Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(8): e202400195, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837651

RESUMO

Weed species many times possess allelochemicals as a part of their survival strategy. These metabolites can be potential targets in search of natural phytotoxins. This study aims to evaluate the phytotoxic ability of fatty aldehyde-rich essential oil from spiny coriander (Eryngium foetidum) leaves, also known as fitweed or spiritweed and to further identify the active phytotoxins. This oil dose-dependently inhibited the wheatgrass coleoptile and radicle growth in multiple bioassays with half maximal inhibitory concentration (IC50) 30.6-56.7 µg/mL, while exhibiting a less pronounced effect on the germination (IC50 181.8 µg/mL). The phytotoxicity assessment of two oil constituents identified eryngial (trans-2-dodecenal), exclusively major fatty aldehydic constituent as the potent growth inhibitor with IC50 in the range 20.8-36.2 µg/mL during an early phase of wheatgrass emergence. Eryngial-inspired screening of eleven saturated fatty aldehydes and alcohols did not find a significantly higher phytotoxic potency. In an open vessel, eryngial as the supplementation in agar medium, dose-dependently inhibited the growth of pre-germinated seeds of one monocot (bermudagrass) and one dicot (green amaranth) weed species with IC50 in the range 23.8-65.4 µg/mL. The current study identified eryngial, an α,ß-unsaturated fatty aldehyde of coriander origin to be a promising phytotoxic candidate for weed control.


Assuntos
Aldeídos , Eryngium , Óleos Voláteis , Aldeídos/química , Aldeídos/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Eryngium/química , Eryngium/metabolismo , Relação Dose-Resposta a Droga , Germinação/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/metabolismo , Estrutura Molecular
2.
Molecules ; 29(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257350

RESUMO

In the search for new alternative biocontrol strategies, phytopathogenic fungi could represent a new frontier for weed management. In this respect, as part of our ongoing work aiming at using fungal pathogens as an alternative to common herbicides, the foliar pathogen Nigrospora sphaerica has been evaluated to control buffelgrass (Cenchrus ciliaris). In particular, in this work, the isolation and structural elucidation of two new biosynthetically related metabolites, named nigrosphaeritriol (3-(hydroxymethyl)-2-methylpentane-1,4-diol) and nigrosphaerilactol (3-(1-hydroxyethyl)-4-methyltetrahydrofuran-2-ol), from the phytotoxic culture filtrate extract were described, along with the identification of several known metabolites. Moreover, the absolute stereochemistry of (3R,4S,5S)-nigrosphaerilactone, previously reported as (3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone, was determined for the first time by X-ray diffraction analysis. Considering their structural relationship, the determination of the absolute stereochemistry of nigrosphaerilactone allowed us to hypothesize the absolute stereochemistry of nigrosphaeritriol and nigrosphaerilactol.


Assuntos
Ascomicetos , Cenchrus , Plantas Daninhas , Cristalografia por Raios X
3.
BMC Plant Biol ; 23(1): 187, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032368

RESUMO

BACKGROUND: The allelopathic effect of Moringa (Moringa oleifera Lam.) leaves applied as organic manure in tiger nut (Cyperus esculentus L.) production on associated weeds was investigated in the guinea savanna of South West Nigeria, during the 2014 (September - November) and 2015 (June - August) wet seasons. METHODS: Five Moringa leaves rates (0, 2.5, 5.0, 7.5 and 10 t/ha) and three tuber sizes (0.28 g, 0.49 g and 0.88 g dry weight) were laid out in the main plot and sub-plot, respectively in a split-plot arrangement fitted into randomized complete block design and replicated three times. RESULTS: Parameters measured, which include, weed cover score (WCS), weed density (WD) and weed dry matter production (WDMP) were significantly (p<0.05) influenced in both years by Moringa leaf. In 2015, WCS, WD and WDMP significantly (p<0.05) reduced by 25-73%, 35-78% and 26-70% on Moringa leaves-treated plots respectively. There were significant (p<0.05) interactions between quantity of Moringa leaves incorporated and tuber size. The bigger the tuber and the higher the quantity of Moringa leaves incorporated the lower the WCS, WD and WDMP. CONCLUSIONS: Consequently, application of 10 t.ha- 1 Moringa leaves and planting of large or medium-sized tubers were recommended for optimum weed suppression in tiger nut production in South West Nigeria.


Assuntos
Produção Agrícola , Cyperus , Fertilizantes , Moringa oleifera , Folhas de Planta , Controle de Plantas Daninhas , Pradaria , Solo , Nigéria , Cyperus/crescimento & desenvolvimento , Estações do Ano , Distribuição Aleatória , Controle de Plantas Daninhas/métodos , Produção Agrícola/métodos
4.
J Environ Manage ; 333: 117467, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764180

RESUMO

Agricultural applications of olive mill wastewater (OMW) represent a critical challenge, consistent with waste recycling and the trend towards a more sustainable pattern of agriculture. In this context, an integrated study on the agroecological applications of OMW from the ultrafiltration (UF) - nanofiltration (NF) process was carried out. This process generated three fractions: UF retentate and NF permeate, depleted in salts and phenolic compounds, were studied for their fertilization and irrigation potential, while NF retentate, enriched in these elements, was studied for its potential as a bioherbicide. The phytotoxicity of the NF retentate fraction on two crops (maize and flax) was evaluated on seedlings growth and chloroplast pigments content. In addition, the induced defense responses in maize and flax seedlings were investigated by measuring two parameters: the activity of the detoxification enzyme glutathione-S-transferase (GST) and the concentration of polyphenols, as a component of the antioxidant defense strategy in plants. Biomass, height, and chloroplast pigments content decreased progressively with increasing NF retentate concentration. Conversely, an increase in GST activity and polyphenol concentration was observed. These results highlighted the ability of OMW to induce an oxidative stress on maize and flax seedlings, triggering a defense response through GST and phenolic compounds. On the other hand, in vitro tests on the phytotoxicity of the NF retentate fraction on the common weed Sinapis arvensis were carried out. No germination was observed even with the lowest dilution applied, thus establishing the first data about the selectivity of potential OMW-derived bioherbicides. On the other hand, UF retentate and NF permeate treatments led to a significant increase in maize growth: these fractions could then be considered as a promising organic fertilizer for degraded agricultural soils, as well as an alternative water source for crops irrigation.


Assuntos
Olea , Águas Residuárias , Ultrafiltração/métodos , Eliminação de Resíduos Líquidos/métodos , Resíduos Industriais/análise , Fenóis/análise , Polifenóis/análise , Plântula/química , Azeite de Oliva
5.
Molecules ; 28(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37570879

RESUMO

The present investigation aimed to develop inclusion complexes (ICs) from Psidium gaudichaudianum (GAU) essential oil (EO) and its major compound ß-caryophyllene (ß-CAR), and to evaluate their herbicidal (against Lolium multiflorum and Bidens pilosa) and cytogenotoxic (on Lactuca sativa) activities. The ICs were obtained using 2-hydroxypropyl-ß-cyclodextrin (HPßCD) and they were prepared to avoid or reduce the volatility and degradation of GAU EO and ß-CAR. The ICs obtained showed a complexation efficiency of 91.5 and 83.9% for GAU EO and ß-CAR, respectively. The IC of GAU EO at a concentration of 3000 µg mL-1 displayed a significant effect against weed species B. pilosa and L. multiflorum. However, the ß-CAR IC at a concentration of 3000 µg mL-1 was effective only on L. multiflorum. In addition, the cytogenotoxic activity evaluation revealed that there was a reduction in the mitotic index and an increase in chromosomal abnormalities. The produced ICs were able to protect the EO and ß-CAR from volatility and degradation, with a high thermal stability, and they also enabled the solubilization of the EO and ß-CAR in water without the addition of an organic solvent. Therefore, it is possible to indicate the obtained products as potential candidates for commercial exploration since the ICs allow the complexed EO to exhibit a more stable chemical constitution than pure EO under storage conditions.


Assuntos
Herbicidas , Óleos Voláteis , Psidium , 2-Hidroxipropil-beta-Ciclodextrina/química , Herbicidas/farmacologia , Herbicidas/análise , Óleos Voláteis/química , Folhas de Planta/química , Psidium/química , Solubilidade
6.
Appl Microbiol Biotechnol ; 105(8): 3009-3018, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33770245

RESUMO

Modern agriculture has been facing new challenges and fostering innovations to establish sustainable plant production. An integral part of these strategies is implementing new eco-friendly technologies in plant protection for better human health and a safer environment by minimizing the use of hazardous chemicals and also encouraging innovations such as the use of bio-based strategies for weed control. This specific strategy addresses the need to reduce the use and risk of pesticides, replacing conventional chemical herbicides with new bio-based solutions. In response to these issues, biocontrol strategies are gaining increased attention from stakeholders such as farmers, seed companies, agronomists, breeders, and consumers. Among these, bioherbicides have huge potential for the management of harmful weeds without affecting the natural quality of the environment and human health. In this context, this review is devoted to present an overview of the mycoherbicidal potential of Phoma sensu lato group of fungi, examining the advances in this field, including technological and scientific challenges and outcomes achieved in recent years. The mycoherbicides are eco-friendly and economically viable. KEY POINTS: • Some Phoma species have demonstrated herbicide activity. • These species secrete secondary metabolites responsible for the control of weeds. • They can be used as non-chemical, cost-effective, and eco-friendly bioherbicides.


Assuntos
Herbicidas , Phoma , Agricultura , Humanos , Plantas Daninhas , Controle de Plantas Daninhas
7.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502302

RESUMO

In recent years, the development of new bio-based products for biocontrol has been gaining importance as it contributes to reducing the use of synthetic herbicides in agriculture. Conventional herbicides (i.e., the ones with synthetic molecules) can lead to adverse effects such as human diseases (cancers, neurodegenerative diseases, reproductive perturbations, etc.) but also to disturbing the environment because of their drift in the air, transport throughout aquatic systems and persistence across different environments. The use of natural molecules seems to be a very good alternative for maintaining productive agriculture but without the negative side effects of synthetic herbicides. In this context, essential oils and their components are increasingly studied in order to produce several categories of biopesticides thanks to their well-known biocidal activities. However, these molecules can also be potentially hazardous to humans and the environment. This article reviews the state of the literature and regulations with regard to the potential risks related to the use of essential oils as bioherbicides in agricultural and horticultural applications.


Assuntos
Agentes de Controle Biológico/farmacologia , Herbicidas/farmacologia , Óleos Voláteis/farmacologia , Controle Biológico de Vetores/tendências , Doenças das Plantas/prevenção & controle , Humanos , Medição de Risco
8.
J Sci Food Agric ; 100(3): 1185-1194, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31680262

RESUMO

BACKGROUND: Ludwigia hyssopifolia (G. Don) Exell, one of the problem weeds in some rice-producing countries, was studied to determine its allelopathic potential based on the effects of aqueous extracts of its tissues (leaves, roots and stem) on seedling growth of selected weeds and rice. The major phenolic compound of its leaves was also isolated and characterized. RESULTS: L. hyssopifolia aqueous leaf extract showed significant inhibition of shoot growth and biomass accumulation of weeds (Amaranthus spinosus L., Dactyloctenium aegyptium L., Cyperus iria L.) while maintaining less adverse effects on rice (crop) compared to other aqueous extracts of roots and stem. Phytochemical screening showed that phenols, tannins, flavonoids, terpenoids, saponins and coumarins are found in its leaf aqueous extract. The Folin-Ciocalteu method revealed that its leaves contain 26.66 ± 0.30 mg GAE g-1 leaf. The extract was then acid-hydrolyzed to liberate the phenolics (25 mg phenolics g-1 leaf). The major compound was isolated via preparative thin-layer chromatography using formic acid-ethyl acetate-n-hexane (0.05:4:6) solvent system. It had maximum UV absorption at 272 nm while its Fourier transform infrared spectrum revealed phenol, carboxylic acid and ether functionalities. This also had similar chromatographic mobility when run together with syringic acid in two-dimensional paper chromatography and thin-layer chromatography. CONCLUSIONS: L. hyssopifolia has potential allelopathic activity and its leaf aqueous extract showed the highest phytotoxic activity (P ≤ 0.05) indicating its potential as a bioherbicide. The most probable identity of the major phenolic compound is syringic acid. © 2019 Society of Chemical Industry.


Assuntos
Herbicidas/química , Onagraceae/química , Extratos Vegetais/química , Amaranthus/efeitos dos fármacos , Amaranthus/crescimento & desenvolvimento , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Herbicidas/isolamento & purificação , Herbicidas/farmacologia , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Taninos/química , Taninos/farmacologia
9.
J Environ Sci Health B ; 55(5): 470-476, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32009547

RESUMO

A central pillar of modern weed control is the discovery of new herbicides which are nontoxic to humans and the environment and which have low application dosage. The natural products found in plants and microorganisms are well suited in this context because they are generally nontoxic and have a wide variety of biological activities. In this work, Diaporthe phaseolorum (Dp), Penicillium simplicissimum (Ps) and Trichoderma spirale (Ts) (methanolic extracts) were evaluated as photosynthesis and plant growth inhibitors in Senna occidentalis and Ipomoea grandifolia. The most significant results were observed for Ts and Dp in S. occidentalis and I. grandifolia, respectively. Ts reduced PI(abs), ET0/CS0, PHI(E0) and PSI0 parameters by 64, 28, 40 and 38%, respectively, indicating a reduction on electron transport efficiency. Additionally, Ts decreased shoot length by 9%, affecting the plant growth. Dp reduced PI(abs), ET0/CS0 and PHI(E0) parameters by 50, 20, 26 and 22%, respectively, revealing the inhibition competency on PSII acceptor site. Furthermore, Dp decreased by 50% the shoot length on germination assay. Thus, the phytotoxic behaviors based on endophytic fungal extracts may serve as a valuable tool in the further development of a bioherbicide since natural products represent an interesting alternative to replace commercial herbicides.


Assuntos
Endófitos/química , Herbicidas/farmacologia , Ipomoea/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Senna/efeitos dos fármacos , Ascomicetos/química , Germinação/efeitos dos fármacos , Metanol , Penicillium/química , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Trichoderma/química , Controle de Plantas Daninhas/métodos
10.
J Environ Sci Health B ; 55(12): 1099-1105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964781

RESUMO

The phytotoxic potential of the leaves and twigs of Schumannianthus dichotomus, discarded in the mat-making industry against four test plants (lettuce (Lactuca sativa L.), rapeseed (Brassica napus L.), foxtail fescue (Vulpia myuros (L.) C.C. Gmel.) and timothy (Phleum pratense L.)) was investigated and found strong phytotoxic activity. An assay-guided fractionation of S. dichotomus extarcts against cress (Lepidium sativum L.) through a series of column chromatography steps yielded two compounds, 8-(5-oxo-2,5-dihydrofuran-2-yl) octanoic acid (ODFO) and (E)-6-hydroxy-2,6-dimethylocta-2,7-dienoic acid (8-carboxylinalool). ODFO and 8-carboxylinalool showed strong phytotoxic activity against cress and timothy. The concentrations required for 50% growth inhibition (I50 value) of the seedlings of cress and timothy were 111.94-128.01 and 36.30-91.75 µM, respectively, for ODFO, but the values were much higher at 315.98-379.13 and 107.92-148.41 µM, respectively, for 8-carboxylinalool, indicating the stronger phytotoxic activity of ODFO. This study is the first to isolate ODFO and 8-carboxylinalool from S. dichotomus and their phytotoxic potential while ODFO is firstly encountered from any natural source. The growth inhibitory activity of the identified compounds may explain their role in the phytotoxic activity of S. dichotomus, which suggests the possible use of its leaves and twigs or its active constituents as natural bioherbicides.


Assuntos
Herbicidas/toxicidade , Marantaceae/química , Marantaceae/toxicidade , Resíduos , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Brassicaceae/efeitos dos fármacos , Brassicaceae/crescimento & desenvolvimento , Lepidium sativum/efeitos dos fármacos , Lepidium sativum/crescimento & desenvolvimento , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Estrutura Molecular , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Folhas de Planta/química , Caules de Planta/química , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Testes de Toxicidade , Resíduos/análise
11.
Bioprocess Biosyst Eng ; 42(5): 829-838, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30739160

RESUMO

In the present study, it was presented a strategy to maximize the cutinase production by solid-state fermentation from different microorganisms and substrates. The best results were observed using Fusarium verticillioides, rice bran being the main substrate. Maximum yield of cutinase obtained by the strain was 16.22 U/g. For concentration, ethanol precipitation was used, and the purification factor was 2.4. The optimum temperature and pH for enzyme activity were 35 °C and 6.5, respectively. The enzyme was stable at a wide range of temperature and at all pH values tested. The concentrated cutinase was used as an adjuvant in a formulation containing cutinase + bioherbicide. The use of enzyme increased the efficiency of bioherbicide, since cutinase was responsible to remove/degrade the cutin that recovery the weed leaves and difficult the bioherbicide absorption. Cutinase showed to be a promising product to be used in formulation of bioherbicides.


Assuntos
Hidrolases de Éster Carboxílico , Proteínas Fúngicas , Fusarium/enzimologia , Herbicidas/metabolismo , Controle Biológico de Vetores , Hidrolases de Éster Carboxílico/biossíntese , Hidrolases de Éster Carboxílico/química , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Herbicidas/química , Concentração de Íons de Hidrogênio , Oryza/química
12.
Molecules ; 24(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426281

RESUMO

Fungal phytotoxins used as ecofriendly bioherbicides are becoming efficient alternatives to chemical herbicides for sustainable weed management. Previous study found that cultures of the pathogenic fungus Colletotrichum gloeosporioides BWH-1 showed phytotoxic activity. This study further isolated the major phytotoxin from cultures of the strain BWH-1 using bioactivity-guided isolation, by puncturing its host plant for an activity test and analyzing on the HPLC-DAD-3D mode for a purity check. Then, the active and pure phytotoxin was characterized as a dirhamnolipid (Rha-Rha-C10-C10) using the NMR, ESIMS, IR and UV methods. The herbicidal activity of dirhamnolipid was evaluated by the inhibition rate on the primary root length and the fresh plant weight of nine test plants, and the synergistic effect when combining with commercial herbicides. Dirhamnolipid exhibited broad herbicidal activity against eight weed species with IC50 values ranging from 28.91 to 217.71 mg L-1 and no toxicity on Oryza sativa, and the herbicidal activity could be synergistically improved combining dirhamnolipid with commercial herbicides. Thus, dirhamnolipid that originated from C. gloeosporioides BWH-1 displayed the potential to be used as a bioherbicide alone, or as an adjuvant added into commercial herbicides, leading to a decrease in herbicides concentration and increased control efficiency.


Assuntos
Colletotrichum/metabolismo , Glicolipídeos/farmacologia , Herbicidas/farmacologia , Micotoxinas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Agricultura , Glicolipídeos/isolamento & purificação , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Micotoxinas/isolamento & purificação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Daninhas/crescimento & desenvolvimento , Metabolismo Secundário , Controle de Plantas Daninhas/métodos
13.
Molecules ; 24(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31142010

RESUMO

Essential oils (EOs) are a natural source of active compounds with antifungal, antimycotoxigenic, and herbicidal potential, and have been successfully used in organic agriculture, instead of chemical compounds obtained by synthesis, due to their high bioactivity and the absence of toxicity. The aim of this study was to highlight the importance of Coriandrum sativum essential oil (CEO) as a potential source of bioactive constituents and its applications as an antifungal and bioherbicidal agent. The CEO was obtained by steam distillation of coriander seeds and GC-MS technique was used to determine the chemical composition. Furthermore, in vitro tests were used to determine the antifungal potential of CEO on Fusarium graminearum mycelia growth through poisoned food technique, resulting in the minimum fungistatic (MCFs) and fungicidal concentrations (MCFg). The antifungal and antimycotoxigenic effect of CEO was studied on artificially contaminated wheat seeds with F. graminearum spores. Additionally, the herbicidal potential of CEO was studied by fumigating monocotyledonous and dicotyledonous weed seeds, which are problematic in agricultural field crops in Romania. The in vitro studies showed the antifungal potential of CEO, with a minimum concentration for a fungistatic effect of 0.4% and the minimum fungicidal concentration of 0.6%, respectively. An increase in the antifungal effects was observed in the in vivo experiment with F. graminearum, where a mixture of CEO with Satureja hortensis essential oil (SEO) was used. This increase is attributed to the synergistic effect of both EOs. Moreover, the synthesis of deoxynivalenol (DON)-type mycotoxins was found to be less inhibited. Hence, CEO has shown an herbicidal potential on weed seeds by affecting inhibition of germination.


Assuntos
Coriandrum/química , Proteção de Cultivos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Herbicidas/farmacologia , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Óleos Voláteis/química , Óleos de Plantas/química , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Tricotecenos/metabolismo , Triticum/microbiologia
14.
J Chem Ecol ; 44(7-8): 658-670, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30039208

RESUMO

In the worldwide search for new strategies in sustainable weed management, the use of allelopathic plants incorporated into the soil as green manure can help control weeds by releasing allelochemicals into the environment. In previous experiments, Eucalyptus globulus leaves incorporated into the soil as green manure were shown to have a notable potential for weed control. But, 'what was exactly happening at chemical level?' and 'which were the compounds potentially responsible for the phytotoxic effects observed during those greenhouse assays?' In the present study, in-vitro phytotoxicity bioassays and chemical analysis of eucalyptus leaves were carried out in order to explore the relationship between the temporal phytotoxic effects and the dynamics of chemical composition. For that, eucalyptus leaves were removed from soil at different sampling times during 30 days and analyzed for phenolic and volatile organic compounds (VOCs) by HPLC and HS-SPME/GC-MS, respectively. The phytotoxic potential of the aqueous extract and the volatile fraction was tested on the germination and early growth of Lactuca sativa. Eucalyptus leaves incorporated into the soil as green manure showed a continuous release of different phenolic and volatile compounds during a 30-day period of decomposition. Both fractions had phytotoxic effects during the time assayed; however, the target process of phytotoxicity was different: phenolic compounds being the factor causing germination inhibition and VOCs responsible for growth reduction. The dynamics of release of this cocktail of allelochemicals into the soil environment may be the responsible for the phytotoxicity observed in our previous works.


Assuntos
Eucalyptus/fisiologia , Feromônios/metabolismo , Folhas de Planta/fisiologia , Alelopatia , Eucalyptus/química , Germinação/efeitos dos fármacos , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Fenóis/análise , Fenóis/metabolismo , Feromônios/análise , Feromônios/toxicidade , Folhas de Planta/química , Solo/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/toxicidade , Controle de Plantas Daninhas/métodos
15.
Chem Biodivers ; 15(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29064622

RESUMO

Aromatic plants attract the attention of many researchers worldwide due to their worthy applications in agriculture, human prosperity, and the environment. Essential oil (EO) could be exploited as effective alternatives to synthetic compounds as it has several biological activities including allelopathy. The EO from the aerial parts of Rhynchosia minima was extracted by hydrodistillation and investigated by gas chromatography/mass spectrometry (GC/MS). Different concentrations (50, 100, 150 and 200 µL L-1 ) of the EO were prepared for investigation of their allelopathic potential on two weeds; Dactyloctenium aegyptium and Rumex dentatus. Twenty-eight compounds, mainly sesquiterpenes (69.13%) were determined. The major compounds are α-eudesmol, 2-allyl-5-tert-butylhydroquinone, caryophyllene oxide, trans-caryophyllene, and τ-cadinol. The EO from the R. minima showed a significant inhibition of D. aegyptium and R. dentatus germination, while the seedling growth was stimulated. Therefore, it is not recommended to treat these noxious weeds with the EO of R. minima before the germination. In contrast, the apparent stimulatory effect on the seedling growth offers further studies to use the EO of R. minima to enhance the fitness of different economic crops. However, characterization of green bio-herbicides such as EO (allelochemicals) from wild plants raises a new opportunity for the incorporation of new technology of bio-control against the noxious weeds.


Assuntos
Alelopatia/efeitos dos fármacos , Fabaceae/química , Óleos Voláteis/farmacologia , Componentes Aéreos da Planta/química , Relação Dose-Resposta a Droga , Egito , Fabaceae/crescimento & desenvolvimento , Humanos , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Sementes/química
16.
Chem Biodivers ; 15(8): e1800202, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29893506

RESUMO

The current study aimed to evaluate the negative allelopathic effect of Eucalyptus citriodora essential oil on some of the most noxious weeds in Algeria (Sinapis arvensis, Sonchus oleraceus, Xanthium strumarium and Avena fatua). Gas chromatography-flame ionization detector (GC-FID) and GC/mass spectrometry (MS) were used to define the chemical composition of the oil. Citronellal (64.7%) and citronellol (10.9%) were the major essential oil compounds. Three concentrations of the oil were used for laboratory (0.01, 0.02 and 0.03%) and greenhouse (1, 2 and 3%) experiments. Seed germination and seedling's growth were drastically reduced in response to the oil concentrations where at 0.01 and 0.02% the oil drastically affects the seed germination of the tested weeds and at 0.03% the oil suppresses completely the germination of S. arvensis. The oil also exhibited strong allelopathic effect on the 3 - 4 leaf-stage plants 1 and 6 days after treatment. A completely death of S. arvensis, S. oleraceus and A. fatua and severe injuries on X. strumarium appeared at 3% of the oil. Chlorophyll content and membrane integrity were significantly affected after treatment of the plant weeds representing a severe reduction in total chlorophyll and cell membrane disruption. The study concludes that E. citriodora essential oil might has the potential use as bioherbicide and can constitute an alternative process of weed control.


Assuntos
Alelopatia/efeitos dos fármacos , Produtos Biológicos/farmacologia , Eucalyptus/química , Herbicidas/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Plântula/efeitos dos fármacos , Argélia , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Herbicidas/química , Óleos Voláteis/química , Óleos de Plantas/química , Controle de Plantas Daninhas
17.
Pestic Biochem Physiol ; 143: 252-257, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183600

RESUMO

Tenuazonic acid (TeA), belonging to tetramic acids that are the largest family of natural products, is a mycotoxin produced by members of the genus Alternaria and other phytopathogenic fungi. TeA has many desirable bioactivities. In the past two decades, several studies have addressed its phytotoxic activity. Because it can cause brown leaf spot and kill seedlings of mono- and dicotyledonous plants, TeA is regarded as a potential herbicidal agent. TeA blocks electron transport beyond QA by interacting with D1 protein and is a PSII inhibitor. The chloroplast-derived oxidative burst is responsible for TeA-induced cell death and plant necrosis. Based on the model of molecular interaction between TeA and D1 protein, a series of its derivatives with stable herbicidal activity have been designed, evaluated and patented. Recently, some chemical synthetic approaches of TeA and its derivatives have been successfully developed. This paper will mainly focus on new developments regarding TeA's herbicidal activity, mode of action, biosynthesis and chemical synthesis, and characterization of new derivatives.


Assuntos
Herbicidas/toxicidade , Ácido Tenuazônico/toxicidade , Animais , Herbicidas/síntese química , Herbicidas/metabolismo , Humanos , Ácido Tenuazônico/biossíntese , Ácido Tenuazônico/síntese química
18.
Appl Microbiol Biotechnol ; 100(13): 5759-71, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27198722

RESUMO

Fungi present in rhizosphere produce trichothecene metabolites which are small in size and amphipathic in nature and some of them may cross cell membranes passively. Hypocreaceae family of rhizosphere fungi produce trichothecene molecules, however it is not a mandatory characteristic of all genera. Some of these molecules are also reported as growth adjuvant, while others are reported as deleterious for the plant growth. In this review, we are exploring the roles of these compounds during plant-microbe interactions. The three-way interaction among the plants, symbiotic microbial agents (fungi and bacteria), and the pathogenic microbes (bacteria, fungi) or multicellular pathogens like nematodes involving these compounds may only help us to understand better the complex processes happening in the microcosm of rhizosphere. These metabolites may further modulate the activity of different proteins involved in the cell signalling events of defence-related response in plants. That may induce the defence system against pathogens and growth promoting gene expression in plants, while in animal cells, these molecules have reported biochemical and pharmacological effects such as inducing oxidative stress, cell-cycle arrest and apoptosis, and may be involved in maintenance of membrane integrity. The biochemistry, chemical structures and specific functional group-mediated activity of these compounds have not been studied in details yet. Few of these molecules are also recently reported as novel anti-cancer agent against human chondrosarcoma cells.


Assuntos
Antineoplásicos/metabolismo , Condrossarcoma/tratamento farmacológico , Hypocreales/metabolismo , Doenças das Plantas/microbiologia , Plantas/microbiologia , Tricotecenos/metabolismo , Antineoplásicos/química , Interações Hospedeiro-Patógeno , Humanos , Hypocreales/química , Tricotecenos/química , Tricotecenos/farmacologia
19.
Chem Biodivers ; 13(5): 549-54, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27088639

RESUMO

Aglaia odorata Lour. (Meliaceae) was found to have very strong allelopathic activity and a bioherbicide PORGANIC(™) was developed from its leaf extracts. However, the phytotoxic substances causing the strong allelopathic activity of the plants have not yet been determined. Therefore, we investigated allelopathic properties and phytotoxic substances in A. odorata. Aqueous EtOH extracts of A. odorata leaves inhibited root and shoot growth of garden cress (Lepidum sativum), lettuce (Lactuca sativa), alfalfa (Medicago sativa), timothy (Phleum pratense), ryegrass (Lolium multiflorum), and Echinochloa crus-galli with the extract concentration-dependent manner. The extracts were then purified and a major phytotoxic substance with allelopathic activity was isolated and identified by spectral data as rocaglaol. Rocaglaol inhibited the growth of garden cress and E. crus-galli at concentrations > 0.3 and 0.03 µm, respectively. The concentrations required for 50% inhibition ranged from 0.09 to 2.5 µm. The inhibitory activity of rocaglaol on the weed species, E. crus-galli, was much greater than that of abscisic acid. These results suggest that rocaglaol may be a major contributor to the allelopathic effect of A. odorata and bioherbicide PORGANIC(™) .


Assuntos
Aglaia/química , Benzofuranos/farmacologia , Echinochloa/efeitos dos fármacos , Lepidium sativum/efeitos dos fármacos , Extratos Vegetais/química , Folhas de Planta/química , Benzofuranos/química , Benzofuranos/isolamento & purificação , Relação Dose-Resposta a Droga , Echinochloa/crescimento & desenvolvimento , Lepidium sativum/crescimento & desenvolvimento , Conformação Molecular
20.
Ecotoxicol Environ Saf ; 122: 230-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26277540

RESUMO

Bioherbicides from plant extracts are an effective and environmentally friendly method to prevent weed growth. The present investigation was aimed at determining the inhibitory effect of bur cucumber seed extracts (BSE) on lettuce plant growth. Bur cucumber seeds were ground with water, and two different concentrations of seed extracts (10% and 20%) were prepared and applied to lettuce plants. Decreased plant height, number of leaves, leaf length, leaf width, anProd. Type: FTPd leaf area were found in lettuce exposed to BSE as compared with controls. A significant reduction in lettuce biomass was observed in 20% BSE-treated plants due to the presence of higher amounts of phenolic content in the extracts. Moreover, a significant inhibitory chemical, 2-linoleoyl glycerol, was identified in BSE extracts. The mechanism of plant growth inhibition was assayed in lettuce proteins by 2-dimensional electrophoresis (2-DE) and the LC-MS/MS method. In total, 57 protein spots were detected in plants treated with 20% BSE and control plants. Among these, 39 proteins were down-regulated and 18 proteins were up-regulated in plants exposed to 20% BSE as compared with controls. The presence of low levels of chlorophyll a/b binding protein and oxygen-evolving enhancer protein 1 in BSE-exposed plants reduced photosynthetic pigment synthesis and might be a reason for stunted plant growth. Indeed, the plant-growth stimulating hormone gibberellin was inhibited, and synthesis of stress hormones such as abscisic acid, jasmonic acid, and salicylic acid were triggered in lettuce by the effects of BSE. Uptake of essential nutrients, Ca, Fe, Mg, K, S, and Mo, was deficient and accumulation of the toxic ions Cu, Zn, and Na was higher in BSE-treated plants. The results of this study suggest that extracts of bur cucumber seeds can be an effective eco-friendly bioherbicide for weed control that work by inhibiting mechanisms of photosynthesis and regulating phytohormones and nutritional elements.


Assuntos
Cucumis sativus/química , Lactuca/efeitos dos fármacos , Extratos Vegetais/toxicidade , Sementes/química , Controle de Plantas Daninhas/métodos , Ácido Abscísico/metabolismo , Biomassa , Ciclopentanos/metabolismo , Lactuca/crescimento & desenvolvimento , Lactuca/metabolismo , Oxilipinas/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA