Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 744
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(8): e2316716121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349874

RESUMO

Understanding the molecular-level mechanisms involved in transmembrane ion selectivity is essential for optimizing membrane separation performance. In this study, we reveal our observations regarding the transmembrane behavior of Li+ and Mg2+ ions as a response to the changing pore solvation abilities of the covalent-organic-framework (COF) membranes. These abilities were manipulated by adjusting the lengths of the oligoether segments attached to the pore channels. Through comparative experiments, we were able to unravel the relationships between pore solvation ability and various ion transport properties, such as partitioning, conduction, and selectivity. We also emphasize the significance of the competition between Li+ and Mg2+ with the solvating segments in modulating selectivity. We found that increasing the length of the oligoether chain facilitated ion transport; however, it was the COF membrane with oligoether chains containing two ethylene oxide units that exhibited the most pronounced discrepancy in transmembrane energy barrier between Li+ and Mg2+, resulting in the highest separation factor among all the evaluated membranes. Remarkably, under electro-driven binary-salt conditions, this specific COF membrane achieved an exceptional Li+/Mg2+ selectivity of up to 1352, making it one of the most effective membranes available for Li+/Mg2+ separation. The insights gained from this study significantly contribute to advancing our understanding of selective ion transport within confined nanospaces and provide valuable design principles for developing highly selective COF membranes.

2.
Nano Lett ; 24(37): 11438-11445, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39240764

RESUMO

Polymeric membranes with high permselective performance are desirable for energy-saving bioalcohol separations. However, it remains challenging to design membrane microstructures with low-resistance channels and a thin thickness for fast alcohol transport. Herein, we demonstrate highly crystalline covalent organic framework (COF) membranes with ordered nanochannels as tunable transport layers for efficient butanol/water separation. The thickness was well-regulated by altering the concentration and molar ratio of two aldehyde monomers with different reactivity. The surface-integrated poly(dimethylsiloxane) produced defect-free and hydrophobic COF membranes. The membrane with continuous transport channels exhibited an exceptional flux of up to 18.8 kg m-2 h-1 and a pervaporation separation index of 217.7 kg m-2 h-1 for separating 5 wt % n-butanol/water. The separation efficiency exceeded that of analogous membranes. The calculated mass-transfer coefficient of butanol followed an inverse relationship with the COF membrane thickness. Consequently, this work reveals the great potential of crystalline polymeric membranes with high-density nanopores for biofuel recovery.

3.
Nano Lett ; 24(15): 4618-4624, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588453

RESUMO

Extracting osmotic energy from waste organic solutions via reverse electrodialysis represents a promising approach to reuse such industrial wastes and helps to mitigate the ever-growing energy needs. Herein, a molecularly thin membrane of covalent organic frameworks is engineered via interfacial polymerization to investigate its ion transport behavior in organic solutions. Interestingly, a significant deviation from linearity between ion conductance and reciprocal viscosity is observed, attributed to the nanoscale confinement effect on intermolecular interactions. This finding suggests a potential strategy to modulate the influence of apprarent viscosity on transmembrane transport. The osmotic energy harvesting of the ultrathin membrane in organic systems was studied, achieving an unprecedented output power density of over 84.5 W m-2 at a 1000-fold salinity gradient with a benign conversion efficiency and excellent stability. These findings provide a meaningful stepping stone for future studies seeking to fully leverage the potentials of organic systems in energy harvesting applications.

4.
Nano Lett ; 24(21): 6302-6311, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748606

RESUMO

Photocatalytic synthesis based on the oxygen reduction reaction (ORR) has shown great promise for H2O2 production. However, the low activity and selectivity of 2e- ORR result in a fairly low efficiency of H2O2 production. Herein, we propose a strategy to enhance the proton-coupled electron transfer (PCET) process in covalent organic frameworks (COFs), thereby significantly boosting H2O2 photosynthesis. We demonstrated that the construction of a hydrogen-bonding network, achieved by anchoring the H3PO4 molecular network on COF nanochannels, can greatly improve both proton conductivity and photogenerated charge separation efficiency of COFs. Thus, COF@H3PO4 exhibited superior photocatalytic performance in generating H2O2 without sacrificial agents, with a solar-to-chemical conversion efficiency as high as 0.69%. Results indicated that a much more localized spatial distribution of energy band charge density on COF@H3PO4 led to efficient charge separation, and the small energy barrier of the rate-limiting step from *OOH to H2O2 endowed COF@H3PO4 with higher 2e- ORR selectivity.

5.
Nano Lett ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38603798

RESUMO

The fabrication of solid-state proton-conducting electrolytes possessing both high performance and long-life reusability is significant but challenging. An "all-in-one" composite, H3PO4@PyTFB-1-SO3H, including imidazole, sulfonic acid, and phosphoric acid, which are essential for proton conduction, was successfully prepared by chemical post-modification and physical loading in the rationally pre-synthesized imidazole-based nanoporous covalent organic framework (COF), PyTFB-1. The resultant H3PO4@PyTFB-1-SO3H exhibits superhigh proton conductivity with its value even highly up to 1.15 × 10-1 S cm-1 at 353 K and 98% relative humidity (RH), making it one of the highest COF-based composites reported so far under the same conditions. Experimental studies and theoretical calculations further confirmed that the imidazole and sulfonic acid groups have strong interactions with the H3PO4 molecules and the synergistic effect of these three groups dramatically improves the proton conductivity properties of H3PO4@PyTFB-1-SO3H. This work demonstrated that by aggregating multiple proton carriers into one composite, effective proton-conducting electrolyte can be feasibly achieved.

6.
Nano Lett ; 24(42): 13341-13348, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39382456

RESUMO

The developments of modern surveillance technology pose great challenges to combat concealment for warfighters. Traditional camouflage suits cannot accommodate the need for camouflage stealth in complex warfare scenarios. Herein, a bidirectional diffusion-controlled in situ synthesis methodology is reported to achieve electrochromic nanofibrous membranes with mimetic chameleon skin structures (CSENs) by assembling electrochromic covalent organic frameworks on nanofibers. CSENs exhibit reversible color changes in the visible and near-infrared ranges under an applied potential with fast response times (25.8 s/26.2 s). The macro- and mesoporous structures in CSENs favored the transportation of electrolyte ions, achieving excellent color difference and coloration efficiency of 35.58 and 1053.26 cm2/C, respectively. Importantly, CSENs feature unique properties of self-standing, breathability, and flexibility, which are attributed to the micrometer pores constructed by entangled nanofibers. As a proof-of-concept study, the CSEN-based flexible electrochromic suit exhibits a dynamic camouflage function in real environments, showing promising properties as smart textiles for dynamic camouflage stealth.

7.
Small ; : e2403772, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004855

RESUMO

Rapid economic development has led to oil pollution and energy shortage. Membrane separation has attracted much attention due to its simplicity and efficiency in oil-water-separation. The development of membrane materials with enhanced separation properties is essential to improve the separation-efficiency. Proton exchange membrane fuel cells (PEMFCs) are expected to replace conventional engines due to their high-power-conversion rates and other favorable properties. Anhydrous-proton-conducting materials are vital components of PEMFCs. However, developing stable proton-conducting materials that exhibit high conductivity at varying temperatures remains challenging. Herein, two covalent organic frameworks (COFs) with long-side-chains are synthesized, and their corresponding COF@SSN membranes. Both membranes can effectively separate oil-water mixtures and water-in-oil emulsions. The TFPT-AF membrane achieves a maximum oil-flux of 6.05 × 105 g h-1 m-2 with an oil-water separation efficiency of above 99%, which is almost unchanged after 20 consecutive uses. COF@H3PO4 doped with different ratios of H3PO4 is prepared, the results show that the perfluorocarbon-chain system has  excellent anhydrous proton conductivity , achieving an ultra-high proton-conductivity of 3.98 × 10-1 S cm-1 at 125 °C. This study lays the foundation for tailor-made-functionalization of COF through pre-engineering and surface-modification, highlighting the great potential of COFs for oil-water separation and anhydrous-proton-conductivity.

8.
Small ; : e2405176, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115339

RESUMO

The escalating presence of per- and polyfluoroalkyl substances (PFAS) in drinking water poses urgent public health concerns, necessitating effective removal. This study presents a groundbreaking approach, using viologen to synthesize covalent organic framework nanospheres: MELEM-COF and MEL-COF. Characterized by highly crystalline features, these nanospheres exhibit exceptional affinity for diverse anionic PFAS compounds, achieving simultaneous removal of multiple contaminants within 30 min. Investigating six anionic PFAS compounds, MEL- and MELEM-COFs achieved 90.0-99.0% removal efficiency. The integrated analysis unveils the synergistic contributions of COF morphology and functional properties to PFAS adsorption. Notably, MELEM-COF, with cationic surfaces, exploits electrostatic and dipole interactions, with a 2500 mg g-1 adsorption capacity-surpassing all reported COFs to date. MELEM-COF exhibits rapid exchange kinetics, reaching equilibrium within 30 min. These findings deepen the understanding of COF materials and promise avenues for refining COF-based adsorption strategies.

9.
Small ; 20(4): e2305613, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712119

RESUMO

Covalent organic frameworks (COFs) are a family of engaging membrane materials for molecular separation, which remain challenging to fabricate in the form of thin-film composite membranes due to slow crystal growth and insoluble powder. Here, an additive approach is presented to construct COF-based thin-film composite membranes in 10 min via COF oligomer coating onto poly(ether ether ketone) (PEEK)ultrafiltration membranes. By the virtue of ultra-thin liquid phase and liquid-solid interface-confined assembly, the COF oligomers are fast stacked up and grow along the interface with the solvent evaporation. Benefiting from the low out-plane resistance of COFs, COF@PEEK composite membranes exhibit high solvent permeances in a negative correlation with solvent viscosity. The well-defined pore structures enable high molecular sieving ability (Mw = 300 g mol-1 ). Besides, the COF@PEEK composite membranes possess excellent mechanical integrities and steadily operate for over 150 h in the condition of high-pressure cross flow. This work not only exemplifies the high-efficiency and scale-up preparation of COF-based thin-film composite membranes but also provides a new strategy for COF membrane processing.

10.
Small ; 20(16): e2308499, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009797

RESUMO

Efficient construction of proton transport channels in proton exchange membranes maintaining conductivity under varied humidity is critical for the development of fuel cells. Covalent organic frameworks (COFs) hold great potential in providing precise and fast ion transport channels. However, the preparation of continuous free-standing COF membranes retaining their inherent structural advantages to realize excellent proton conduction performance is a major challenge. Herein, a zwitterionic COF material bearing positive ammonium ions and negative sulphonic acid ions is developed. Free-standing COF membrane with adjustable thickness is constructed via surface-initiated polymerization of COF monomers. The porosity, continuity, and stability of the membranes are demonstrated via the transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) characterization. The rigidity of the COF structure avoids swelling in aqueous solution, which improves the chemical stability of the proton exchange membranes and improves the performance stability. In the higher humidity range (50-90%), the prepared zwitterionic COF membrane exhibits superior capability in retaining the conductivity compared to COF membrane merely bearing sulphonic acid group. The established strategy shows the potential for the application of zwitterionic COF in the proton exchange membrane fuel cells.

11.
Small ; 20(12): e2307843, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948442

RESUMO

Covalent organic frameworks (COFs) with flexible periodic skeletons and ordered nanoporous structures have attracted much attention as potential candidate electrode materials for green energy storage and efficient seawater desalination. Further improving the intrinsic electronic conductivity and releasing porosity of COF-based materials is a necessary strategy to improve their electrochemical performance. Herein, the employed graphene as the conductive substrate to in situ grow 2D redox-active COF (TFPDQ-COF) with redox activity under solvent-free conditions to prepare TFPDQ-COF/graphene (TFPDQGO) nanohybrids and explores their application in both supercapacitor and hybrid capacitive deionization (HCDI). By optimizing the hybridization ratio, TFPDQGO exhibits a large specific capacitance of 429.0 F g-1 due to the synergistic effect of the charge transport highway provided by the graphene layers and the abundant redox-active centers contained in the COF skeleton, and the assembled TFPDQGO//activated carbon (AC) asymmetric supercapacitor possesses a high energy output of 59.4 Wh kg-1 at a power density of 950 W kg-1 and good cycling life. Furthermore, the maximum salt adsorption capacity (SAC) of 58.4 mg g-1 and stable regeneration performance is attained for TFPDQGO-based HCDI. This study highlights the new opportunities of COF-based hybrid materials acting as high-performance supercapacitor and HCDI electrode materials.

12.
Small ; 20(30): e2310147, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38377273

RESUMO

Fabricating COFs-based electrocatalysts with high stability and conductivity still remains a great challenge. Herein, 2D polyimide-linked phthalocyanine COF (denoted as NiPc-OH-COF) is constructed via solvothermal reaction between tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyaninato nickel(II) and 2,5-diamino-1,4-benzenediol (DB) with other two analogous 2D COFs (denoted as NiPc-OMe-COF and NiPc-H-COF) synthesized for reference. In comparison with NiPc-OMe-COF and NiPc-H-COF, NiPc-OH-COF exhibits enhanced stability, particularly in strong NaOH solvent and high conductivity of 1.5 × 10-3 S m-1 due to the incorporation of additional strong interlayer hydrogen bonding interaction between the O-H of DB and the hydroxy "O" atom of DB in adjacent layers. This in turn endows the NiPc-OH-COF electrode with ultrahigh CO2-to-CO faradaic efficiency (almost 100%) in a wide potential range from -0.7 to -1.1 V versus reversible hydrogen electrode (RHE), a large partial CO current density of -39.2 mA cm-2 at -1.1 V versus RHE, and high turnover number as well as turnover frequency, amounting to 45 000 and 0.76 S-1 at -0.80 V versus RHE during 12 h lasting measurement.

13.
Small ; : e2403300, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966902

RESUMO

Pore size sieving, Donnan exclusion, and their combined effects seriously affect ion separation of membrane processes. However, traditional polymer-based membranes face some challenges in precisely controlling both charge distribution and pore size on the membrane surface, which hinders the ion separation performance, such as heavy metal ion removal. Herein, the heterocharged covalent organic framework (COF) membrane is reported by assembling two kinds of ionic COF nanosheets with opposite charges and different pore sizes. By manipulating the stacking quantity and sequence of two kinds of nanosheets, the impact of membrane surface charge and pore size on the separation performance of monovalent and multivalent ions is investigated. For the separation of anions, the effect of pore size sieving is dominant, while for the separation of cations, the effect of Donnan exclusion is dominant. The heterocharged TpEBr/TpPa-SO3H membrane with a positively charged upper layer and a negatively charged bottom layer exhibits excellent rejection of multivalent anions and cations (Ni2+, Cd2+, Cr2+, CrO4 2-, SeO3 2-, etc). The strategy provides not only high-performance COF membranes for ion separation but also an inspiration for the engineering of heterocharged membranes.

14.
Small ; 20(32): e2311064, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38396219

RESUMO

Visual sensing of humidity and temperature by solids plays an important role in the everyday life and in industrial processes. Due to their hydrophobic nature, most covalent organic framework (COF) sensors often exhibit poor optical response when exposed to moisture. To overcome this challenge, the optical response is set out to improve, to moisture by incorporating H-bonding ionic functionalities into the COF network. A highly sensitive COF, consisting of guanidinium and diformylpyridine linkers (TG-DFP), capable of detecting changes in temperature and moisture content is fabricated. The hydrophilic nature of the framework enables enhanced water uptake, allowing the trapped water molecules to form a large number of hydrogen bonds. Despite the presence of non-emissive building blocks, the H-bonds restrict internal bond rotation within the COF, leading to reversible fluorescence and solid-state optical hydrochromism in response to relative humidity and temperature.

15.
Small ; : e2404885, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308232

RESUMO

The overall maximization of photocatalytic H2O2 production efficiency urgently requires the comprehensive optimization of each step in multiplex photocatalysis. Despite numerous endeavors, isolated researches focusing on single efficiencies hinder further advancements in overall catalytic activity. In this work, a series of imine-linked COFs (TT-COF-X), incorporating electronically tunable functional groups (X = ─H, ─OMe, ─OH, ─Br), are rationally fabricated for visible-light-driven H2O2 production via a dual-channel pathway involving 2e- water oxidation and 2e- oxygen reduction. Combined simulations and characterizations reveal that the synergistic modification of functional groups for electronic conjugation and locally intramolecular polarity collectively enhanced light absorption, charge separation and transfer, and interface water-oxygen affinity efficiency. Notably, femtosecond time-resolved transient absorption (fs-TA) reveals that the polarity-induced built-in electric field play a crucial role in facilitating exciton dissociation by reacting BIEF-mediated shallow trapping state. The simultaneously optimal tri-efficiency ultimately results in the highest H2O2 production rate of 3406.25 µmol h-1 g-1 and apparent quantum yields of 8.1% of TT-COF-OH. This study offers an emerging strategy to rational design of photocatalysts from the comprehensive tri-efficiency-oriented perspective.

16.
Small ; 20(37): e2402993, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38750614

RESUMO

2D covalent organic framework (COF) materials with extended conjugated structure and periodic columnar π-arrays exhibit promising applications in organic optoelectronics. However, there is a scarcity of reports on optoelectronic COFs, mainly due to the lack of suitable π-skeletons. Here, two multi-functional optoelectronic 2D COFs DPP-TPP-COF and DPP-TBB-COF are constructed with diketopyrrolopyrrole as electron acceptor (A), and 1,3,6,8-tetraphenylpyrene and 1,3,5-triphenylbenzene as electron donor (D) through imine bonds. Both 2D COFs showed good crystallinities and AA stacking with a rhombic framework for DPP-TPP-COF and hexagonal one for DPP-TBB-COF, respectively. The electron D-A and ordered intermolecular packing structures endow the COFs with broad UV-vis absorptions and narrow bandgaps along with suitable HOMO/LUMO energy levels, resulting in multi-functional optoelectronic properties, including photothermal conversion, supercapacitor property, and ambipolar semiconducting behavior. Among them, DPP-TPP-COF exhibits a high photothermal conversion efficiency of 47% under 660 nm laser irradiation, while DPP-TBB-COF exhibits superior specific capacitance of 384 F g-1. Moreover, P-type doping and N-type doping are achieved by iodine and tetrakis(dimethylamino)ethylene on a single host COF, resulting in ambipolar semiconducting behavior. These results provide a paradigm for the application of multi-functional optoelectronic COF materials.

17.
Small ; 20(40): e2402822, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38837540

RESUMO

Covalent-organic framework (COF) membranes are increasingly used for many potential applications including ion separation, fuel cells, and ion batteries. It is of central importance to fundamentally and quantitatively understand ion transport in COF membranes. In this study, a series of COF membranes is designed with different densities and arrangements of functional groups and subsequently utilize molecular simulation to provide microscopic insights into ion transport in these membranes. The membrane with a single-sided layer exhibits the highest chloride ion (Cl-) conductivity of 77.2 mS cm-1 at 30 °C. Replacing the single-sided layer with a double-sided layer or changing layer arrangement leads to a decrease in Cl- conductivity up to 33% or 53%, respectively. It is revealed that the electrostatic repulsion between ions serves as a driving force to facilitate ion transport and the positions of functional groups determine the direction of electrostatic repulsion. Furthermore, the ordered pores generate concentrated ions and allow rapid ion transport. This study offers bottom-up inspiration on the design of new COF membranes with moderate density and proper arrangement of functional groups to achieve high ion conductivity.

18.
Small ; : e2402656, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140196

RESUMO

The escalating misuse of antipyretic and analgesic drugs, alongside the rising incidents of acute drug-induced liver injury, underscores the need for a precisely targeted drug delivery system. Herein, two isoreticular covalent organic frameworks (Se-COF and Se-BCOF) are developed by Schiff-base condensation of emissive tetraphenylethylene and diselenide-bridged monomers. Leveraging the specific affinity of macrophages for mannose, the first precise targeting of these COFs to liver macrophages is achieved. The correlation is also explored between the therapeutic effects of COFs and the NLRP3/ASC/Caspase-1 signaling pathway. Utilizing this innovative delivery vehicle, the synergistic delivery of matrine and berberine are accomplished, compounds extracted from traditional Chinese medicine. This approach not only demonstrated the synergistic effects of the drugs but also mitigated their toxicity. Notably, berberine, through phosphorylation of JNK and up-regulation of nuclear Nrf-2 and its downstream gene Mn-SOD expression, simultaneously countered excessive ROS and suppressed the activation of the NLRP3/ASC/Caspase-1 signaling pathway in injured liver tissues. This multifaceted approach proved highly effective in safeguarding against acute drug-induced liver injury, ultimately restoring liver health to normalcy. These findings present a novel and promising strategy for the treatment of acute drug-induced liver injury.

19.
Small ; 20(33): e2401172, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38552220

RESUMO

Fabricating covalent organic framework (COF) membranes through the pre-assembly of nanosheets with different properties may open a novel avenue to the fabrication of advanced 2D membranes. Herein, COF membranes are fabricated using oppositely-charged COF nanosheets (CONs). Negatively-charged CONs and positively-charged CONs are pre-assembled through simple physical mixing, yielding the CONs with an aspect ratio of exceeding 10 000, which are assembled into three kinds of COF membranes. The optimal membranes exhibit the highest desalination performance with permeation flux of 132.66 kg m-2 h-1, salt rejection of 99.99%, and superior long-term operation stability.

20.
Small ; 20(34): e2401635, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38607950

RESUMO

Vapor-driven smart Janus materials have made significant advancements in intelligent monitoring, control, and interaction, etc. Nevertheless, the development of ultrafast response single-layer Janus membrane, along with a deep exploration of the smart response mechanisms, remains a long-term endeavor. Here, the successful synthesis of a high-crystallinity single-layer Covalent organic framework (COF) Janus membrane is reported by morphology control. This kind of membrane displays superior mechanical properties and specific surface area, along with excellent responsiveness to CH2Cl2 vapor. The analysis of the underlying mechanisms reveals that the vapor-induced breathing effect of the COF and the stress mismatch of the Janus structure play a crucial role in its smart deformation performance. It is believed that this COF Janus membrane holds promise for complex tasks in various fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA