Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.628
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(12): 2907-2918, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848676

RESUMO

Cancer is a disease that stems from a fundamental liability inherent to multicellular life forms in which an individual cell is capable of reneging on the interests of the collective organism. Although cancer is commonly described as an evolutionary process, a less appreciated aspect of tumorigenesis may be the constraints imposed by the organism's developmental programs. Recent work from single-cell transcriptomic analyses across a range of cancer types has revealed the recurrence, plasticity, and co-option of distinct cellular states among cancer cell populations. Here, we note that across diverse cancer types, the observed cell states are proximate within the developmental hierarchy of the cell of origin. We thus posit a model by which cancer cell states are directly constrained by the organism's "developmental map." According to this model, a population of cancer cells traverses the developmental map, thereby generating a heterogeneous set of states whose interactions underpin emergent tumor behavior.


Assuntos
Modelos Biológicos , Neoplasias , Animais , Humanos , Carcinogênese/patologia , Carcinogênese/genética , Neoplasias/patologia , Neoplasias/genética , Neoplasias/metabolismo , Análise de Célula Única , Transcriptoma/genética , Células-Tronco Neoplásicas/patologia
2.
Cell ; 187(21): 6035-6054.e27, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39305902

RESUMO

m6A modification is best known for its critical role in controlling multiple post-transcriptional processes of the mRNAs. Here, we discovered elevated levels of m6A modification on centromeric RNA (cenRNA) in cancerous cells compared with non-cancerous cells. We then identified CENPA, an H3 variant, as an m6A reader of cenRNA. CENPA is localized at centromeres and is essential in preserving centromere integrity and function during mitosis. The m6A-modified cenRNA stabilizes centromeric localization of CENPA in cancer cells during the S phase of the cell cycle. Mutations of CENPA at the Leu61 and the Arg63 or removal of cenRNA m6A modification lead to loss of centromere-bound CENPA during S phase. This in turn results in compromised centromere integrity and abnormal chromosome separation and hinders cancer cell proliferation and tumor growth. Our findings unveil an m6A reading mechanism by CENPA that epigenetically governs centromere integrity in cancer cells, providing potential targets for cancer therapy.


Assuntos
Proteína Centromérica A , Centrômero , Centrômero/metabolismo , Humanos , Proteína Centromérica A/metabolismo , Proteína Centromérica A/genética , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Camundongos , Adenosina/metabolismo , Adenosina/análogos & derivados , Mitose , RNA/metabolismo , Proliferação de Células , Epigênese Genética , Segregação de Cromossomos , Proteínas Cromossômicas não Histona/metabolismo
3.
Cell ; 180(2): 387-402.e16, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31978347

RESUMO

Proteins are essential agents of biological processes. To date, large-scale profiling of cell line collections including the Cancer Cell Line Encyclopedia (CCLE) has focused primarily on genetic information whereas deep interrogation of the proteome has remained out of reach. Here, we expand the CCLE through quantitative profiling of thousands of proteins by mass spectrometry across 375 cell lines from diverse lineages to reveal information undiscovered by DNA and RNA methods. We observe unexpected correlations within and between pathways that are largely absent from RNA. An analysis of microsatellite instable (MSI) cell lines reveals the dysregulation of specific protein complexes associated with surveillance of mutation and translation. These and other protein complexes were associated with sensitivity to knockdown of several different genes. These data in conjunction with the wider CCLE are a broad resource to explore cellular behavior and facilitate cancer research.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/metabolismo , Proteoma/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Humanos , Espectrometria de Massas/métodos , Instabilidade de Microssatélites , Mutação/genética , Proteômica/métodos
4.
Cell ; 176(6): 1282-1294.e20, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849372

RESUMO

Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers.


Assuntos
Desaminases APOBEC/genética , Neoplasias/genética , Desaminases APOBEC/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , DNA/metabolismo , Análise Mutacional de DNA/métodos , Bases de Dados Genéticas , Exoma , Genoma Humano/genética , Xenoenxertos , Humanos , Mutagênese , Mutação/genética , Taxa de Mutação , Retroelementos , Sequenciamento do Exoma/métodos
5.
Immunity ; 56(1): 125-142.e12, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630911

RESUMO

During metastasis, cancer cells invade, intravasate, enter the circulation, extravasate, and colonize target organs. Here, we examined the role of interleukin (IL)-22 in metastasis. Immune cell-derived IL-22 acts on epithelial tissues, promoting regeneration and healing upon tissue damage, but it is also associated with malignancy. Il22-deficient mice and mice treated with an IL-22 antibody were protected from colon-cancer-derived liver and lung metastasis formation, while overexpression of IL-22 promoted metastasis. Mechanistically, IL-22 acted on endothelial cells, promoting endothelial permeability and cancer cell transmigration via induction of endothelial aminopeptidase N. Multi-parameter flow cytometry and single-cell sequencing of immune cells isolated during cancer cell extravasation into the liver revealed iNKT17 cells as source of IL-22. iNKT-cell-deficient mice exhibited reduced metastases, which was reversed by injection of wild type, but not Il22-deficient, invariant natural killer T (iNKT) cells. IL-22-producing iNKT cells promoting metastasis were tissue resident, as demonstrated by parabiosis. Thus, IL-22 may present a therapeutic target for prevention of metastasis.


Assuntos
Interleucinas , Neoplasias Hepáticas , Células T Matadoras Naturais , Animais , Camundongos , Células Endoteliais/metabolismo , Interleucinas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/metabolismo , Neoplasias Colorretais/metabolismo , Interleucina 22
6.
Cell ; 168(3): 460-472.e14, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28089356

RESUMO

Certain cell types function as factories, secreting large quantities of one or more proteins that are central to the physiology of the respective organ. Examples include surfactant proteins in lung alveoli, albumin in liver parenchyma, and lipase in the stomach lining. Whole-genome sequencing analysis of lung adenocarcinomas revealed noncoding somatic mutational hotspots near VMP1/MIR21 and indel hotspots in surfactant protein genes (SFTPA1, SFTPB, and SFTPC). Extrapolation to other solid cancers demonstrated highly recurrent and tumor-type-specific indel hotspots targeting the noncoding regions of highly expressed genes defining certain secretory cellular lineages: albumin (ALB) in liver carcinoma, gastric lipase (LIPF) in stomach carcinoma, and thyroglobulin (TG) in thyroid carcinoma. The sequence contexts of indels targeting lineage-defining genes were significantly enriched in the AATAATD DNA motif and specific chromatin contexts, including H3K27ac and H3K36me3. Our findings illuminate a prevalent and hitherto unrecognized mutational process linking cellular lineage and cancer.


Assuntos
Linhagem da Célula , Mutação INDEL , Mutação , Neoplasias/genética , Neoplasias/patologia , Regiões 3' não Traduzidas , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , MicroRNAs/genética , Pessoa de Meia-Idade , Motivos de Nucleotídeos , Polimorfismo de Nucleotídeo Único , Proteínas Associadas a Surfactantes Pulmonares/genética
7.
Mol Cell ; 81(22): 4579-4590, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34562371

RESUMO

Canonically, gasdermin D (GSDMD) cleavage by caspase-1 through inflammasome signaling triggers immune cell pyroptosis (ICP) as a host defense against pathogen infection. However, cancer cell pyroptosis (CCP) was recently discovered to be activated by distinct molecular mechanisms in which GSDMB, GSDMC, and GSDME, rather than GSDMD, are the executioners. Moreover, instead of inflammatory caspases, apoptotic caspases and granzymes are required for gasdermin protein cleavage to induce CCP. Sufficient accumulation of protease-cleaved gasdermin proteins is the prerequisite for CCP. Inflammation induced by ICP or CCP results in diametrically opposite effects on antitumor immunity because of the differential duration and released cellular contents, leading to contrary effects on therapeutic outcomes. Here, we focus on the distinct mechanisms of ICP and CCP and discuss the roles of ICP and CCP in inflammation and antitumor immunity, representing actionable targets.


Assuntos
Antineoplásicos/farmacologia , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Proteínas de Ligação a Fosfato/metabolismo , Piroptose , Animais , Apoptose , Caspases/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Sistema Imunitário , Inflamassomos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Neoplasias/metabolismo , Ligação Proteica , Proteólise , Transdução de Sinais
8.
EMBO J ; 43(20): 4522-4541, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39174852

RESUMO

Tumor cell heterogeneity defines therapy responsiveness in neuroblastoma (NB), a cancer derived from neural crest cells. NB consists of two primary subtypes: adrenergic and mesenchymal. Adrenergic traits predominate in NB tumors, while mesenchymal features becomes enriched post-chemotherapy or after relapse. The interconversion between these subtypes contributes to NB lineage plasticity, but the underlying mechanisms driving this phenotypic switching remain unclear. Here, we demonstrate that SWI/SNF chromatin remodeling complex ATPases are essential in establishing an mesenchymal gene-permissive chromatin state in adrenergic-type NB, facilitating lineage plasticity. Targeting SWI/SNF ATPases with SMARCA2/4 dual degraders effectively inhibits NB cell proliferation, invasion, and notably, cellular plasticity, thereby preventing chemotherapy resistance. Mechanistically, depletion of SWI/SNF ATPases compacts cis-regulatory elements, diminishes enhancer activity, and displaces core transcription factors (MYCN, HAND2, PHOX2B, and GATA3) from DNA, thereby suppressing transcriptional programs associated with plasticity. These findings underscore the pivotal role of SWI/SNF ATPases in driving intrinsic plasticity and therapy resistance in neuroblastoma, highlighting an epigenetic target for combinational treatments in this cancer.


Assuntos
Plasticidade Celular , Neuroblastoma , Fatores de Transcrição , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , DNA Helicases/metabolismo , DNA Helicases/genética , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Proteínas Nucleares
9.
Mol Cell ; 80(5): 828-844.e6, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33128871

RESUMO

Cancer-associated mutations that stabilize NRF2, an oxidant defense transcription factor, are predicted to promote tumor development. Here, utilizing 3D cancer spheroid models coupled with CRISPR-Cas9 screens, we investigate the molecular pathogenesis mediated by NRF2 hyperactivation. NRF2 hyperactivation was necessary for proliferation and survival in lung tumor spheroids. Antioxidant treatment rescued survival but not proliferation, suggesting the presence of distinct mechanisms. CRISPR screens revealed that spheroids are differentially dependent on the mammalian target of rapamycin (mTOR) for proliferation and the lipid peroxidase GPX4 for protection from ferroptosis of inner, matrix-deprived cells. Ferroptosis inhibitors blocked death from NRF2 downregulation, demonstrating a critical role of NRF2 in protecting matrix-deprived cells from ferroptosis. Interestingly, proteomics analyses show global enrichment of selenoproteins, including GPX4, by NRF2 downregulation, and targeting NRF2 and GPX4 killed spheroids overall. These results illustrate the value of spheroid culture in revealing environmental or spatial differential dependencies on NRF2 and reveal exploitable vulnerabilities of NRF2-hyperactivated tumors.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Cultura de Células , Proliferação de Células , Ferroptose , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Esferoides Celulares/metabolismo , Células A549 , Humanos , Fator 2 Relacionado a NF-E2/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Esferoides Celulares/patologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
10.
Semin Immunol ; 70: 101833, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37647772

RESUMO

The identification of gasdermin as the executor of pyroptosis has opened new avenues for the study of this process. Although pyroptosis research has mainly focused on immune cells since it was discovered three decades ago, accumulating evidence suggests that pyroptosis plays crucial roles in many biological processes. One example is the discovery of gasdermin-mediated cancer cell pyroptosis (CCP) which has become an important and frontier field in oncology. Recent studies have shown that CCP induction can heat tumor microenvironment (TME) and thereby elicit the robust anti-tumor immunity to suppress tumor growth. As a newly discovered form of tumor cell death, CCP offers promising opportunities for improving tumor treatment and developing new drugs. Nevertheless, the research on CCP is still in its infancy, and the molecular mechanisms underlying the expression, regulation and activation of gasdermins are not yet fully understood. In this review, we summarize the recent progress of gasdermin research in cancer area, and propose that the anti-tumor effect of immune cell pyroptosis (ICP) and CCP depends on their duration, intensity, and the type of cells undergoing pyroptosis within TME.


Assuntos
Gasderminas , Neoplasias , Humanos , Neoplasias/terapia , Carcinogênese , Microambiente Tumoral , Piroptose
11.
J Cell Sci ; 137(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224461

RESUMO

Chromosomal instability (CIN), an increased rate of chromosome segregation errors during mitosis, is a hallmark of cancer cells. CIN leads to karyotype differences between cells and thus large-scale heterogeneity among individual cancer cells; therefore, it plays an important role in cancer evolution. Studying CIN and its consequences is technically challenging, but various technologies have been developed to track karyotype dynamics during tumorigenesis, trace clonal lineages and link genomic changes to cancer phenotypes at single-cell resolution. These methods provide valuable insight not only into the role of CIN in cancer progression, but also into cancer cell fitness. In this Cell Science at a Glance article and the accompanying poster, we discuss the relationship between CIN, cancer cell fitness and evolution, and highlight techniques that can be used to study the relationship between these factors. To that end, we explore methods of assessing cancer cell fitness, particularly for chromosomally unstable cancer.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Carcinogênese , Instabilidade Cromossômica/genética , Transformação Celular Neoplásica , Divisão do Núcleo Celular
12.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38797968

RESUMO

A major challenge of precision oncology is the identification and prioritization of suitable treatment options based on molecular biomarkers of the considered tumor. In pursuit of this goal, large cancer cell line panels have successfully been studied to elucidate the relationship between cellular features and treatment response. Due to the high dimensionality of these datasets, machine learning (ML) is commonly used for their analysis. However, choosing a suitable algorithm and set of input features can be challenging. We performed a comprehensive benchmarking of ML methods and dimension reduction (DR) techniques for predicting drug response metrics. Using the Genomics of Drug Sensitivity in Cancer cell line panel, we trained random forests, neural networks, boosting trees and elastic nets for 179 anti-cancer compounds with feature sets derived from nine DR approaches. We compare the results regarding statistical performance, runtime and interpretability. Additionally, we provide strategies for assessing model performance compared with a simple baseline model and measuring the trade-off between models of different complexity. Lastly, we show that complex ML models benefit from using an optimized DR strategy, and that standard models-even when using considerably fewer features-can still be superior in performance.


Assuntos
Algoritmos , Antineoplásicos , Benchmarking , Aprendizado de Máquina , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Redes Neurais de Computação , Linhagem Celular Tumoral
13.
Proc Natl Acad Sci U S A ; 120(21): e2219778120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186825

RESUMO

Cells mediate interactions with the extracellular environment through a crowded assembly of transmembrane proteins, glycoproteins and glycolipids on their plasma membrane. The extent to which surface crowding modulates the biophysical interactions of ligands, receptors, and other macromolecules is poorly understood due to the lack of methods to quantify surface crowding on native cell membranes. In this work, we demonstrate that physical crowding on reconstituted membranes and live cell surfaces attenuates the effective binding affinity of macromolecules such as IgG antibodies in a surface crowding-dependent manner. We combine experiment and simulation to design a crowding sensor based on this principle that provides a quantitative readout of cell surface crowding. Our measurements reveal that surface crowding decreases IgG antibody binding by 2 to 20 fold in live cells compared to a bare membrane surface. Our sensors show that sialic acid, a negatively charged monosaccharide, contributes disproportionately to red blood cell surface crowding via electrostatic repulsion, despite occupying only ~1% of the total cell membrane by mass. We also observe significant differences in surface crowding for different cell types and find that expression of single oncogenes can both increase and decrease crowding, suggesting that surface crowding may be an indicator of both cell type and state. Our high-throughput, single-cell measurement of cell surface crowding may be combined with functional assays to enable further biophysical dissection of the cell surfaceome.


Assuntos
Eritrócitos , Proteínas de Membrana , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Substâncias Macromoleculares/metabolismo , Eritrócitos/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(20): e2214942120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155842

RESUMO

Aberrant accumulation of succinate has been detected in many cancers. However, the cellular function and regulation of succinate in cancer progression is not completely understood. Using stable isotope-resolved metabolomics analysis, we showed that the epithelial mesenchymal transition (EMT) was associated with profound changes in metabolites, including elevation of cytoplasmic succinate levels. The treatment with cell-permeable succinate induced mesenchymal phenotypes in mammary epithelial cells and enhanced cancer cell stemness. Chromatin immunoprecipitation and sequence analysis showed that elevated cytoplasmic succinate levels were sufficient to reduce global 5-hydroxymethylcytosinene (5hmC) accumulation and induce transcriptional repression of EMT-related genes. We showed that expression of procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) was associated with elevation of cytoplasmic succinate during the EMT process. Silencing of PLOD2 expression in breast cancer cells reduced succinate levels and inhibited cancer cell mesenchymal phenotypes and stemness, which was accompanied by elevated 5hmC levels in chromatin. Importantly, exogenous succinate rescued cancer cell stemness and 5hmC levels in PLOD2-silenced cells, suggesting that PLOD2 promotes cancer progression at least partially through succinate. These results reveal the previously unidentified function of succinate in enhancing cancer cell plasticity and stemness.


Assuntos
Neoplasias , Ácido Succínico , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Succinatos , Humanos
15.
Proc Natl Acad Sci U S A ; 120(20): e2214853120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155874

RESUMO

Gastric cancer is a dominating cause of cancer-associated mortality with limited therapeutic options. Here, we show that syndecan-4 (SDC4), a transmembrane proteoglycan, is highly expressed in intestinal subtype gastric tumors and that this signature associates with patient poor survival. Further, we mechanistically demonstrate that SDC4 is a master regulator of gastric cancer cell motility and invasion. We also find that SDC4 decorated with heparan sulfate is efficiently sorted in extracellular vesicles (EVs). Interestingly, SDC4 in EVs regulates gastric cancer cell-derived EV organ distribution, uptake, and functional effects in recipient cells. Specifically, we show that SDC4 knockout disrupts the tropism of EVs for the common gastric cancer metastatic sites. Our findings set the basis for the molecular implications of SDC4 expression in gastric cancer cells and provide broader perspectives on the development of therapeutic strategies targeting the glycan-EV axis to limit tumor progression.


Assuntos
Neoplasias Gástricas , Sindecana-4 , Humanos , Heparitina Sulfato/metabolismo , Invasividade Neoplásica , Neoplasias Gástricas/genética , Sindecana-4/genética , Sindecana-4/metabolismo
16.
J Biol Chem ; 300(9): 107697, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173950

RESUMO

To elucidate the dynamic evolution of cancer cell characteristics within the tumor microenvironment (TME), we developed an integrative approach combining single-cell tracking, cell fate simulation, and 3D TME modeling. We began our investigation by analyzing the spatiotemporal behavior of individual cancer cells in cultured pancreatic (MiaPaCa2) and cervical (HeLa) cancer cell lines, with a focus on the α2-6 sialic acid (α2-6Sia) modification on glycans, which is associated with cell stemness. Our findings revealed that MiaPaCa2 cells exhibited significantly higher levels of α2-6Sia modification, correlating with enhanced reproductive capabilities, whereas HeLa cells showed less prevalence of this modification. To accommodate the in vivo variability of α2-6Sia levels, we employed a cell fate simulation algorithm that digitally generates cell populations based on our observed data while varying the level of sialylation, thereby simulating cell growth patterns. Subsequently, we performed a 3D TME simulation with these deduced cell populations, considering the microenvironment that could impact cancer cell growth. Immune cell landscape information derived from 193 cervical and 172 pancreatic cancer cases was used to estimate the degree of the positive or negative impact. Our analysis suggests that the deduced cells generated based on the characteristics of MiaPaCa2 cells are less influenced by the immune cell landscape within the TME compared to those of HeLa cells, highlighting that the fate of cancer cells is shaped by both the surrounding immune landscape and the intrinsic characteristics of the cancer cells.


Assuntos
Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Células HeLa , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Linhagem Celular Tumoral , Feminino , Ácido N-Acetilneuramínico/metabolismo , Modelos Biológicos , Simulação por Computador
17.
J Biol Chem ; 300(6): 107378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762179

RESUMO

The stepwise addition of monosaccharides to N-glycans attached to client proteins to generate a repertoire of mature proteins involves a concerted action of many glycosidases and glycosyltransferases. Here, we report that Golgi α-mannosidase II (GMII), a pivotal enzyme catalyzing the first step in the conversion of hybrid- to complex-type N-glycans, is activated by Zn2+ supplied by the early secretory compartment-resident ZNT5-ZNT6 heterodimers (ZNT5-6) and ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in marked accumulation of hybrid-type and complex/hybrid glycans with concomitant reduction of complex- and high-mannose-type glycans. In cells lacking the ZNT5-6 and ZNT7 functions, the GMII activity is substantially decreased. In contrast, the activity of its homolog, lysosomal mannosidase (LAMAN), is not decreased. Moreover, we show that the growth of pancreatic cancer MIA PaCa-2 cells lacking ZNT5-6 and ZNT7 is significantly decreased in a nude mouse xenograft model. Our results indicate the integral roles of ZNT5-6 and ZNT7 in N-glycosylation and highlight their potential as novel target proteins for cancer therapy.


Assuntos
Proteínas de Transporte de Cátions , Complexo de Golgi , Zinco , Humanos , Glicosilação , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Animais , Zinco/metabolismo , Camundongos , Complexo de Golgi/metabolismo , Manosidases/metabolismo , Manosidases/genética , Polissacarídeos/metabolismo , Linhagem Celular Tumoral , Camundongos Nus , Transportador 8 de Zinco
18.
Cancer Metastasis Rev ; 43(1): 55-85, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37507626

RESUMO

Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.


Assuntos
Anticarcinógenos , Neoplasias Colorretais , Estilbenos , Humanos , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Transdução de Sinais , Fatores de Transcrição , Anticarcinógenos/farmacologia , Neoplasias Colorretais/patologia , Estilbenos/farmacologia , Estilbenos/uso terapêutico
19.
Cancer Metastasis Rev ; 43(1): 155-173, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37775641

RESUMO

Cancer cells undergo phenotypic switching (cancer cell plasticity) in response to microenvironmental cues, including exposure to therapy/treatment. Phenotypic plasticity enables the cancer cells to acquire more mesenchymal traits promoting cancer cells' growth, survival, therapy resistance, and disease recurrence. A significant program in cancer cell plasticity is epithelial-to-mesenchymal transition (EMT), wherein a comprehensive reprogramming of gene expression occurs to facilitate the translational shift from epithelial-to-mesenchymal phenotypes resulting in increased invasiveness and metastasis. In addition, EMT plays a pivotal role in facilitating cancer cells' escape from the body's immune system using several mechanisms, such as the downregulation of major histocompatibility complex-mediated antigen presentation, upregulation of immune checkpoint molecules, and recruitment of immune-suppressive cells. Cancer cells' ability to undergo phenotypic switching and EMT-driven immune escape presents a formidable obstacle in cancer management, highlighting the need to unravel the intricate mechanisms underlying these processes and develop novel therapeutic strategies. This article discusses the role of EMT in promoting immune evasion and therapy resistance. We also discuss the ongoing research on developing therapeutic approaches targeting intrinsic and induced cell plasticity within the immune suppressive microenvironment. We believe this review article will update the current research status and equip researchers, clinicians, and other healthcare professionals with valuable insights enhancing their existing knowledge and shedding light on promising directions for future cancer research. This will facilitate the development of innovative strategies for managing therapy-resistant cancers and improving patient outcomes.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Transição Epitelial-Mesenquimal/genética , Transformação Celular Neoplásica , Fenótipo , Microambiente Tumoral
20.
Cancer Metastasis Rev ; 43(1): 135-154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37707749

RESUMO

Resistance to therapeutic agents is one of the major challenges in cancer therapy. Generally, the focus is given to the genetic driver, especially the genetic mutation behind the therapeutic resistance. However, non-mutational mechanisms, such as epigenetic modifications, and TME alteration, which is mainly driven by cancer cell plasticity, are also involved in therapeutic resistance. The concept of plasticity mainly relies on the conversion of non-cancer stem cells (CSCs) to CSCs or epithelial-to-mesenchymal transition via different mechanisms and various signaling pathways. Cancer plasticity plays a crucial role in therapeutic resistance as cancer cells are able to escape from therapeutics by shifting the phenotype and thereby enhancing tumor progression. New evidence suggests that gut microbiota can change cancer cell characteristics by impacting the mechanisms involved in cancer plasticity. Interestingly, gut microbiota can also influence the therapeutic efficacy of anticancer drugs by modulating the mechanisms involved in cancer cell plasticity. The gut microbiota has been shown to reduce the toxicity of certain clinical drugs. Here, we have documented the critical role of the gut microbiota on the therapeutic efficacy of existing anticancer drugs by altering the cancer plasticity. Hence, the extended knowledge of the emerging role of gut microbiota in cancer cell plasticity can help to develop gut microbiota-based novel therapeutics to overcome the resistance or reduce the toxicity of existing drugs. Furthermore, to improve the effectiveness of therapy, it is necessary to conduct more clinical and preclinical research to fully comprehend the mechanisms of gut microbiota.


Assuntos
Antineoplásicos , Microbioma Gastrointestinal , Neoplasias , Humanos , Plasticidade Celular , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA