RESUMO
In the congenitally blind, language processing involves visual areas. In the case of normal visual development however, it remains unclear whether later visual loss induces interactions between the language and visual areas. This study compared the resting-state functional connectivity (FC) of retinotopic and language areas in two unique groups of late visually deprived subjects: (1) blind individuals suffering from retinitis pigmentosa (RP), (2) RP subjects without a visual periphery but with preserved central "tunnel vision", both of whom were contrasted with sighted controls. The results showed increased FC between Broca's area and the visually deprived areas in the peripheral V1 for individuals with tunnel vision, and both the peripheral and central V1 for blind individuals. These findings suggest that FC can develop in the adult brain between the visual and language systems in the completely and partially blind. These changes start in the deprived areas and increase in size (involving both foveal and peripheral V1) and strength (from negative to positive FC) as the disease and sensory deprivation progress. These observations support the claim that functional connectivity between remote systems that perform completely different tasks can change in the adult brain in cases of total and even partial visual deprivation.
Assuntos
Cegueira/fisiopatologia , Área de Broca/fisiopatologia , Idioma , Rede Nervosa/fisiopatologia , Retinose Pigmentar/fisiopatologia , Córtex Visual/fisiopatologia , Campos Visuais , Adulto , Mapeamento Encefálico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Plasticidade Neuronal , Privação SensorialRESUMO
BACKGROUND: Preoperative functional magnetic resonance imaging (fMRI) helps to preserve neurological function and ensure maximal tumor tissue excision. We studied the lateralization and localization of speech centers in select cases of tumors around the left (dominant) inferior frontal gyrus (IFG). METHODS: Twenty-three right-handed patients, harboring tumors involving the left (dominant) IFG or causing mass effect or edema extending onto the left IFG, were recruited over 17 months. Preoperatively, all patients underwent language and speech assessment followed by MRI and fMRI with paradigm (picture naming). Normative data for language fMRI was taken from the institute's imaging data bank. RESULTS: The study included 23 patients [mean age: 38.9 (±11.9) years; M: F = 16:7; 9 - normal speech, 14 - abnormal speech]. Group analysis of controls showed significant activation in the region of interest (ROI) - left Brodmann's areas (BAs) 44,45. Group analysis of patients with normal speech showed no activation in the left BAs 44,45; however, activation was noted in the immediate adjacent areas, left BAs 13,47 and contralateral prefrontal cortex. Group analysis of patients with impaired speech showed no activation in BAs 44,45 or in the immediate adjacent areas. CONCLUSIONS: Neuroplasticity in the brain may enable functional language areas to shift to adjoining or distant regions in the brain when the primary areas are involved by intrinsic tumors. This phenomenon is more likely in slow-growing compared to fast-growing tumors. Preoperative language fMRI may help us in identifying and protecting these areas during surgery.
RESUMO
Pathophysiology and treatment of tinnitus still are fields of intensive research. The neuroscientifically motivated Heidelberg Model of Music Therapy, previously developed by the German Center for Music Therapy Research, Heidelberg, Germany, was applied to explore its effects on individual distress and on brain structures. This therapy is a compact and fast application of nine consecutive 50-min sessions of individualized therapy implemented over 1 week. Clinical improvement and long-term effects over several years have previously been published. However, the underlying neural basis of the therapy's success has not yet been explored. In the current study, the therapy was applied to acute tinnitus patients (TG) and healthy active controls (AC). Non-treated patients were also included as passive controls (PTC). As predicted, the therapeutic intervention led to a significant decrease of tinnitus-related distress in TG compared to PTC. Before and after the study week, high-resolution MRT scans were obtained for each subject. Assessment by repeated measures design for several groups (Two-Way ANOVA) revealed structural gray matter (GM) increase in TG compared to PTC, comprising clusters in precuneus, medial superior frontal areas, and in the auditory cortex. This pattern was further applied as mask for general GM changes as induced by the therapy week. The therapy-like procedure in AC also elicited similar GM increases in precuneus and frontal regions. Comparison between structural effects in TG vs. AC was calculated within the mask for general GM changes to obtain specific effects in tinnitus patients, yielding GM increase in right Heschl's gyrus, right Rolandic operculum, and medial superior frontal regions. In line with recent findings on the crucial role of the auditory cortex in maintaining tinnitus-related distress, a causative relation between the therapy-related GM alterations in auditory areas and the long-lasting therapy effects can be assumed.