Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Exp Bot ; 75(2): 553-562, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37798135

RESUMO

Under all environments, roots are important for plant anchorage and acquiring water and nutrients. However, there is a knowledge gap regarding how root architecture contributes to stress tolerance in a changing climate. Two closely related plant species, maize and sorghum, have distinct root system architectures and different levels of stress tolerance, making comparative analysis between these two species an ideal approach to resolve this knowledge gap. However, current research has focused on shared aspects of the root system that are advantageous under abiotic stress conditions rather than on differences. Here we summarize the current state of knowledge comparing the root system architecture relative to plant performance under water deficit, salt stress, and low phosphorus in maize and sorghum. Under water deficit, steeper root angles and deeper root systems are proposed to be advantageous for both species. In saline soils, a reduction in root length and root number has been described as advantageous, but this work is limited. Under low phosphorus, root systems that are shallow and wider are beneficial for topsoil foraging. Future work investigating the differences between these species will be critical for understanding the role of root system architecture in optimizing plant production for a changing global climate.


Assuntos
Sorghum , Zea mays , Estresse Fisiológico , Grão Comestível , Água , Fósforo , Raízes de Plantas
2.
Biochem J ; 480(22): 1865-1869, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37994913

RESUMO

Plants are vital to human health and well-being, as well as helping to protect the environment against the negative impacts of climate change. They are an essential part of the 'One Health' strategy that seeks to balance and optimize the health of people, animals and the environment. Crucially, plants are central to nature-based solutions to climate mitigation, not least because soil carbon storage is an attractive strategy for mitigating greenhouse gas emissions and the associated climate change. Agriculture depends on genetically pure, high-quality seeds that are free from pests and pathogens and contain a required degree of genetic purity. This themed collection addresses key questions in the field encompassing the biochemical mechanisms that underlie plant responses and adaptations to a changing climate. This collection encompasses an analysis of the biochemistry and molecular mechanisms underpinning crop and forest resilience, together with considerations of plant adaptations to climate change-associated stresses, including drought, floods and heatwaves, and the increased threats posed by pathogens and pests.


Assuntos
Mudança Climática , Sementes , Animais , Humanos , Solo
3.
J Integr Plant Biol ; 66(3): 468-483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409921

RESUMO

Achieving high yield and good quality in crops is essential for human food security and health. However, there is usually disharmony between yield and quality. Seed storage protein (SSP) and starch, the predominant components in cereal grains, determine yield and quality, and their coupled synthesis causes a yield-quality trade-off. Therefore, dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality. Here, we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops, including maize, rice and wheat. We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights. We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding. Finally, future perspectives on major challenges are proposed.


Assuntos
Grão Comestível , Amido , Humanos , Grão Comestível/metabolismo , Amido/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Proteínas de Plantas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo
4.
Waste Manag Res ; 42(8): 634-650, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38520089

RESUMO

The extensive use of plastic materials and their improper disposal results in high amounts of plastic waste in the environment. Aging of plastics leads to their breakdown into smaller particles, such as microplastics (MPs) and nanoplastics. This research investigates plastics used in agricultural practices as they contribute to MP pollution in agricultural soils. The distribution and characteristics of MPs in agricultural soils were evaluated. In addition, the effect of MPs on soil properties, the relationship between MPs and metals in soil, the effect of MPs on the fate of pesticides in agricultural soils and the influence of MPs on plant growth were analysed, discussing legume, cereal and vegetable crops. Finally, a brief description of the main methods of chemical analysis and identification of MPs is presented. This study will contribute to a better understanding of MPs in agricultural soils and their effect on the soil-plant system. The changes induced by MPs in soil parameters can lead to potential benefits as it is possible to increase the availability of micronutrients and reduce plant uptake of toxic elements. Furthermore, although plastic pollution remains an emerging threat to soil ecosystems, their presence may result in benefits to agricultural soils, highlighting the principles of the circular economy.


Assuntos
Agricultura , Microplásticos , Poluentes do Solo , Solo , Agricultura/métodos , Solo/química , Poluentes do Solo/análise , Microplásticos/análise , Plásticos , Monitoramento Ambiental , Produtos Agrícolas
5.
Planta ; 258(5): 91, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777666

RESUMO

MAIN CONCLUSION: Due to harsh lifestyle changes, in the present era, nutritional security is needed along with food security so it is necessary to include underutilized cereal crops (UCCs) in our daily diet to counteract the rising danger of human metabolic illness. We can attain both the goal of zero hunger and nutritional security by developing improved UCCs using advanced pan-omics (genomics, transcriptomics, proteomics, metabolomics, nutrigenomics, phenomics and ionomics) practices. Plant sciences research progressed profoundly since the last few decades with the introduction of advanced technologies and approaches, addressing issues of food demand of the growing population, nutritional security challenges and climate change. However, throughout the expansion and popularization of commonly consumed major cereal crops such as wheat and rice, other cereal crops such as millet, rye, sorghum, and others were impeded, despite their potential medicinal and nutraceutical qualities. Undoubtedly neglected underutilized cereal crops (UCCs) also have the capability to withstand diverse climate change. To relieve the burden of major crops, it is necessary to introduce the new crops in our diet in the way of UCCs. Introgression of agronomically and nutritionally important traits by pan-omics approaches in UCCs could be a defining moment for the population's well-being on the globe. This review discusses the importance of underutilized cereal crops, as well as the application of contemporary omics techniques and advanced bioinformatics tools that could open up new avenues for future study and be valuable assets in the development and usage of UCCs in the perspective of green system biology. The increased and improved use of UCCs is dependent on number of factors that necessitate a concerted research effort in agricultural sciences. The emergence of functional genomics with molecular genetics might gear toward the reawakening of interest in underutilized cereals crops. The need of this era is to focus on potential UCCs in advanced agriculture and breeding programmes. Hence, targeting the UCCs, might provide a bright future for better health and scientific rationale for its use.


Assuntos
Grão Comestível , Melhoramento Vegetal , Humanos , Grão Comestível/genética , Grão Comestível/metabolismo , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética , Proteômica/métodos , Genômica/métodos
6.
Mol Biol Rep ; 50(1): 739-747, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36309609

RESUMO

Gene editing techniques have made a significant contribution to the development of better crops. Gene editing enables precise changes in the genome of crops, which can introduce new possibilities for altering the crops' traits. Since the last three decades, various gene editing techniques such as meganucleases, zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspersed short palindromic repeats (CRISPR)/Cas (CRISPR-associated proteins) have been discovered. In this review, we discuss various gene editing techniques and their applications to common cereals. Further, we elucidate the future of gene-edited crops, their regulatory features, and industrial aspects globally. To achieve this, we perform a comprehensive literature survey using databases such as PubMed, Web of Science, SCOPUS, Google Scholar etc. For the literature search, we used keywords such as gene editing, crop genome modification, CRISPR/Cas, ZFN, TALEN, meganucleases etc. With the advent of the CRISPR/Cas technology in the last decade, the future of gene editing has transitioned into a new dimension. The functionality of CRISPR/Cas in both DNA and RNA has increased through the use of various Cas enzymes and their orthologs. Constant research efforts in this direction have improved the gene editing process for crops by minimizing its off-target effects. Scientists also use computational tools, which help them to design experiments and analyze the results of gene editing experiments in advance. Gene editing has diverse potential applications. In the future, gene editing will open new avenues for solving more agricultural issues and boosting crop production, which may have great industrial prospects.


Assuntos
Grão Comestível , Oryza , Grão Comestível/genética , Sistemas CRISPR-Cas/genética , Oryza/genética , Triticum/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Edição de Genes/métodos , Produtos Agrícolas/genética , Genoma de Planta/genética
7.
Chem Biodivers ; 20(3): e202200935, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36730630

RESUMO

Barley (Hordeum vulgare L.) is one of the world's oldest cereal crops. There is considerable interest in barley's potential usage in human diets. Barley is rich in bioactive metabolites such as high content of ß-glucan, fiber, and vitamin E. It is also well-known as a rich source of phytochemical derivatives, namely, phenolic acids, flavonols, chalcones, flavones, proanthocyanidins, and flavanones. Phenolic compounds are recognized as excellent dietary materials with antioxidant and anti-inflammatory activities. This review was written to give an overview of the main components that are separated from barley using different solvents. Even though there were numerous biological activities for barely, the antioxidant, as well as the anti-inflammatory, are the main focus of this review.


Assuntos
Anti-Inflamatórios , Antioxidantes , Hordeum , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Hordeum/química , Fenóis , Solventes , Vitamina E , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia
8.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768575

RESUMO

Light, temperature, water, and fertilizer are arguably the most important environmental factors regulating crop growth and productivity. Environmental stimuli, including low light, extreme temperatures, and water stresses caused by climate change, affect crop growth and production and pose a growing threat to sustainable agriculture. Furthermore, soil salinity is another major environmental constraint affecting crop growth and threatening global food security. The grain filling stage is the final stage of growth and is also the most important stage in cereals, directly determining the grain weight and final yield. However, the grain filling process is extremely vulnerable to different environmental stimuli, especially for inferior spikelets. Given the importance of grain filling in cereals and the deterioration of environmental problems, understanding environmental stimuli and their effects on grain filling constitutes a major focus of crop research. In recent years, significant advances made in this field have led to a good description of the intricate mechanisms by which different environmental stimuli regulate grain filling, as well as approaches to adapt cereals to changing climate conditions and to give them better grain filling. In this review, the current environmental stimuli, their dose-response effect on grain filling, and the physiological and molecular mechanisms involved are discussed. Furthermore, what we can do to help cereal crops adapt to environmental stimuli is elaborated. Overall, we call for future research to delve deeper into the gene function-related research and the commercialization of gene-edited crops. Meanwhile, smart agriculture is the development trend of the future agriculture under environmental stimuli.


Assuntos
Produtos Agrícolas , Grão Comestível , Grão Comestível/genética , Agricultura , Solo , Água
9.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569877

RESUMO

Widely used agrochemicals that do not exert negative effects on crops and selectively target weeds could influence plant resilience under unfavorable conditions. The cross-adaptation of wheat (Triticum aestivum L.) and triticale (×Triticosecale Wittm.) exposed to two environmental abiotic stressors (drought and waterlogging) was evaluated after treatment with a selective herbicide (Serrate®, Syngenta). The ambivalent effects of the herbicide on the two studied crops were particularly distinct in waterlogged plants, showing a significant reduction in wheat growth and better performance of triticale individuals exposed to the same combined treatment. Histochemical staining for the detection of reactive oxygen species (ROS) confirmed that the herbicide treatment increased the accumulation of superoxide anion in the flooded wheat plants, and this effect persisted in the younger leaves of the recovered individuals. Comparative transcript profiling of ROS scavenging enzymes (superoxide dismutase, peroxidase, glutathione reductase, and catalase) in stressed and recovered plants revealed crop-specific variations resulting from the unfavorable water regimes in combination with the herbicide treatment. Short-term dehydration was relatively well tolerated by the hybrid crop triticale and this aligned with the considerable upregulation of genes for L-Proline biosynthesis. Its drought resilience was diminished by herbicide application, as evidenced by increased ROS accumulation after prolonged water deprivation.


Assuntos
Herbicidas , Triticale , Humanos , Antioxidantes/farmacologia , Triticum , Espécies Reativas de Oxigênio/farmacologia , Herbicidas/farmacologia , Secas
10.
Environ Res ; 214(Pt 4): 114142, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995222

RESUMO

Increasing tropospheric ozone poses a potential threat to both above- and belowground components of the terrestrial biosphere. Microorganisms are the main drivers of soil ecological processes, however, the link between soil microbial communities and ecological functions under elevated ozone remains poorly understood. In this study, we assessed the responses of three crop seedlings (i.e., soybean, maize, and wheat) growth and soil microbial communities to elevated ozone (40 ppb O3 above ambient air) in a pot experiment in the solardomes. Results showed that elevated ozone adversely affected ecosystem multifunctionality by reducing crop biomass, inhibiting soil extracellular enzyme activities, and altering nutrient availability. Elevated ozone increased bacterial and fungal co-occurrence network complexity, negatively correlated with ecosystem multifunctionality. Changes in the relative abundance of some specific bacteria and fungi were associated with multiple ecosystem functioning. In addition, elevated ozone significantly affected fungal community composition but not bacterial community composition and microbial alpha-diversity. Crop type played a key role in determining bacterial alpha-diversity and microbial community composition. In conclusion, our findings suggest that short-term elevated ozone could lead to a decrease in ecosystem multifunctionality associated with changes in the complexity of microbial networks in soils.


Assuntos
Microbiota , Ozônio , Bactérias , Ecossistema , Fungos , Ozônio/análise , Ozônio/toxicidade , Solo , Microbiologia do Solo
11.
Phytopathology ; 112(3): 535-548, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34384241

RESUMO

The dispersion of fungal inocula such as the airborne spores of rust fungi (Pucciniales) can be monitored through metabarcoding of the internal transcribed spacer 2 (ITS2) of the rRNA gene in environmental DNAs. This method is largely dependent on a high-quality reference database (refDB) and primers with proper taxonomic coverage and specificity. For this study, a curated ITS2 reference database (named CR-ITS2-refDB) comprising representatives of the major cereal rust fungi and phylogenetically related species was compiled. Interspecific and intraspecific variation analyses suggested that the ITS2 region had reasonable discriminating power for the majority of the Puccinia species or species complexes in the database. In silico evaluation of nine forward and seven reverse ITS2 primers, including three newly designed, revealed marked variation in DNA amplification efficiency for the rusts. We validated the theoretical assessment of rust-enhanced (Rust2inv/ITS4var_H) and universal fungal (ITS9F/ITS4) ITS2 primer pairs by profiling the airborne rust fungal communities from environmental samples via a metabarcoding approach. Species- or subspecies-level identification of the rusts was improved by use of CR-ITS2-refDB and the Automated Oligonucleotide Design Pipeline (AODP), which identified all mutations distinguishing highly conserved DNA markers between close relatives. A generic bioinformatics pipeline was developed, including all steps used in this study from in silico evaluation of primers to accurate identification of short metabarcodes at the level of interest for defining phytopathogens. The results highlight the importance of primer selection, refDBs that are resolved to reflect phylogenetic relationships, and the use of AODP for improving the reliability of metabarcoding in phytopathogen biosurveillance.


Assuntos
Fungos , Doenças das Plantas , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Fungos/genética , Filogenia , Doenças das Plantas/microbiologia , Reprodutibilidade dos Testes
12.
Ecotoxicol Environ Saf ; 247: 114244, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326557

RESUMO

Cadmium (Cd) is considered the primary dietary toxic element. Previous studies have demonstrated significant differences in heavy metal accumulation among crop species. However, this information in karst areas with low heavy metal activity is missing. In this study, the uptake and accumulation characteristics of cadmium in soil-crop samples of group 504 in the core karst region of East Asia were analyzed. Cadmium low-accumulating maize and rice were screened using cluster and Pareto analytic methods. In addition, a new method, the species-sensitive distribution model (SSD), was proposed, which could be used to estimate the environmental threshold for cadmium in regional cropland. The results showed that both maize and rice soils in the research area were contaminated with varying degrees of cadmium. The total concentrations of cadmium ω(T-Cd) in maize and rice fields are 0.18-1.32 and 0.20-4.42 mg kg-1, respectively. The ω(T-Cd) of heavy metals in maize kernels and rice grains is 0.002-0.429 and 0.003-0.393 mg kg-1, respectively. The bioaccumulation factor (BCF) of cadmium in maize ranged from 0.0079 to 0.9701, with a coefficient of variation of 1.71; the BCF of cadmium in rice ranged from 0.0074 to 0.1345, with a coefficient of variation of 0.99. According to cluster and Pareto analyses, the maize crop varieties with low cadmium accumulation suitable for local cultivation were screened as JHY809, JDY808, AD778, SN3H and SY13, and the rice varieties were DMY6188, GY725, NY6368, SY451 and DX4103. In addition, the environmental cadmium threshold ranges of 0.30-10.05 mg kg-1 and 0.89-24.39 mg kg-1 for maize and rice soils, respectively, were deduced in this study. This threshold will ensure that 5-95% of maize and rice will not be contaminated with cadmium in the soil.


Assuntos
Cádmio , Oryza , Zea mays , Solo , Bioacumulação
13.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805930

RESUMO

Reproductive-stage heat stress (RSHS) poses a major constraint to cereal crop production by damaging main plant reproductive structures and hampering reproductive processes, including pollen and stigma viability, pollination, fertilization, grain setting and grain filling. Despite this well-recognized fact, research on crop heat stress (HS) is relatively recent compared to other abiotic stresses, such as drought and salinity, and in particular, RSHS studies in cereals are considerably few in comparison with seedling-stage and vegetative-stage-centered studies. Meanwhile, climate change-exacerbated HS, independently or synergistically with drought, will have huge implications on crop performance and future global food security. Fortunately, due to their sedentary nature, crop plants have evolved complex and diverse transient and long-term mechanisms to perceive, transduce, respond and adapt to HS at the molecular, cell, physiological and whole plant levels. Therefore, uncovering the molecular and physiological mechanisms governing plant response and tolerance to RSHS facilitates the designing of effective strategies to improve HS tolerance in cereal crops. In this review, we update our understanding of several aspects of RSHS in cereals, particularly impacts on physiological processes and yield; HS signal perception and transduction; and transcriptional regulation by heat shock factors and heat stress-responsive genes. We also discuss the epigenetic, post-translational modification and HS memory mechanisms modulating plant HS tolerance. Moreover, we offer a critical set of strategies (encompassing genomics and plant breeding, transgenesis, omics and agronomy) that could accelerate the development of RSHS-resilient cereal crop cultivars. We underline that a judicious combination of all of these strategies offers the best foot forward in RSHS tolerance improvement in cereals. Further, we highlight critical shortcomings to RSHS tolerance investigations in cereals and propositions for their circumvention, as well as some knowledge gaps, which should guide future research priorities. Overall, our review furthers our understanding of HS tolerance in plants and supports the rational designing of RSHS-tolerant cereal crop cultivars for the warming climate.


Assuntos
Grão Comestível , Melhoramento Vegetal , Produtos Agrícolas/genética , Grão Comestível/genética , Resposta ao Choque Térmico/genética , Estresse Fisiológico/genética
14.
J Integr Plant Biol ; 64(2): 412-430, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35029029

RESUMO

Cereal crops are significant contributors to global diets. As climate change disrupts weather patterns and wreaks havoc on crops, the need for generating stress-resilient, high-yielding varieties is more urgent than ever. One extremely promising avenue in this regard is to exploit the tremendous genetic diversity expressed by the wild ancestors of current day crop species. These crop wild relatives thrive in a range of environments and accordingly often harbor an array of traits that allow them to do so. The identification and introgression of these traits into our staple cereal crops can lessen yield losses in stressful environments. In the last decades, a surge in extreme drought and flooding events have severely impacted cereal crop production. Climate models predict a persistence of this trend, thus reinforcing the need for research on water stress resilience. Here we review: (i) how water stress (drought and flooding) impacts crop performance; and (ii) how identification of tolerance traits and mechanisms from wild relatives of the main cereal crops, that is, rice, maize, wheat, and barley, can lead to improved survival and sustained yields in these crops under water stress conditions.


Assuntos
Desidratação , Grão Comestível , Mudança Climática , Produtos Agrícolas/genética , Grão Comestível/genética , Zea mays
15.
New Phytol ; 230(3): 1017-1033, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33462818

RESUMO

Salt stress triggers the overdose accumulation of reactive oxygen species (ROS) in crop plants, leading to severe oxidative damage to living tissues. MicroRNAs (miRNAs) act as master regulators orchestrating the stress responsive regulatory networks as well as salt tolerance. However, the fundamental roles of miRNAs in modulating salt tolerance in cereal crops, especially in salt-triggered ROS scavenging remain largely unknown. Through small RNA sequencing, a salt-responsive miRNA, miR172 was identified in rice. Further, by generating the miR172-overexpression or MIR172 gene loss-of-function mutant lines, the biological significance of miR172 and its downstream signaling pathways related to salt tolerance were defined. We demonstrated that miR172 is a positive regulator of salt tolerance in both rice and wheat. More interestingly, miR172a and miR172b, but not miR172c or miR172d are involved in salt stress response, emphasizing the functional differentiation within miR172 family members. Further evidence uncovers a novel miR172/IDS1 regulatory module that functions as a crucial molecular rheostat in maintaining ROS homeostasis during salt stress, mainly through balancing the expression of a group of ROS-scavenging genes. Our findings establish a direct molecular link between miRNAs and detoxification response in cereal crops for improving salt tolerance.


Assuntos
Grão Comestível , Tolerância ao Sal , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética
16.
Plant Cell Environ ; 44(7): 2034-2048, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764557

RESUMO

Asymmetric warming resulting in a faster increase in night compared to day temperatures affects crop yields negatively. Physiological characterization and agronomic findings have been complemented more recently by molecular biology approaches including transcriptomic, proteomic, metabolomic and lipidomic investigations in crops exposed to high night temperature (HNT) conditions. Nevertheless, the understanding of the underlying mechanisms causing yield decline under HNT is still limited. The discovery of significant differences between HNT-tolerant and HNT-sensitive cultivars is one of the main research directions to secure continuous food supply under the challenge of increasing climate change. With this review, we provide a summary of current knowledge on the physiological and molecular basis of contrasting HNT tolerance in rice and wheat cultivars. Requirements for HNT tolerance and the special adaptation strategies of the HNT-tolerant rice cultivar Nagina-22 (N22) are discussed. Putative metabolite markers for HNT tolerance useful for marker-assisted breeding are suggested, together with future research directions aimed at improving food security under HNT conditions.


Assuntos
Grão Comestível/fisiologia , Regulação da Expressão Gênica de Plantas , Termotolerância/fisiologia , Temperatura Alta , Oryza/fisiologia , Fotossíntese , Reguladores de Crescimento de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Amido/genética , Amido/metabolismo
17.
J Exp Bot ; 72(8): 2857-2876, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33471899

RESUMO

With the growth of the global population and the increasing frequency of natural disasters, crop yields must be steadily increased to enhance human adaptability to risks. Pre-harvest sprouting (PHS), a term mainly used to describe the phenomenon in which grains germinate on the mother plant directly before harvest, is a serious global problem for agricultural production. After domestication, the dormancy level of cultivated crops was generally lower than that of their wild ancestors. Although the shortened dormancy period likely improved the industrial performance of cereals such as wheat, barley, rice, and maize, the excessive germination rate has caused frequent PHS in areas with higher rainfall, resulting in great economic losses. Here, we systematically review the causes of PHS and its consequences, the major indicators and methods for PHS assessment, and emphasize the biological significance of PHS in crop production. Wheat quantitative trait loci functioning in the control of PHS are also comprehensively summarized in a meta-analysis. Finally, we use Arabidopsis as a model plant to develop more complete PHS regulatory networks for wheat. The integration of this information is conducive to the development of custom-made cultivated lines suitable for different demands and regions, and is of great significance for improving crop yields and economic benefits.


Assuntos
Grão Comestível , Oryza , Grão Comestível/genética , Germinação , Oryza/genética , Dormência de Plantas , Locos de Características Quantitativas/genética , Triticum/genética
18.
Plant Cell Rep ; 40(6): 953-978, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33559722

RESUMO

KEY MESSAGE: We summarize recent genome editing studies that have focused on the examination (or reexamination) of plant architectural phenotypes in cereals and the modification of these traits for crop improvement. Plant architecture is defined as the three-dimensional organization of the entire plant. Shoot architecture refers to the structure and organization of the aboveground components of a plant, reflecting the developmental patterning of stems, branches, leaves and inflorescences/flowers. Root system architecture is essentially determined by four major shape parameters-growth, branching, surface area and angle. Interest in plant architecture has arisen from the profound impact of many architectural traits on agronomic performance, and the genetic and hormonal regulation of these traits which makes them sensitive to both selective breeding and agronomic practices. This is particularly important in staple crops, and a large body of literature has, therefore, accumulated on the control of architectural phenotypes in cereals, particularly rice due to its twin role as one of the world's most important food crops as well as a model organism in plant biology and biotechnology. These studies have revealed many of the molecular mechanisms involved in the regulation of tiller/axillary branching, stem height, leaf and flower development, root architecture and the grain characteristics that ultimately help to determine yield. The advent of genome editing has made it possible, for the first time, to introduce precise mutations into cereal crops to optimize their architecture and close in on the concept of the ideotype. In this review, we consider recent genome editing studies that have focused on the examination (or reexamination) of plant architectural phenotypes in cereals and the modification of these traits for crop improvement.


Assuntos
Grão Comestível/anatomia & histologia , Grão Comestível/fisiologia , Edição de Genes/métodos , Proteínas de Plantas/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento
19.
Plant Dis ; 105(3): 548-557, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32870113

RESUMO

Root rot caused by Fusarium species is a major problem in the pulse growing regions of Montana. Fusarium isolates (n = 112) were obtained from seeds and roots of chickpea, dry pea, and lentil. Isolates were identified by comparing the sequences of the internal transcribed spacer region and the translation elongation factor 1-α in Fusarium-ID database. Fusarium avenaceum was the most abundant species (28%), followed by F. acuminatum (21%), F. poae (13%), F. oxysporum (8%), F. culmorum (6%), F. redolens (6%), F. sporotrichioides (6%), F. solani (4%), F. graminearum (2%), F. torulosum (2%), and F. tricinctum (0.9%). The aggressiveness of a subset of 50 isolates that represent various sources of isolation was tested on three pulse crops and two cereal crops. Nonparametric analysis of variance conducted on ranks of disease severity indicated that F. avenaceum and F. solani isolates were highly aggressive on pea and chickpea. In lentil, F. avenaceum and F. culmorum were highly aggressive. In barley, F. avenaceum, F. solani, F. culmorum, and F. graminearum were highly aggressive. In wheat, F. avenaceum, F. graminearum, and F. culmorum were highly aggressive. Two F. avenaceum isolates were highly aggressive across all the crops tested and found to be cross-pathogenic. One isolate of F. culmorum and an isolate of F. graminearum obtained from chickpea and lentil seed were highly aggressive on barley and wheat. The results indicate that multiple Fusarium spp. from seeds and roots can cause root rot on both pulse and cereal crops. Rotating these crops may still lead to an increase in inoculum levels, making crop rotation limited in efficacy as a disease management strategy.


Assuntos
Fusarium , Grão Comestível , Fusarium/genética , Montana , Virulência
20.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805287

RESUMO

Flowering plants develop new organs throughout their life cycle. The vegetative shoot apical meristem (SAM) generates leaf whorls, branches and stems, whereas the reproductive SAM, called the inflorescence meristem (IM), forms florets arranged on a stem or an axis. In cereal crops, the inflorescence producing grains from fertilized florets makes the major yield contribution, which is determined by the numbers and structures of branches, spikelets and florets within the inflorescence. The developmental progression largely depends on the activity of IM. The proper regulations of IM size, specification and termination are outcomes of complex interactions between promoting and restricting factors/signals. Here, we focus on recent advances in molecular mechanisms underlying potential pathways of IM identification, maintenance and differentiation in cereal crops, including rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum), and barley (Hordeum vulgare), highlighting the researches that have facilitated grain yield by, for example, modifying the number of inflorescence branches. Combinatorial functions of key regulators and crosstalk in IM determinacy and specification are summarized. This review delivers the knowledge to crop breeding applications aiming to the improvements in yield performance and productivity.


Assuntos
Grão Comestível , Inflorescência/genética , Meristema/genética , Poaceae/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Inflorescência/anatomia & histologia , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Meristema/fisiologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA