Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 64(2): 258-268, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36525532

RESUMO

We show that the knockout of a sugar transporter gene OsSWEET15 led to a significant drop in rice fertility with around half of the knockout mutant's spikelets bearing blighted or empty grains. The rest of the spikelets bore fertile grains with a slightly reduced weight. Notably, the ovaries in the blighted grains of the ossweet15 mutants expanded after flowering but terminated their development before the endosperm cellularization stage and subsequently aborted. ß- glucuronidase (GUS) and Green Fluorescent Protein (GFP) reporter lines representing the OsSWEET15 expression showed that the gene was expressed in the endosperm tissues surrounding the embryo, which supposedly supplies nutrients to sustain embryo development. These results together with the protein's demonstrated sucrose transport capacity and plasma membrane localization suggest that OsSWEET15 plays a prominent role during the caryopsis formation stage, probably by releasing sucrose from the endosperm to support embryo development. By contrast, the empty grains were probably caused by the reduced pollen viability of the ossweet15 mutants. Investigation of ossweet11 mutant grains revealed similar phenotypes to those observed in the ossweet15 mutants. These results indicate that both OsSWEET15 and OsSWEET11 play important and similar roles in rice pollen development, caryopsis formation and seed-setting, in addition to their function in seed-filling that was demonstrated previously.


Assuntos
Oryza , Oryza/genética , Sementes/metabolismo , Endosperma/genética , Transporte Biológico , Glucuronidase/metabolismo , Sacarose/metabolismo , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511395

RESUMO

High temperature impairs starch biosynthesis in developing rice grains and thereby increases chalkiness, affecting the grain quality. Genome encoded microRNAs (miRNAs) fine-tune target transcript abundances in a spatio-temporal specific manner, and this mode of gene regulation is critical for a myriad of developmental processes as well as stress responses. However, the role of miRNAs in maintaining rice grain quality/chalkiness during high daytime temperature (HDT) stress is relatively unknown. To uncover the role of miRNAs in this process, we used five contrasting rice genotypes (low chalky lines Cyp, Ben, and KB and high chalky lines LaGrue and NB) and compared the miRNA profiles in the R6 stage caryopsis samples from plants subjected to prolonged HDT (from the onset of fertilization through R6 stage of caryopsis development). Our small RNA analysis has identified approximately 744 miRNAs that can be grouped into 291 families. Of these, 186 miRNAs belonging to 103 families are differentially regulated under HDT. Only two miRNAs, Osa-miR444f and Osa-miR1866-5p, were upregulated in all genotypes, implying that the regulations greatly varied between the genotypes. Furthermore, not even a single miRNA was commonly up/down regulated specifically in the three tolerant genotypes. However, three miRNAs (Osa-miR1866-3p, Osa-miR5150-3p and canH-miR9774a,b-3p) were commonly upregulated and onemiRNA (Osa-miR393b-5p) was commonly downregulated specifically in the sensitive genotypes (LaGrue and NB). These observations suggest that few similarities exist within the low chalky or high chalky genotypes, possibly due to high genetic variation. Among the five genotypes used, Cypress and LaGrue are genetically closely related, but exhibit contrasting chalkiness under HDT, and thus, a comparison between them is most relevant. This comparison revealed a general tendency for Cypress to display miRNA regulations that could decrease chalkiness under HDT compared with LaGrue. This study suggests that miRNAs could play an important role in maintaining grain quality in HDT-stressed rice.


Assuntos
MicroRNAs , Oryza , Humanos , Temperatura , Oryza/genética , Temperatura Alta , Grão Comestível/genética , MicroRNAs/genética
3.
J Sci Food Agric ; 101(1): 220-228, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32627188

RESUMO

BACKGROUND: Caryopsis development consists of several processes in the production of grain yield in field crops. This study evaluated the effect of silicon (Si) on spikelet formation, spikelet fertility, and grain filling and its impact on grain yield in rice. RESULTS: Applying Si increased grain yield by 44% in Chainat 1( CNT1) and by 23% in Pathumthani 1 (PTT1). With no Si application, CNT1 had fewer total spikelets, and the fertilized and filled spikelets responded more strongly to Si than PTT1 did. Grain yield in both genotypes increased with increasing number of spikelets and filled fertilized grains. There were close relationships between Si concentration in the shoots, flag leaf, and the husk, which were positively correlated with grain yield, the number of spikelets, and fertilized and filled grains. Applying Si fertilizer also increased the expression level of Lsi6 in both CNT1 and PTT1 by 202% and 144% respectively compared with the expression of plants with no Si supplied. CONCLUSION: This study has shown how rice grain yield can be limited by Si deficiency through the spikelet formation, fertilization, and grain filling processes. Applying Si fertilizer could improve rice grain yield through increasing spikelet formation, fertilization, and grain filling, which is in parallel with Lsi6 gene expression. This information can be used for improving rice productivity by Si fertilization management. © 2020 Society of Chemical Industry.


Assuntos
Oryza/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Silício/farmacologia , Fertilizantes/análise , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/metabolismo
4.
Plant Cell Physiol ; 61(8): 1387-1398, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484878

RESUMO

About 60-85% of total phosphorus (P) in cereal crops is finally allocated to seeds, where it is required for seed development, germination and early growth. However, little is known about the molecular mechanisms underlying P allocation to seeds. Here, we found that two members (OsPHO1;1 and OsPHO1;2) of the PHO1 gene family are involved in the distribution of P to seeds in rice. Both OsPHO1;1 and OsPHO1;2 were localized to the plasma membrane and showed influx transport activities for inorganic phosphate. At the reproductive stage, both OsPHO1;1 and OsPHO1;2 showed higher expression in node I, the uppermost node connecting to the panicle. OsPHO1;1 was mainly localized at the phloem region of diffuse vascular bundles (DVBs) of node I, while OsPHO1;2 was expressed in the xylem parenchyma cells of the enlarged vascular bundles (EVBs). In addition, they were also expressed in the ovular vascular trace, the outer layer of the inner integument (OsPHO1;1) and in the nucellar epidermis (OsPHO1;2) of caryopses. Knockout of OsPHO1;2, as well as OsPHO1;1 to a lesser extent, decreased the distribution of P to the seed, resulting in decreased seed size and delayed germination. Taken together, OsPHO1;2 expressed in node I is responsible for the unloading of P from the xylem of EVBs, while OsPHO1;1 is involved in reloading P into the phloem of DVBs for subsequent allocation of P to seeds. Furthermore, OsPHO1;1 and OsPHO1;2 expression in the caryopsis is important for delivering P from the maternal tissues to the filial tissues for seed development.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Grão Comestível/metabolismo , Germinação , Especificidade de Órgãos , Oryza/metabolismo , Proteínas de Transporte de Fosfato/fisiologia , Proteínas de Plantas/fisiologia
5.
BMC Plant Biol ; 19(1): 482, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703691

RESUMO

BACKGROUND: Starch is the main storage substance in rice caryopsis and its properties will determine the quality of rice. Super rice has been extensively studied due to its high-yield characteristics, but the knowledge of amyloplast development and starch quality in caryopsis of super rice especially with large panicle is limited. RESULTS: To address this, large panicle typed and normal panicle typed super rice cultivar Yongyou2640 (YY2640) and Nangeng9108 (NG9108) were investigated in this study. The development of amyloplast in YY2640 caryopsis was better than NG9108, showing faster degradation rate of pericarp amyloplast and better filling degree of endosperm amyloplast. Meanwhile, the starch granule of YY2640 presented as polyhedral shape with smooth surface and the granule size was slightly larger than NG9108. The starch of YY2640 exhibited the lower amylose content, ratio of amylose to amylopectin and the higher level of amylopectin short and long branch-chains compared with NG9108, but there was no significant difference in amylopectin branching degree between them. Two rice starches both showed the characteristics of A-type crystal, and the relative crystallinity and external ordered degree of YY2640 starch were higher than those of NG9108. Furthermore, YY2640 starch showed better pasting properties with lower pasting temperature, shorter pasting time, higher peak viscosity, trough viscosity, breakdown value and lower setback value because of lower apparent amylose content. CONCLUSIONS: Overall, the development and filling of amyloplast in YY2640 caryopsis were better than those of NG9108, thus leading to better starch quality of YY2640.


Assuntos
Oryza/química , Sementes/química , Amido/química , Inflorescência/classificação , Oryza/fisiologia , Sementes/fisiologia , Amido/metabolismo
6.
BMC Plant Biol ; 19(1): 95, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30841851

RESUMO

BACKGROUND: Seeds of domesticated barley are grouped into two distinct types, which differ in morphology. Caryopses covered by adaxial (palea) and abaxial (lemma) hulls that tightly adhere to the pericarp at maturity give rise to hulled seeds whereas caryopses without adhering hulls give rise to naked seeds. The naked caryopsis character is an essential trait regarding the end use of barley. RESULTS: To uncover the genetic basis of the trait, a genome-wide association study (GWAS) has been performed in a panel comprising 222 2-rowed and 303 6-rowed spring barley landrace accessions. In addition to the well-described Nud locus on chromosome 7H, three novel loci showed strong associations with the trait: the first locus on 2H was specifically detected in 6-rowed accessions, the second locus on 3H was found in 2-rowed accessions from Eurasia and the third locus on 6H was revealed in 6-rowed accessions from Ethiopia. PCR analysis of naked accessions also confirmed the absence of a 17 kb region harboring the Nud gene on chromosome 7H for all but one naked accession. The latter was characterized by a slightly variant phenotype of the caryopsis. CONCLUSION: Our findings provide evidence of the pervasiveness of the 17 kb deletion in spring barley from different geographic regions and at the same time reveal genomic footprints of selection in naked barley, which follow both geographic and morphological patterns.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Hordeum/genética , Sementes/genética , Desequilíbrio de Ligação/genética , Locos de Características Quantitativas/genética
8.
New Phytol ; 218(2): 604-615, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29393510

RESUMO

Despite the relevance of seed-filling mechanisms for crop yield, we still have only a rudimentary understanding of the transport processes that supply the caryopsis with sugars. We hypothesized that SWEET sucrose transporters may play important roles in nutrient import pathways in the rice caryopsis. We used a combination of mRNA quantification, histochemical analyses, translational promoter-reporter fusions and analysis of knockout mutants created by genomic editing to evaluate the contribution of SWEET transporters to seed filling. In rice caryopses, SWEET11 and 15 had the highest mRNA levels and proteins localized to four key sites: all regions of the nucellus at early stages; the nucellar projection close to the dorsal vein; the nucellar epidermis that surrounds the endosperm; and the aleurone. ossweet11;15 double knockout lines accumulated starch in the pericarp, whereas caryopses did not contain a functional endosperm. Jointly, SWEET11 and 15 show all the hallmarks of being necessary for seed filling with sucrose efflux functions at the nucellar projection and a role in transfer across the nucellar epidermis/aleurone interface, delineating two major steps for apoplasmic seed filling, observations that are discussed in relation to observations made in rice and barley regarding the relative prevalence of these two potential import routes.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Endosperma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação/genética , Especificidade de Órgãos , Oryza/genética , Fenótipo , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/genética
9.
Plant Cell Physiol ; 58(5): 863-873, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28371825

RESUMO

This study investigated the role of the sugar transporter OsSWEET11 during the early stage of rice caryopsis development using ß-glucoronidase (GUS) to represent its expression, together with clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9)-mediated knockout, cross-fertilization and RNA sequencing (RNA-seq) analyses. The results showed that OsSWEET11 was expressed strongly in developing caryopsis, particularly in the ovular vascular trace, nucellar epidermis and cross cells. The knockout of OsSWEET11 significantly decreased the sucrose concentration in the mutant embryo sacs and led to defective grain filling compared with that of the wild-type (WT) plant. Moreover, the expression of 2,549 genes in the mutant caryopsis was affected. The grain weight and seed setting percentage were also decreased in the mutants. The cross-fertilization of the mutant and WT rice revealed that the mutated maternal donor induced defective grain filling. These results strongly suggested that OsSWEET11 played an important role in sucrose release from maternal tissue to the maternal-filial interface during the early stage of caryopsis development. It might also induce sucrose release from the ovular vascular trace and cross cells of developing caryopsis. These findings bridge the gap in the understanding of post-phloem sugar transport during the early stage of rice caryopsis development.


Assuntos
Grão Comestível/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas
10.
BMC Plant Biol ; 17(1): 169, 2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-29058624

RESUMO

BACKGROUND: At ripeness, the outer husk of "covered" barley grains firmly adheres to the underlying caryopsis. A cuticular cementing layer on the caryopsis is required for husk adhesion, however the quality of adhesion varies significantly among cultivars which produce the cementing layer, resulting in the economically important malting defect, grain skinning. The composition of the cementing layer, and grain organ development have been hypothesised to influence the quality of husk adhesion. Plants of Hordeum vulgare 'Concerto' were grown at different temperatures pre- and post-anthesis to effect changes in the development of the husk, caryopsis and cuticular cementing layer, to determine how these variables influence the quality of husk-to-caryopsis adhesion. RESULTS: Warm conditions pre-anthesis decreased the quality of husk adhesion, and consequently increased the incidence of grain skinning. Cool post-anthesis conditions further decreased the quality of husk adhesion. The composition of the cementing layer, rather than its structure, differed with respect to husk adhesion quality. This cementing layer was produced at the late milk stage, occurring between nine and 29 days post-anthesis, conditional on the temperature-dependent growth rate. The compounds octadecanol, tritriacontane, campesterol and ß-sitosterol were most abundant in caryopses with high-quality husk adhesion. The differences in adhesion quality were not due to incompatible husk and caryopsis dimensions affecting organ contact. CONCLUSIONS: This study shows that husk-to-caryopsis adhesion is dependent on cementing layer composition, and implies that this composition is regulated by temperature before, and during grain development. Understanding this regulation will be key to improving husk-to-caryopsis adhesion.


Assuntos
Hordeum/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Hordeum/metabolismo , Hordeum/fisiologia , Lipídeos/fisiologia , Microscopia Eletrônica de Varredura , Sementes/metabolismo , Sementes/fisiologia , Sementes/ultraestrutura , Temperatura
11.
J Integr Plant Biol ; 58(9): 786-98, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27449987

RESUMO

The rice endosperm plays crucial roles in nourishing the embryo during embryogenesis and seed germination. Although previous studies have provided the general information about rice endosperm, a systematic investigation throughout the entire endosperm developmental process is still lacking. In this study, we examined in detail rice endosperm development on a daily basis throughout the 30-day period of post-fertilization development. We observed that coenocytic nuclear division occurred in the first 2 days after pollination (DAP), cellularization occurred between 3 and 5 DAP, differentiation of the aleurone and starchy endosperm occurred between 6 and 9 DAP, and accumulation of storage products occurred concurrently with the aleurone/starchy endosperm differentiation from 6 DAP onwards and was accomplished by 21 DAP. Changes in cytoplasmic membrane permeability, possibly caused by programmed cell death, were observed in the central region of the starchy endosperm at 8 DAP, and expanded to the whole starchy endosperm at 21 DAP when the aleurone is the only living component in the endosperm. Further, we observed that a distinct multi-layered dorsal aleurone formed near the dorsal vascular bundle, while the single- or occasionally two-cell layered aleurone was located in the lateral and ventral positions of endosperm. Our results provide in detail the dynamic changes in mitotic divisions, cellularization, cell differentiation, storage product accumulation, and programmed cell death that occur during rice endosperm development.


Assuntos
Endosperma/embriologia , Oryza/anatomia & histologia , Oryza/embriologia , Apoptose , Diferenciação Celular , Endosperma/citologia , Oryza/citologia , Amido/metabolismo
12.
J Integr Plant Biol ; 58(9): 772-85, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26472484

RESUMO

Rice caryopsis as one of the most important food sources for humans has a complex structure that is composed of maternal tissues including the pericarp and testa and filial tissues including the endosperm and embryo. Although rice caryopsis studies have been conducted previously, a systematic characterization throughout the entire developmental process is still lacking. In this study, detailed morphological examinations of caryopses were made during the entire 30-day developmental process. We observed some rapid changes in cell differentiation events and cataloged how cellular degeneration processes occurred in maternal tissues. The differentiations of tube cells and cross cells were achieved by 9 days after pollination (DAP). In the testa, the outer integument was degenerated by 3 DAP, while the outer layer of the inner integument degenerated by 7 DAP. In the nucellus, all tissues with the exception of the nucellar projection and the nucellar epidermis degenerated in the first 5 DAP. By 21 DAP, all maternal tissues, including vascular bundles, the nucellar projection and the nucellar epidermal cells were degenerated. In summary, this study provides a complete atlas of the dynamic changes in cell differentiation and degeneration for individual maternal cell layers of rice caryopsis.


Assuntos
Oryza/anatomia & histologia , Oryza/citologia , Sementes/crescimento & desenvolvimento , Diferenciação Celular , Flores/anatomia & histologia , Flores/ultraestrutura , Modelos Biológicos , Oryza/embriologia , Oryza/ultraestrutura , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/crescimento & desenvolvimento , Polinização , Sementes/anatomia & histologia , Sementes/citologia
13.
Int J Mol Sci ; 16(6): 14181-93, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26110389

RESUMO

The covered/naked caryopsis trait of barley is an important agronomic trait because it is directly linked to dietary use. The formation of covered/naked caryopsis is controlled by an NUD transcription factor, which is involved in pericarp cuticle development. However, the molecular mechanism underlying this trait remains so far largely unknown. In this study, comparative transcriptomes of grains three weeks after anthesis of Tibetan Hulless barley landrace Dulihuang and covered barley Morex were analyzed using RNA-seq technique. A total of 4031 differentially expressed genes (DEGs) were identified. The Nud gene was overexpressed in Morex, with trace expression in Dulihuang. Among seventeen cuticle related DEGs, sixteen were down regulated and one up regulated in Morex. These results suggest that the Nud gene in covered caryopsis might down regulate cuticle related genes, which may cause a permeable cuticle over pericarp, leading to a hull-caryopsis organ fusion. A functional cuticle covering the pericarp of naked caryopsis might be the result of deletion or low expression level of the Nud gene. The functional cuticle defines a perfect boundary to separate the caryopsis from the hull in naked barley.


Assuntos
Genes de Plantas , Hordeum/genética , Proteínas de Plantas/genética , Sementes/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Hordeum/química , Hordeum/crescimento & desenvolvimento , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/química , Sementes/crescimento & desenvolvimento
14.
Front Plant Sci ; 14: 1171474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287712

RESUMO

Seeds are an indispensable part of the flowering plant life cycle and a critical determinant of agricultural production. Distinct differences in the anatomy and morphology of seeds separate monocots and dicots. Although some progress has been made with respect to understanding seed development in Arabidopsis, the transcriptomic features of monocotyledon seeds at the cellular level are much less understood. Since most important cereal crops, such as rice, maize, and wheat, are monocots, it is essential to study transcriptional differentiation and heterogeneity during seed development at a finer scale. Here, we present single-nucleus RNA sequencing (snRNA-seq) results of over three thousand nuclei from caryopses of the rice cultivars Nipponbare and 9311 and their intersubspecies F1 hybrid. A transcriptomics atlas that covers most of the cell types present during the early developmental stage of rice caryopses was successfully constructed. Additionally, novel specific marker genes were identified for each nuclear cluster in the rice caryopsis. Moreover, with a focus on rice endosperm, the differentiation trajectory of endosperm subclusters was reconstructed to reveal the developmental process. Allele-specific expression (ASE) profiling in endosperm revealed 345 genes with ASE (ASEGs). Further pairwise comparisons of the differentially expressed genes (DEGs) in each endosperm cluster among the three rice samples demonstrated transcriptional divergence. Our research reveals differentiation in rice caryopsis from the single-nucleus perspective and provides valuable resources to facilitate clarification of the molecular mechanism underlying caryopsis development in rice and other monocots.

15.
Plant Sci ; 314: 111065, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895534

RESUMO

Sucrose-proton symporters play important roles in carbohydrate transport during plant growth and development. Their physiological functions have only been partly characterized and their regulation mechanism is largely unclear. Here we report that the knockout of a sucrose transporter gene, OsSUT1, by CRISPR-Cas9 mediated gene editing resulted in a slightly dwarf size and complete infertility of the gene's homozygous mutants. Observation of caryopsis development revealed that the endosperm of OsSUT1 mutants failed to cellularize and did not show any sign of seed-filling. Consistently, OsSUT1 was identified to express strongly in developing caryopsis of wild-type rice, particularly in the nucellar epidermis and aleurone which are critical for the uptake of nutrients into the endosperm. These results indicate that OsSUT1 is indispensable during the rice reproductive stage particularly for caryopsis development. Interestingly, OsSUT1 possesses at least 6 alternative splicing transcripts, including the 4 transcripts deposited previously and the other two identified by us. The differences among these transcripts primarily lie in their coding region of the 3' end and 3' UTR region. Real-time PCR showed that 4 of the 6 transcripts had different expressional patterns during rice vegetative and reproductive growth stages. Given the versatility of the gene, addressing its alternative splicing mechanism may expand our understanding of SUT's function substantially.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fertilidade/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oryza/genética , Oryza/metabolismo , Sacarose/metabolismo , Processamento Alternativo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Sementes/crescimento & desenvolvimento
16.
Microsc Res Tech ; 85(3): 1028-1034, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34708480

RESUMO

Micromorphology of 15 grass caryopsis was investigated through scanning electron microscopy for its implications in the identification of grasses. Both macro and micromorphological characters especially caryopsis shape and surface morphology were found significant in the taxonomic diagnosis. Shape morphology of caryopsis varied among the species and lanceolate, fusiform, narrow ellipsoidal, ovate, elliptical, plano-convex, fusiform, linear ovate, broadly elliptical, broadly pllipsoidal, plano-convex, oblique ovate, and subglobose shapes were recorded. Digitaria nodosa (3.31 × 0.7 mm) and Echinochloa crus-galli (3.26 × 1.44 mm) had the largest caryopsis size, while Acrachne racemosa (0.76 × 0.54 mm) and Eragrostis minor (0.62 × 0.38 mm) had the smallest caryopsis size. Macro and micromorphological characters were useful for the diagnosis of genus and species. Utilizing both qualitative and quantitative character taxonomic key at generic and species level were made.


Assuntos
Elétrons , Poaceae , Microscopia Eletrônica de Varredura , Poaceae/anatomia & histologia
17.
J Plant Physiol ; 274: 153714, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35569367

RESUMO

Rice calcium-dependent protein kinase 21 (OsCPK21) is specifically and highly expressed throughout reproductive development and plays a critical role in rice pollen development by indirectly regulating the MIKC*-type MADS box transcription factor. However, little is known about the function of OsCPK21 in rice caryopsis development. In this study, we performed an in vitro pull-down experiment followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and identified hydroxysteroid dehydrogenase 2 (HSD2) as a candidate OsCPK21-interacting protein in 25 DAF (days after flowering) rice caryopses. Then, we verified the interaction between OsCPK21 and OsHSD2 using yeast two-hybrid and bimolecular fluorescence assays and revealed the in vitro phosphorylation of OsHSD2 by OsCPK21. Furthermore, oscpk21 and oshsd2 mutants were generated by the CRISPR/Cas9 technique, and we found that the lipid profiles were drastically changed in both oscpk21 and oshsd2, implying that OsHSD2 phosphorylated by OsCPK21 regulates lipid abundance in caryopsis development, thereby providing a potential target for the genetic improvement of rice grain quality in future lipid-related breeding and biotechnology applications.


Assuntos
Oryza , Cromatografia Líquida , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos , Lipídeos , Oryza/metabolismo , Fosforilação , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem
18.
Front Plant Sci ; 13: 943184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795345

RESUMO

Subtilisin-like proteases (SUBs), which are extensively distributed in three life domains, affect all aspects of the plant life cycle, from embryogenesis and organogenesis to senescence. To explore the role of SUBs in rice caryopsis development, we recharacterized the OsSUB gene family in rice (Oryza sativa ssp. japonica). In addition, investigation of the SUBs was conducted across cultivated and wild rice in seven other Oryza diploid species (O. brachyantha, O. glaberrima, O. meridionalis, O. nivara, O. punctata, O. rufipogon, and O. sativa ssp. indica). Sixty-two OsSUBs were identified in the latest O. sativa ssp. japonica genome, which was higher than that observed in wild species. The SUB gene family was classified into six evolutionary branches, and SUB1 and SUB3 possessed all tandem duplication (TD) genes. All paralogous SUBs in eight Oryza plants underwent significant purifying selection. The expansion of SUBs in cultivated rice was primarily associated with the occurrence of tandem duplication events and purifying selection and may be the result of rice domestication. Combining the expression patterns of OsSUBs in different rice tissues and qRT-PCR verification, four OsSUBs were expressed in rice caryopses. Moreover, OsSUBs expressed in rice caryopses possessed an earlier origin in Oryza, and the gene cluster formed by OsSUBs together with the surrounding gene blocks may be responsible for the specific expression of OsSUBs in caryopses. All the above insights were inseparable from the continuous evolution and domestication of Oryza. Together, our findings not only contribute to the understanding of the evolution of SUBs in cultivated and wild rice but also lay the molecular foundation of caryopsis development and engineering improvement of crop yield.

19.
J Plant Physiol ; 271: 153663, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35245823

RESUMO

Long noncoding RNAs (lncRNAs) play important regulatory roles in caryopsis development and grain size in rice. However, whether there exist differences in lncRNA expression between caryopses located on primary branches (CPB) and caryopses located on secondary branches (CSB) that contribute to their differential development remains elusive. Here, we performed transcriptome-wide analysis to identify 2,273 lncRNAs expressed in CPB and CSB at 0, 5, 12, and 20 days after flowering (DAF). Although these lncRNAs were widely distributed, the majority were located in intergenic regions of the 12 rice chromosomes. Based on gene expression cluster analysis, lncRNAs expressed in CPB and CSB were clustered into two subtypes in a position-independent manner: one includes 0- and 5-DAF CPB and CSB, and 12-DAF CSB; the second includes 12-DAF CPB and 20-DAF CPB and CSB. Furthermore, according to the expression value of each lncRNA, K-means cluster analysis revealed 135 early-stage, 116 middle-stage, and 114 late-stage expression-delayed lncRNAs in CSB. Then, we analyzed the expression values of the expression-delayed lncRNAs and nearby coding genes (100 kb upstream and downstream of the lncRNAs), and found 631 lncRNA-mRNA pairs, including 258 lncRNAs and 571 nearby coding genes, some of which are related to hormone-regulated grain development. These results suggested that expression-delayed lncRNAs in CSB may regulate the development of CPB and CSB, providing insight into the mechanism underlying the developmental differences between CPB and CSB, and the differences in grain yield.


Assuntos
Oryza , RNA Longo não Codificante , Perfilação da Expressão Gênica , Oryza/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcriptoma/genética
20.
Z Naturforsch C J Biosci ; 76(1-2): 67-70, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32915769

RESUMO

For seven days of wheat growth, caryopsis remained the main source of 5-n-alkylresorcinols with C19 and/or C21 homolog as a main compound. Shoot contained small amount of these phenolic lipids; their average content was 3.23% of level obtained in the whole seedling. Moreover, 41.38% of resorcinolic lipids of seven-day-old shoot was accumulated in part of leaf covered by coleoptile. Interestingly, a removal of 1.07% of the primary pool of kernel alkylresorcinols by short-term washing (10 s) of wheat seed with acetone before planting decreased their level only in seed of seven-day old seedling. Compared to the respective controls, this treatment did not affect the amount of these lipids in the green part of seedling that proved that de novo synthesis of 5-n-alkylresorcinols takes place in shoots. The very similar homolog profiles of these lipids in four- and seven-day-old shoots turned out to be markedly less diversified than those found in respective seed samples. Compared to the mature wheat caryopsis, the rise in the content of very-long-chain homologs was observed only in the oldest shoot. Their increased accumulation was probably connected with formation of cuticular layer providing the defensive barrier against various phytopathogens.


Assuntos
Resorcinóis/metabolismo , Triticum/metabolismo , Germinação , Metabolismo dos Lipídeos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA