RESUMO
Ecological regime shifts are expected to increase this century as climate change propagates cascading effects across ecosystems with coupled elements. Here, we demonstrate that the climate-driven salt marsh-to-mangrove transition does not occur in isolation but is linked to lesser-known oyster reef-to-mangrove regime shifts through the provision of mangrove propagules. Using aerial imagery spanning 82 y, we found that 83% of oyster reefs without any initial mangrove cover fully converted to mangrove islands and that mean (± SD) time to conversion was 29.1 ± 9.6 y. In situ assessments of mangrove islands suggest substantial changes in ecosystem structure during conversion, while radiocarbon dates of underlying reef formation indicate that such transitions are abrupt relative to centuries-old reefs. Rapid transition occurred following release from freezes below the red mangrove (Rhizophora mangle) physiological tolerance limit (-7.3 °C) and after adjacent marsh-to-mangrove conversion. Additional nonclimate-mediated drivers of ecosystem change were also identified, including oyster reef exposure to wind-driven waves. Coupling of regime shifts arises from the growing supply of mangrove propagules from preceding and adjacent marsh-to-mangrove conversion. Climate projections near the mangrove range limit on the Gulf coast of Florida suggest that regime shifts will begin to transform subtropical estuaries by 2070 if propagule supply keeps pace with predicted warming. Although it will become increasingly difficult to maintain extant oyster habitat with tropicalization, restoring oyster reefs in high-exposure settings or active removal of mangrove seedlings could slow the coupled impacts of climate change shown here.
Assuntos
Mudança Climática , Ecossistema , Estuários , Animais , Temperatura Baixa , Ostreidae , Rhizophoraceae/fisiologia , Plântula , Áreas AlagadasRESUMO
Intense disturbances such as hurricanes may drastically affect ecosystems, producing both acute and long-term changes along coastlines. By disrupting human activities (e.g., fishing), hurricanes can provide an opportunity to quantify the effects of these activities on coastal ecosystems. We performed predator-exclusion experiments on oyster reefs in 2016, one-year before a category-4 hurricane ("Harvey") and again in 2018 one-year post-hurricane where the storm made landfall. Additionally, we examined 8 years (2011-2018) of fisheries-independent data to gauge how fishing pressure and fish populations were affected by the storm in three locations that varied in storm impacts. In the month following Hurricane Harvey, fishing effort dropped by 90% in the area with wind and flooding damage, and predatory fish species commonly targeted by anglers were 300% more abundant than the year prior to the hurricane. The locations without damage to fishing infrastructure did not experience declines in fishing pressure or changes in fish abundance, regardless of flooding disturbance. Reef fish and invertebrate communities directly affected by the storm were significantly different after the hurricane and were ~ 30% more diverse. With low fishing pressure, sportfish CPUE were 1.7-6.9 × higher immediately after the hurricane. Intermediate consumers, such as crabs that prey on oysters, were 45% less abundant and 10% smaller. These results indicate that hurricanes can temporarily disrupt human-ecosystem linkages and reconstitute top-down control by sportfish in estuarine food webs. Disturbance events that interrupt or weaken those interactions may yield indirect ecological benefits and provide insights into the effects of human activities on food webs.
Assuntos
Tempestades Ciclônicas , Ecossistema , Estuários , Animais , Humanos , Peixes , PesqueirosRESUMO
With the increasing affordability of next-generation sequencing technologies, genotype-by-sequencing has become a cost-effective tool for ecologists and conservation biologists to describe a species' evolutionary history. For hostparasite interactions, genotype-by-sequencing can allow the simultaneous examination of host and parasite genomes and can yield insight into co-evolutionary processes. The eastern oyster, Crassostrea virginica, is among the most important aquacultured species in the United States. Natural and farmed oyster populations can be heavily impacted by 'dermo' disease caused by an alveolate protist, Perkinsus marinus. Here, we used restricted site-associated DNA sequencing (RADseq) to simultaneously examine spatial population genetic structure of host and parasite. We analysed 393 single-nucleotide polymorphisms (SNPs) for P. marinus and 52,100 SNPs for C. virginica from 36 individual oysters from the Gulf of Mexico (GOM) and mid-Atlantic coastline. All analyses revealed statistically significant genetic differentiation between the GOM and mid-Atlantic coast populations for both C. virginica and P. marinus, and genetic divergence between Chesapeake Bay and the outer coast of Virginia for C. virginica, but not for P. marinus. A co-phylogenetic analysis confirmed significant coupled evolutionary change between host and parasite across large spatial scales. The strong genetic divergence between marine basins raises the possibility that oysters from either basin would not be well adapted to parasite genotypes and phenotypes from the other, which would argue for caution with regard to both oyster and parasite transfers between the Atlantic and GOM regions. More broadly, our results demonstrate the potential of RADseq to describe spatial patterns of genetic divergence consistent with coupled evolution.
Assuntos
Alveolados , Crassostrea , Interações Hospedeiro-Parasita , Filogeografia , Polimorfismo de Nucleotídeo Único , Animais , Crassostrea/parasitologia , Crassostrea/genética , Alveolados/genética , Alveolados/classificação , Golfo do México , Análise de Sequência de DNA , Genótipo , Mid-Atlantic RegionRESUMO
Globally, oyster reef restoration is one of the most widely applied coastal restoration interventions. While reefs are focal points of processes tightly linked to the carbonate system such as shell formation and respiration, how these processes alter reef carbonate chemistry relative to the surrounding seawater is unclear. Moreover, coastal systems are increasingly impacted by coastal acidification, which may affect reef carbonate chemistry. Here, we characterized the growth of multiple constructed reefs as well as summer variations in pH and carbonate chemistry of reef-influenced seawater (in the middle of reefs) and ambient seawater (at locations ~50 m outside of reefs) to determine how reef chemistry was altered by the reef community and, in turn, impacts resident oysters. High frequency monitoring across three subtidal constructed reefs revealed reductions of daily mean and minimum pH (by 0.05-0.07 and 0.07-0.12 units, respectively) in seawater overlying reefs relative to ambient seawater (p < .0001). The proportion of pH measurements below 7.5, a threshold shown to negatively impact post-larval oysters, were 1.8×-5.2× higher in reef seawater relative to ambient seawater. Most reef seawater samples (83%) were reduced in total alkalinity relative to ambient seawater samples, suggesting community calcification was a key driver of modified carbonate chemistry. The net metabolic influence of the reef community resulted in reductions of CaCO3 saturation state in 78% of discrete samples, and juvenile oysters placed on reefs exhibited slower shell growth (p < .05) compared to oysters placed outside of reefs. While differences in survival were not detected, reef oysters may benefit from enhanced survival or recruitment at the cost of slowed growth rates. Nevertheless, subtidal restored reef communities modified seawater carbonate chemistry in ways that likely increased oyster vulnerability to acidification, suggesting that carbonate chemistry dynamics warrant consideration when determining site suitability for oyster restoration, particularly under continued climate change.
Assuntos
Ostreidae , Água do Mar , Animais , Água do Mar/química , Recifes de Corais , Estuários , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Carbonatos/química , Ostreidae/metabolismoRESUMO
Restoration aims to reverse the global declines of foundation species, but it is unclear how project attributes, the physical setting, and antecedent conditions affect restoration success. In coastal seas worldwide, oyster reef restoration is increasing to counter historical habitat destruction and associated declines in fisheries production and biodiversity. Yet, restoration outcomes are highly variable and the factors that enhance oyster production and nekton abundance and diversity on restored reefs are unresolved. To quantify the drivers of oyster restoration success, we used meta-analysis to synthesize data from 158 restored reefs paired with unstructured habitats along the United States Gulf and Atlantic coasts. The average recovery of oyster production was 65% greater in subtidal (vs. intertidal) zones, 173% greater in polyhaline (vs. mesohaline) environments and increased with tidal range, demonstrating that physical conditions can strongly influence the restoration success of foundation species. Additionally, restoration increased the relative abundance and richness of nektonic fishes and invertebrates over time as reefs aged (at least 8 years post-construction). Thus, the restoration benefits for provisioning habitat and enhancing biodiversity accrue over time, highlighting that restoration projects need multiple years to maximize ecosystem functions. Furthermore, long-term monitoring of restored and control sites is needed to assess restoration outcomes and associated drivers. Last, our work reveals data constraints for several potential drivers of restoration outcomes, including reef construction material, reef dimensions, harvest pressure and disease prevalence. More experimental and observational studies are needed to target these factors and measure them with consistent methods across studies. Our findings indicate that the assisted recovery of foundation species yields several enhancements to ecosystem services, but such benefits are mediated by time and environmental conditions.
Assuntos
Ecossistema , Ostreidae , Animais , Biodiversidade , Peixes , PesqueirosRESUMO
Triploid Eastern oysters have been reported to suffer greater mortalities than diploids when exposed to low-salinity (<5) conditions in the U.S. Gulf of Mexico and Atlantic estuaries. As such, the effect of broodstock parentage was investigated on the low-salinity tolerance of triploid progeny produced by mating diploid females (collected from three Louisiana estuaries differing in salinity regimes) with male tetraploids at two hatcheries. Diploid crosses were also produced using the wild broodstocks to verify expected differences in low-salinity tolerance among diploid progeny and between ploidy levels. All progeny were deployed at low and moderate-salinity (averages of 9.3 and 19.4) field sites to monitor monthly growth and mortality. Sex ratio, gametogenic stage, gonad-to-body ratio, condition index, and Perkinsus marinus infection were also measured periodically at both field sites Although high triploid mortality at the low-salinity site prevented complete analysis, results indicated that diploid parentage had little effect on triploid survival at low salinity. Broodstock parentage affected diploid mortality and growth, although results did not match with predictions made based on historical salinity at broodstock collection sites. Ploidy level had the largest effect on triploid survival and growth followed by the hatchery site where the oysters were produced.
RESUMO
A multiplex quantitative PCR (qPCR) assay for the simultaneous detection of 3 eastern oyster Crassostrea virginica parasites, Perkinsus marinus, Haplosporidium nelsoni, and H. costale, was developed using 3 different fluorescently labeled hydrolysis probes. The primers and probe from a previously validated singleplex qPCR for P. marinus detection were combined with newly designed primers and probes specific for H. nelsoni and H. costale. The functionality of the multiplex assay was demonstrated on 2 different platforms by the linear relationship of the standard curves and similar cycle threshold (CT) values between parasites. Efficiency of the multiplex qPCR assay on the Roche and BioRad platforms ranged between 93 and 101%. The sensitivity of detection ranged between 10 and 100 copies of plasmid DNA for P. marinus and Haplosporidium spp., respectively. The concordance between the Roche and BioRad platforms in the identification of the parasites P. marinus, H. nelsoni, and H. costale was 91, 97, and 97%, respectively, with a 10-fold increase in the sensitivity of detection of Haplosporidium spp. on the BioRad thermocycler. The concordance between multiplex qPCR and histology for P. marinus, H. nelsoni, and H. costale was 54, 57, and 87%, respectively. Discordances between detection methods were largely related to localized or low levels of infections in oyster tissues, and qPCR was the more sensitive diagnostic. The multiplex qPCR developed here is a sensitive diagnostic tool for the quantification and surveillance of single and mixed infections in the eastern oyster.
Assuntos
Crassostrea , Haplosporídios , Ostreidae , Parasitos , Animais , Crassostrea/parasitologia , Sensibilidade e Especificidade , Haplosporídios/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , DNARESUMO
Salinity conditions in oyster breeding grounds in the Gulf of Mexico are expected to drastically change due to increased precipitation from climate change and anthropogenic changes to local hydrology. We determined the capacity of the eastern oyster, Crassostrea virginica, to adapt via standing genetic variation or acclimate through transgenerational plasticity (TGP). We outplanted oysters to either a low- or medium-salinity site in Louisiana for 2 years. We then crossed adult parents using a North Carolina II breeding design, and measured body sizeâ¯and survival of larvae 5 dpf raised under low or ambient salinity. We found that TGP is unlikely to significantly contribute to low-salinity tolerance since we did not observe increased growth or survival in offspring reared in low salinity when their parents were also acclimated at a low-salinity site. However, we detected genetic variation for body size, with an estimated heritability of 0.68 ± 0.25 (95% CI). This suggests there is ample genetic variation for this trait to evolve, and that evolutionary adaptation is a possible mechanism through which oysters will persist with future declines in salinity. The results of this experiment provide valuable insights intoâ¯successfully breeding low-salinity tolerance in this commercially important species.
Assuntos
Crassostrea , Animais , Crassostrea/genética , Golfo do México , Louisiana , North Carolina , SalinidadeRESUMO
Increases in minimum air temperatures have facilitated transitions of salt marshes to mangroves along coastlines in the southeastern United States. Numerous studies have documented mangrove expansion into salt marshes; however, a present-day conversion of oyster reefs to mangrove islands has not been documented. Using aerial photographs and high-resolution satellite imagery, we determined percent cover and number of mangrove patches on oyster reefs in Mosquito Lagoon, FL, USA over 74 years (1943-2017) by digitizing oyster reef and "mangrove on oyster reef" areas. Live oyster reefs present in 1943 were tracked through time and the mangrove area on every reef calculated for seven time periods. There was a 103% increase in mangrove cover on live oyster reefs from 1943 (6.6%) to 2017 (13.4%). Between 1943 and 1984, the cover remained consistent (~7%), while between 1984 and 2017, mangrove cover increased rapidly with a 6% year-1 increase in mangrove area on oyster reefs (198% increase). In 1943, 8.7% of individual reefs had at least one mangrove patch on them; by 2017, 21.8% of reefs did. Site visits found at least one mature Avicennia germinans on each tracked mangrove reef, with large numbers of smaller Rhizophora mangle, suggesting the post-1984 mangrove increases were the result of increased R. mangle recruitment and survival. Escalation in the coverage and number of mangrove stands on oyster reefs coincided with a period that lacked extreme freeze events. The time since a temperature of ≤-6.6°C (A. germinans mortality threshold) and ≤-4°C (R. mangle mortality threshold) were significantly correlated with the increased ratio of mangrove area:oyster area, total mangrove area, and number of mangrove patches, with greater variation explained by time since ≤ -4°C. The lack of freezes could lead globally to an ecosystem shift of intertidal oyster reefs to mangrove islands near poleward mangrove range limits.
Assuntos
Avicennia , Ostreidae , Animais , Mudança Climática , Ecossistema , Sudeste dos Estados Unidos , Áreas AlagadasRESUMO
The large geographic distribution of the eastern oyster, Crassostrea virginica, makes it an ideal species to test how populations have adapted to latitudinal gradients in temperature. Despite inhabiting distinct thermal regimes, populations of C. virginica near the species' southern and northern geographic range show no population differences in their physiological response to temperature. In this study, we used comparative transcriptomics to understand how oysters from either end of the species' range maintain enantiostasis across three acclimation temperatures (10, 20, and 30°C). With this approach, we identified genes that were differentially expressed in response to temperature between individuals of C. virginica collected from New Brunswick, Canada and Louisiana, USA. We observed a core set of genes whose expression responded to temperature in both populations, but also an even larger set of genes with expression patterns that were unique to each population. Intriguingly, the genes with population-specific responses to temperature had elevated FST and Ka/Ks ratios compared to the genome-wide average. In contrast, genes showing only a response to temperature were found to only have elevated FST values suggesting that divergent FST may be due to selection on linked regulatory regions rather than positive selection on protein coding regions. Taken together, our results suggest that, despite coarse-scale physiological similarities, natural selection has shaped divergent gene expression responses to temperature in geographically separated populations of this broadly eurythermal marine invertebrate.
Assuntos
Crassostrea , Aclimatação , Adaptação Fisiológica/genética , Animais , Crassostrea/genética , Humanos , Temperatura , TranscriptomaRESUMO
Organisms are increasingly likely to be exposed to multiple stressors repeatedly across ontogeny as climate change and other anthropogenic stressors intensify. Early life stages can be particularly sensitive to environmental stress, such that experiences early in life can "carry over" to have long-term effects on organism fitness. Despite the potential importance of these within-generation carryover effects, we have little understanding of how they vary across ecological contexts, particularly when organisms are re-exposed to the same stressors later in life. In coastal marine systems, anthropogenic nutrients and warming water temperatures are reducing average dissolved oxygen (DO) concentrations while also increasing the severity of naturally occurring daily fluctuations in DO. Combined effects of warming and diel-cycling DO can strongly affect the fitness and survival of coastal organisms, including the eastern oyster (Crassostrea virginica), a critical ecosystem engineer and fishery species. However, whether early life exposure to hypoxia and warming affects oysters' subsequent response to these stressors is unknown. Using a multiphase laboratory experiment, we explored how early life exposure to diel-cycling hypoxia and warming affected oyster growth when oysters were exposed to these same stressors 8 weeks later. We found strong, interactive effects of early life exposure to diel-cycling hypoxia and warming on oyster tissueâ:âshell growth, and these effects were context-dependent, only manifesting when oysters were exposed to these stressors again two months later. This change in energy allocation based on early life stress exposure may have important impacts on oyster fitness. Exposure to hypoxia and warming also influenced oyster tissue and shell growth, but only later in life. Our results show that organisms' responses to current stress can be strongly shaped by their previous stress exposure, and that context-dependent carryover effects may influence the fitness, production, and restoration of species of management concern, particularly for sessile species such as oysters.
Assuntos
Crassostrea , Ecossistema , Animais , Hipóxia , Oxigênio , TemperaturaRESUMO
The eastern oyster, Crassostrea virginica, provides critical ecosystem services and supports valuable fishery and aquaculture industries in northern Gulf of Mexico (nGoM) subtropical estuaries where it is grown subtidally. Its upper critical thermal limit is not well defined, especially when combined with extreme salinities. The cumulative mortalities of the progenies of wild C. virginica from four nGoM estuaries differing in mean annual salinity, acclimated to low (4.0), moderate (20.0), and high (36.0) salinities at 28.9 °C (84 °F) and exposed to increasing target temperatures of 33.3 °C (92 °F), 35.6 °C (96 °F) or 37.8 °C (100 °F), were measured over a three-week period. Oysters of all stocks were the most sensitive to increasing temperatures at low salinity, dying quicker (i.e., lower median lethal time, LT50) than at the moderate and high salinities and resulting in high cumulative mortalities at all target temperatures. Oysters of all stocks at moderate salinity died the slowest with high cumulative mortalities only at the two highest temperatures. The F1 oysters from the more southern and hypersaline Upper Laguna Madre estuary were generally more tolerant to prolonged higher temperatures (higher LT50) than stocks originating from lower salinity estuaries, most notably at the highest salinity. Using the measured temperatures oysters were exposed to, 3-day median lethal Celsius degrees (LD50) were estimated for each stock at each salinity. The lowest 3-day LD50 (35.1-36.0 °C) for all stocks was calculated at a salinity of 4.0, while the highest 3-day LD50 (40.1-44.0 °C) was calculated at a salinity of 20.0.
Assuntos
Crassostrea/fisiologia , Aquecimento Global , Tolerância ao Sal , Animais , Biomassa , Crassostrea/crescimento & desenvolvimento , Golfo do México , TermotolerânciaRESUMO
The Gulf of Mexico (GoM) is home to the world's largest remaining wild oyster fisheries, but baseline surveys needed to assess habitat condition are recent and may represent an already-shifted reference state. Here, we use prehistoric oysters from archaeological middens to show that oyster size, an indicator of habitat function and population resilience, declined prior to the earliest assessments of reef condition in an area of the GoM previously considered pristine. Stable isotope sclerochronlogy reveals extirpation of colossal oysters occurred through truncated life history and slowed growth. More broadly, our study suggests that management strategies affected by shifting baselines may overestimate resilience and perpetuate practices that risk irreversible decline.
Assuntos
Crassostrea , Animais , Ecossistema , Pesqueiros , Golfo do México , MéxicoRESUMO
Recent findings have suggested that eastern oyster plasma possesses inhibitors of the protease subtilisin, which play a role in the host defense against Perkinsus marinus, a protist parasite causing dermo. A study was conducted to determine whether plasma subtilisin inhibitory activity (PSIA) could be used as a selective marker in breeding programs for dermo resistance. Eastern oysters Crassostrea virginica from 2 wild Louisiana populations shown to differ in dermo resistance were collected and their PSIA was measured. Three groups of oysters were established to spawn from each population. One group was composed of randomly sampled oysters (i.e. unselected) and the other 2 groups were composed of oysters with the highest or lowest PSIA. After spawning, progenies were deployed in October 2014 in a dermo endemic area and sampled quarterly for 2 yr to measure their mortality, growth, P. marinus infection intensity, condition index, PSIA, and the gene expression of 3 subtilisin inhibitors (cvSI-1, cvSI-2, and cvSI-3). Oyster cumulative mortalities of the progenies of all groups increased both years from April to October, concomitant with increasing P. marinus infection intensities. Mortalities and P. marinus infection intensities differed markedly between the 2 populations, but differences between the unselected and selected groups of each population were limited. Measurements of PSIA and cvSI-1, cvSI-2, and cvSI-3 gene expressions between the progenies of all groups showed few differences. CvSI-1 gene expression in surviving oysters of the most susceptible population was increased at the end of the study, adding additional support to the potential role of cvSI-1 defense against P. marinus.
Assuntos
Apicomplexa , Crassostrea , Animais , Louisiana , SubtilisinasRESUMO
For commercial oyster aquaculture, triploidy has significant advantages. To produce triploids, the principal technology uses diploid × tetraploid crosses. The development of tetraploid brood stock for this purpose has been successful, but as more is understood about tetraploids, it seems clear that chromosome instability is a principal feature in oysters. This paper is a continuation of work to investigate chromosome instability in polyploid Crassostrea virginica. We established families between tetraploids-apparently stable (non-mosaic) and unstable (mosaic)-and normal reference diploids, creating triploid groups, as well as tetraploids between mosaic and non-mosaic tetraploids. Chromosome loss was about the same for triploid juveniles produced from either mosaic or non-mosaic tetraploids or from either male or female tetraploids. However, there was a statistically significant difference in chromosome loss in tetraploid juveniles produced from mosaic versus non-mosaic parents, with mosaics producing more unstable progeny. These results confirm that chromosome instability, as manifested in mosaic tetraploids, is of little concern for producing triploids, but it is clearly problematic for tetraploid breeding. Concordance between the results from cytogenetics and flow cytometry was also tested for the first time in oysters, by assessing the ploidy of individuals using both techniques. Results between the two were non-concordant.
Assuntos
Instabilidade Cromossômica , Crassostrea/genética , Mitose/genética , Tetraploidia , Triploidia , Aneuploidia , Animais , Peso Corporal , Crassostrea/crescimento & desenvolvimento , Análise Citogenética , DNA/análise , Feminino , Citometria de Fluxo , Larva/genética , Masculino , MosaicismoRESUMO
The eastern oyster Crassostrea virginica provides a number of ecosystem services and is an important commercial fishery species along the US East and Gulf Coasts. Oyster populations have declined dramatically due to overharvesting, habitat loss, and disease. As restoration efforts and aquaculture of oysters continue to increase throughout their range, it is important to consider the impacts of a number of potential oyster pests, including the boring sponge Cliona spp. and the pea crab Zaops (Pinnotheres) ostreum, on oyster populations. Both of these have been demonstrated to reduce oyster growth, condition, and in some instances, reproductive output. Boring sponges in particular are a major concern for oyster growers and managers. Our monitoring efforts have suggested that pea crabs might be more prevalent in sponge-infested oysters; we therefore conducted an observational study to determine if there was any relationship between pea crab prevalence and sponge presence, and to examine whether the presence of both pests had synergistic effects on oyster condition. At 2 very different sample sites, North Carolina and New Jersey, oysters with 1 pest (i.e. boring sponge) were significantly more likely to have the second pest (i.e. pea crab) than the background population. Furthermore, sponge presence negatively affected oyster condition in North Carolina only, while pea crabs significantly reduced condition at both locations. When sponges and pea crabs were present together, the effects on oyster condition were additive. This study provides further evidence that interactions between an individual and a fouling/pest organism can alter oyster susceptibility to other parasites.
Assuntos
Braquiúros/fisiologia , Ostreidae/fisiologia , Poríferos/fisiologia , Animais , North Carolina , Fatores de TempoRESUMO
The commercial production of triploids, and the creation of tetraploid broodstock to support it, has become an important technique in aquaculture of the eastern oyster, Crassostrea virginica. Tetraploids are produced by cytogenetic manipulation of embryos and have been shown to undergo chromosome loss (to become a mosaic) with unknown consequences for breeding. Our objective was to determine the extent of aneuploidy in triploid progeny produced from both mosaic and non-mosaic tetraploids. Six families of triploids were produced using a single diploid female and crossed with three mosaic and non-mosaic tetraploid male oysters. A second set of crosses was performed with the reciprocals. Chromosome counts of the resultant embryos were tallied at 2-4 cell stage and as 6-hour(h)-old embryos. A significant level of aneuploidy was observed in 6-h-old embryos. For crosses using tetraploid males, aneuploidy ranged from 53% to 77% of observed metaphases, compared to 36% in the diploid control. For crosses using tetraploid females, 51%-71% of metaphases were aneuploidy versus 53% in the diploid control. We conclude that somatic chromosome loss may be a regular feature of early development in triploids, and perhaps polyploid oysters in general. Other aspects of chromosome loss in polyploid oysters are also discussed.
Assuntos
Instabilidade Cromossômica , Crassostrea/genética , Tetraploidia , Animais , Cruzamento , Crassostrea/citologia , Cruzamentos Genéticos , Diploide , Feminino , Fertilidade/genética , Masculino , Metáfase/genéticaRESUMO
Anthropogenic elevation of atmospheric CO2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism's ability to process environmental and biological cues. These counteracting impacts make it challenging to predict how acidification will alter species interactions and community structure. To examine effects of acidification on consumptive and behavioural interactions between mud crabs (Panopeus herbstii) and oysters (Crassostrea virginica), oysters were reared with and without caged crabs for 71 days at three pCO2 levels. During subsequent predation trials, acidification reduced prey consumption, handling time and duration of unsuccessful predation attempt. These negative effects of ocean acidification on crab foraging behaviour more than offset any benefit to crabs resulting from a reduction in the net rate of oyster calcification. These findings reveal that efforts to evaluate how acidification will alter marine food webs should include quantifying impacts on both calcification rates and animal behaviour.
Assuntos
Braquiúros/fisiologia , Dióxido de Carbono/análise , Cadeia Alimentar , Comportamento Predatório , Água do Mar/química , Animais , Crassostrea/crescimento & desenvolvimento , Concentração de Íons de HidrogênioRESUMO
Mollusk larvae have a stable, velum-up orientation that may influence how they sense and react to hydrodynamic signals applied in different directions. Directional sensing abilities and responses could affect how a larva interacts with anisotropic fluid motions, including those in feeding currents and in boundary layers encountered during settlement. Oyster larvae (Crassostrea virginica) were exposed to simple shear in a Couette device and to solid-body rotation in a single rotating cylinder. Both devices were operated in two different orientations, one with the axis of rotation parallel to the gravity vector, and one with the axis perpendicular. Larvae and flow were observed simultaneously with near-infrared particle-image velocimetry, and behavior was quantified as a response to strain rate, vorticity and centripetal acceleration. Only flows rotating about a horizontal axis elicited the diving response observed previously for oyster larvae in turbulence. The results provide strong evidence that the turbulence-sensing mechanism relies on gravity-detecting organs (statocysts) rather than mechanosensors (cilia). Flow sensing with statocysts sets oyster larvae apart from zooplankters such as copepods and protists that use external mechanosensors in sensing spatial velocity gradients generated by prey or predators. Sensing flow-induced changes in orientation, rather than flow deformation, would enable more efficient control of vertical movements. Statocysts provide larvae with a mechanism of maintaining their upward swimming when rotated by vortices and initiating dives toward the seabed in response to the strong turbulence associated with adult habitats.
Assuntos
Crassostrea/fisiologia , Aceleração , Animais , Comportamento Animal , Sinais (Psicologia) , Hidrodinâmica , Larva/fisiologia , Orientação/fisiologia , Reologia , Rotação , Células Receptoras Sensoriais/fisiologia , NataçãoRESUMO
Hydrodynamic signals from turbulence and waves may provide marine invertebrate larvae with behavioral cues that affect the pathways and energetic costs of larval delivery to adult habitats. Oysters (Crassostrea virginica) live in sheltered estuaries with strong turbulence and small waves, but their larvae can be transported into coastal waters with large waves. These contrasting environments have different ranges of hydrodynamic signals, because turbulence generally produces higher spatial velocity gradients, whereas waves can produce higher temporal velocity gradients. To understand how physical processes affect oyster larval behavior, transport and energetics, we exposed larvae to different combinations of turbulence and waves in flow tanks with (1) wavy turbulence, (2) a seiche and (3) rectilinear accelerations. We quantified behavioral responses of individual larvae to local instantaneous flows using two-phase, infrared particle-image velocimetry. Both high dissipation rates and high wave-generated accelerations induced most larvae to swim faster upward. High dissipation rates also induced some rapid, active dives, whereas high accelerations induced only weak active dives. In both turbulence and waves, faster swimming and active diving were achieved through an increase in propulsive force and power output that would carry a high energetic cost. Swimming costs could be offset if larvae reaching surface waters had a higher probability of being transported shoreward by Stokes drift, whereas diving costs could be offset by enhanced settlement or predator avoidance. These complex behaviors suggest that larvae integrate multiple hydrodynamic signals to manage dispersal tradeoffs, spending more energy to raise the probability of successful transport to suitable locations.