damage (p<0.001), loss of dynamic stiffness and sGAG (p<0.05). Damage prediction in a blinded experiment using stress-vs-time grades was 100%-correct and sensitive to differentiate single/complex matrix disruptions. Correlations of the dissipated energy and maximum stress rise with the extent of biomechanical and biochemical damage reached significance when SZDs and DZDs were analyzed as zonal composites but not separately. CONCLUSIONS: The biomechanical stress that occurs during compressive injury predetermines the biomechanical, biochemical, and structural consequences and, thus, the structural and functional damage during cartilage fracturing. A novel biomechanical method based on the interpretation of compressive yielding allows the accurate prediction of the extent of structural damage.


Assuntos
Cartilagem Articular/fisiopatologia , Animais , Fenômenos Biomecânicos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Bovinos , Glicosaminoglicanos/metabolismo , Transdução de Sinais , Estresse Fisiológico , Técnicas de Cultura de Tecidos
6.
J Mech Behav Biomed Mater ; 141: 105755, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36898353

RESUMO

The skin is a living tissue that behaves in a hyperelastic and anisotropic way. A constitutive law called HGO-Yeoh is proposed to model the skin by improving the classical HGO constitutive law. This model is implemented in a finite element code FER "Finite Element Research" to benefit from its tools, including the bipotential contact method, a very efficient function coupling contact and friction. Identifying the skin-related material parameters is done through an optimisation procedure using analytic and experimental data. A tensile test is simulated using the codes FER and ANSYS. Then, the results are compared with the experimental data. Finally, a simulation of an indentation test using a bipotential contact law is done.


Assuntos
Testes Mecânicos , Modelos Biológicos , Elasticidade , Análise de Elementos Finitos , Estresse Mecânico , Simulação por Computador
7.
Biomech Model Mechanobiol ; 19(5): 1565-1583, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31974816

RESUMO

This work explores the use of an embedded computational fluid dynamics method to study the type B aortic dissection. The use of the proposed technique makes it possible to easily test different intimal flap configurations without any need of remeshing. To validate the presented methodology, we take as reference test case an in vitro experiment present in the literature. This experiment, which considers several intimal flap tear configurations (number, size and location), mimics the blood flow in a real type B aortic dissection. We prove the correctness and suitability of the presented approach by comparing the pressure values and waveform. The obtained results exhibit a remarkable similarity with the experimental reference data. Complementary, we present a feasible surgical application of the presented computer method. The aim is to help the clinicians in the decision making before the type B aortic dissection surgical fenestration. The capabilities of the proposed technique are exploited to efficiently create artificial reentry tear configurations. We highlight that only the radius and center of the reentry tear need to be specified by the clinicians, without any need to modify neither the model geometry nor the mesh. The obtained computational surgical fenestration results are in line with the medical observations in similar clinical studies.


Assuntos
Dissecção Aórtica/patologia , Simulação por Computador , Análise de Elementos Finitos , Modelos Cardiovasculares , Dissecção Aórtica/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Pressão , Reprodutibilidade dos Testes
8.
Acta Biomater ; 85: 263-271, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30583109

RESUMO

A wide variety of animals-from insects to snakes-crucially depend on their ability to inject venom into their target, be it their prey or their predator. To effectively deliver their venom, venomous animals use a specialized biomechanical element whose tip must penetrate through the integument of the target. During this process, the tip of the venom-injection element (VIE) is subject to local forces, which may deform it and cause considerable structural damage to the VIE, with devastating consequences for the survival of the animal or, in the case of eusocial insects, to the colony. Hence, it is plausible that millions of years of evolution have carefully 'shaped' the architecture of VIEs across different taxa toward a similar mechanical function, namely, to effectively resist the mechanical forces exerted on the tip. The present study aims to identify such a common architecture by analyzing the form-function relationships in various biological VIEs. A universal structural modeling, which quantifies the fundamental geometrical characteristics of a wide range of VIEs is constituted, and a theoretical mechanical framework that analytically correlates these characteristics with the material stress fields is introduced. This investigation reveals that the architecture of biological VIEs reduces the magnitude of applied stresses and confines the maximal stress to the near-tip region of the element. The presented analytical approach and modeling can be straightforwardly applied to various other types of bio-mechanical elements and can potentially be employed for developing a new class of microscopic injection elements for bio-medical and engineering applications. STATEMENT OF SIGNIFICANCE: Venomous animals-both vertebrate and invertebrate-use an extremely wide variety of venom-injection elements to incapacitate their prey or predator. Despite the clear differences in their typical dimensions, shapes, and evolutionary paths, all venom-injection elements have evolved to perform a single mechanical function, namely, to penetrate a target surface. Accordingly, the architecture of many such elements appears to follow similar principles and their material exhibits similar stress characteristics upon biologically relevant mechanical loadings. The current study introduces a theoretical model that draws connections between the 'universal' structural characteristics of such elements and their bio-mechanical functions. It is found that all examined venom-injection elements provide extreme load-bearing capabilities and unusual post-failure functionalities, which are in good agreement with the wide range of numerical and experimental findings from the literature. The emerging theoretical insights from this study thus shed light on the biomechanical origins of the naturally evolved forms of various biological organisms, including bee and wasp stingers, spider and snake fangs, porcupine fish spines, and scorpion stingers.


Assuntos
Injeções , Peçonhas/administração & dosagem , Fenômenos Biomecânicos , Simulação por Computador , Análise de Elementos Finitos , Modelos Biológicos , Estresse Mecânico
9.
Front Plant Sci ; 8: 2061, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312365

RESUMO

Stomata are pores on the leaf surface, which are formed by a pair of curved, tubular guard cells; an increase in turgor pressure deforms the guard cells, resulting in the opening of the stomata. Recent studies employed numerical simulations, based on experimental data, to analyze the effects of various structural, chemical, and mechanical features of the guard cells on the stomatal opening characteristics; these studies all support the well-known qualitative observation that the mechanical anisotropy of the guard cells plays a critical role in stomatal opening. Here, we propose a computationally based analytical model that quantitatively establishes the relations between the degree of anisotropy of the guard cell, the bio-composite constituents of the cell wall, and the aperture and area of stomatal opening. The model introduces two non-dimensional key parameters that dominate the guard cell deformations-the inflation driving force and the anisotropy ratio-and it serves as a generic framework that is not limited to specific plant species. The modeling predictions are in line with a wide range of previous experimental studies, and its analytical formulation sheds new light on the relations between the structure, mechanics, and function of stomata. Moreover, the model provides an analytical tool to back-calculate the elastic characteristics of the matrix that composes the guard cell walls, which, to the best of our knowledge, cannot be probed by direct nano-mechanical experiments; indeed, the estimations of our model are in good agreement with recently published results of independent numerical optimization schemes. The emerging insights from the stomatal structure-mechanics "design guidelines" may promote the development of miniature, yet complex, multiscale composite actuation mechanisms for future engineering platforms.

10.
Artigo em Inglês | MEDLINE | ID: mdl-25421487

RESUMO

Wound healing is a synchronized cascade of chemical, biological, and mechanical phenomena, which act in concert to restore the damaged tissue. An imbalance between these events can induce painful scarring. Despite intense efforts to decipher the mechanisms of wound healing, the role of mechanics remains poorly understood. Here, we establish a computational systems biology model to identify the chemical, biological, and mechanical mechanisms of scar formation. First, we introduce the generic problem of coupled chemo-bio-mechanics. Then, we introduce the model problem of wound healing in terms of a particular chemical signal, inflammation, a particular biological cell type, fibroblasts, and a particular mechanical model, isotropic hyperelasticity. We explore the cross-talk between chemical, biological, and mechanical signals and show that all three fields have a significant impact on scar formation. Our model is the first step toward rigorous multiscale, multifield modeling in wound healing. Our formulation has the potential to improve effective wound management and optimize treatment on an individualized patient-specific basis.


Assuntos
Simulação por Computador , Modelos Biológicos , Biologia de Sistemas/métodos , Cicatrização , Algoritmos , Fenômenos Biomecânicos , Cicatriz/patologia , Colágeno/metabolismo , Fibroblastos/patologia , Humanos , Inflamação/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA