Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plant J ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949092

RESUMO

The plant hormone abscisic acid (ABA) regulates essential processes in plant development and responsiveness to abiotic and biotic stresses. ABA perception triggers a post-translational signaling cascade that elicits the ABA gene regulatory network (GRN), encompassing hundreds of transcription factors (TFs) and thousands of transcribed genes. To further our knowledge of this GRN, we performed an RNA-seq time series experiment consisting of 14 time points in the 16 h following a one-time ABA treatment of 5-week-old Arabidopsis rosettes. During this time course, ABA rapidly changed transcription levels of 7151 genes, which were partitioned into 44 coexpressed modules that carry out diverse biological functions. We integrated our time-series data with publicly available TF-binding site data, motif data, and RNA-seq data of plants inhibited in translation, and predicted (i) which TFs regulate the different coexpression clusters, (ii) which TFs contribute the most to target gene amplitude, (iii) timing of engagement of different TFs in the ABA GRN, and (iv) hierarchical position of TFs and their targets in the multi-tiered ABA GRN. The ABA GRN was found to be highly interconnected and regulated at different amplitudes and timing by a wide variety of TFs, of which the bZIP family was most prominent, and upregulation of genes encompassed more TFs than downregulation. We validated our network models in silico with additional public TF-binding site data and transcription data of selected TF mutants. Finally, using a drought assay we found that the Trihelix TF GT3a is likely an ABA-induced positive regulator of drought tolerance.

2.
BMC Genomics ; 25(1): 308, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528464

RESUMO

BACKGROUND: Flowering at the right time is a very important factor affecting the stable annual yield of longan. However, a lack of knowledge of the regulatory mechanism and key genes of longan flowering restricts healthy development of the longan industry. Therefore, identifying relevant genes and analysing their regulatory mechanism are essential for scientific research and longan industry development. RESULTS: DlLFY (Dimocarpus longan LEAFY) contains a 1167 bp open reading frame and encodes 388 amino acids. The amino acid sequence has a typical LFY/FLO family domain. DlLFY was expressed in all tissues tested, except for the leaf, pericarp, and pulp, with the highest expression occurring in flower buds. Expression of DlLFY was significantly upregulated at the early flower induction stage in "SX" ("Shixia"). The results of subcellular localization and transactivation analysis showed that DlLFY is a typical transcription factor acting as a transcriptional activator. Moreover, overexpression of DlLFY in Arabidopsis promoted early flowering and restrained growth, resulting in reduced plant height and rosette leaf number and area in transgenic plants. DNA affinity purification sequencing (DAP-Seq) analysis showed that 13 flower-related genes corresponding to five homologous genes of Arabidopsis may have binding sites and be putative target genes. Among these five flower-related genes, only AtTFL1 (terminal flower 1) was strongly inhibited in transgenic lines. CONCLUSION: Taken together, these results indicate that DlLFY plays a pivotal role in controlling longan flowering, possibly by interacting with TFL1.


Assuntos
Arabidopsis , Sapindaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Flores , Folhas de Planta/metabolismo , Sapindaceae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant J ; 110(2): 589-606, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064997

RESUMO

Camelina (Camelina sativa) is an annual oilseed plant that is gaining momentum as a biofuel cover crop. Understanding gene regulatory networks is essential to deciphering plant metabolic pathways, including lipid metabolism. Here, we take advantage of a growing collection of gene expression datasets to predict transcription factors (TFs) associated with the control of Camelina lipid metabolism. We identified approximately 350 TFs highly co-expressed with lipid-related genes (LRGs). These TFs are highly represented in the MYB, AP2/ERF, bZIP, and bHLH families, including a significant number of homologs of well-known Arabidopsis lipid and seed developmental regulators. After prioritizing the top 22 TFs for further validation, we identified DNA-binding sites and predicted target genes for 16 out of the 22 TFs tested using DNA affinity purification followed by sequencing (DAP-seq). Enrichment analyses of targets supported the co-expression prediction for most TF candidates, and the comparison to Arabidopsis revealed some common themes, but also aspects unique to Camelina. Within the top potential lipid regulators, we identified CsaMYB1, CsaABI3AVP1-2, CsaHB1, CsaNAC2, CsaMYB3, and CsaNAC1 as likely involved in the control of seed fatty acid elongation and CsaABI3AVP1-2 and CsabZIP1 as potential regulators of the synthesis and degradation of triacylglycerols (TAGs), respectively. Altogether, the integration of co-expression data and DNA-binding assays permitted us to generate a high-confidence and short list of Camelina TFs involved in the control of lipid metabolism during seed development.


Assuntos
Arabidopsis , Brassicaceae , Arabidopsis/genética , Brassicaceae/genética , Humanos , Metabolismo dos Lipídeos/genética , Sementes/metabolismo , Triglicerídeos/metabolismo
4.
Plant Mol Biol ; 113(1-3): 33-57, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37661236

RESUMO

A multi-tiered transcriptional network regulates xylem differentiation and secondary cell wall (SCW) formation in plants, with evidence of both conserved and lineage-specific SCW network architecture. We aimed to elucidate the roles of selected R2R3-MYB transcription factors (TFs) linked to Eucalyptus wood formation by identifying genome-wide TF binding sites and direct target genes through an improved DAP-seq protocol combined with machine learning for target gene assignment (DAP-seq-ML). We applied this to five TFs including a well-studied SCW master regulator (EgrMYB2; homolog of AtMYB83), a repressor of lignification (EgrMYB1; homolog of AtMYB4), a TF affecting SCW thickness and vessel density (EgrMYB137; homolog of PtrMYB074) and two TFs with unclear roles in SCW regulation (EgrMYB135 and EgrMYB122). Each DAP-seq TF peak set (average 12,613 peaks) was enriched for canonical R2R3-MYB binding motifs. To improve the reliability of target gene assignment to peaks, a random forest classifier was developed from Arabidopsis DAP-seq, RNA-seq, chromatin, and conserved noncoding sequence data which demonstrated significantly higher precision and recall to the baseline method of assigning genes to proximal peaks. EgrMYB1, EgrMYB2 and EgrMYB137 predicted targets showed clear enrichment for SCW-related biological processes. As validation, EgrMYB137 overexpression in transgenic Eucalyptus hairy roots increased xylem lignification, while its dominant repression in transgenic Arabidopsis and Populus reduced xylem lignification, stunted growth, and caused downregulation of SCW genes. EgrMYB137 targets overlapped significantly with those of EgrMYB2, suggesting partial functional redundancy. Our results show that DAP-seq-ML identified biologically relevant R2R3-MYB targets supported by the finding that EgrMYB137 promotes SCW lignification in planta.

5.
Proc Natl Acad Sci U S A ; 117(11): 6003-6013, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32111691

RESUMO

Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.


Assuntos
Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Pectinas/metabolismo , Polissacarídeos/metabolismo , Fatores de Transcrição/metabolismo , Biocombustíveis , Biomassa , Repressão Catabólica , Parede Celular/química , Regulação Fúngica da Expressão Gênica , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Neurospora crassa/metabolismo , RNA-Seq
6.
Genomics ; 114(3): 110376, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513290

RESUMO

Sexual size dimorphism (SSD), whereby females and males exhibit different body sizes, are widely documented in animals. To explore crucial regulators implicated in female-biased SSD of Chinese tongue sole (Cynoglossus semilaevis), GWAS was conducted on 350 females and 59 males. Twenty SNPs and 25 genes including zbed1, nsd3, cdc45, klhl29, and smad4 with -log(p) > 7 were screened, mainly mapping to sex chromosome. The chromosome W-linked gene zbed1 attracted particular attention because it is a master key for cell proliferation. Thus, the regulatory network of zbed1 in C. semilaevis was explored by DAP-seq and 1352 peaks were discovered in the female brain. Moreover, zbed1 potentially regulated hippo signaling pathway, cell cycle, translation, and PI3k-Akt signaling pathway in C. semilaevis. These findings identify crucial SNPs and genes associated with female-biased SSD in C. semilaevis, also provide the first genome-wide survey for the zbed1 regulatory network in fish species.


Assuntos
Linguados , Linguado , Masculino , Animais , Feminino , Linguados/genética , Caracteres Sexuais , Estudo de Associação Genômica Ampla , Fosfatidilinositol 3-Quinases/metabolismo , Linguado/genética
7.
Plant Mol Biol ; 109(6): 689-702, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35486290

RESUMO

KEY MESSAGE: Construction of ML-hGRN for the salt pathway in Populus davidiana × P. bolleana. Construction of ML-hGRN for the lignocellulosic pathway in Populus davidiana × P. bolleana under salt stress. Many woody plants, including Populus davidiana × P. bolleana, have made great contributions to human production and life. High salt is one of the main environmental factors that restricts the growth of poplar. This study found that high salt could induce strong biochemical changes in poplar. To detect the effect of salt treatment on gene expression, 18 libraries were sequenced on the Illumina sequencing platform. The results identified a large number of early differentially expressed genes (DEGs) and a small number of late DEGs, which indicated that most of the salt response genes of poplar were early response genes. In addition, 197 TFs, including NAC, ERF, and other TFs related to salt stress, were differentially expressed during salt treatment, which indicated that these TFs may play an important role in the salt stress response of poplar. Based on the RNA-seq analysis results, multilayered hierarchical gene regulatory networks (ML-hGRNs) of salt stress- and lignocellulosic synthesis-related DEGs were constructed using the GGM algorithm. The lignocellulosic synthesis regulatory network under salt stress revealed that lignocellulosic synthesis might play an important role in the process of salt stress resistance. Furthermore, the NAC family transcription factor PdbNAC83, which was found in the upper layer in both pathways, was selected to verify the accuracy of the ML-hGRNs. DAP-seq showed that the binding site of PdbNAC83 included a "TT(G/A)C(G/T)T" motif, and ChIP-PCR further verified that PdbNAC83 can regulate the promoters of at least six predicted downstream genes (PdbNLP2-2, PdbZFP6, PdbMYB73, PdbC2H2-like, PdbMYB93-1, PdbbHLH094) by binding to the "TT(G/A)C(G/T)T" motif, which indicates that the predicted regulatory network diagram obtained in this study is relatively accurate. In conclusion, a species-specific salt response pathway might exist in poplar, and this finding lays a foundation for further study of the regulatory mechanism of the salt stress response and provides new clues for the use of genetic engineering methods to create high-quality and highly resistant forest germplasms.


Assuntos
Populus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Humanos , Lignina , Populus/genética , Populus/metabolismo , Estresse Salino/genética , Transcriptoma
8.
New Phytol ; 236(6): 2282-2293, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36254112

RESUMO

Most land plants associate with arbuscular mycorrhizal (AM) fungi to secure mineral nutrient acquisition, especially that of phosphorus. A phosphate starvation response (PHR)-centered network regulates AM symbiosis. Here, we identified 520 direct target genes for the rice transcription factor OsPHR1/2/3 during AM symbiosis using transcriptome deep sequencing and DNA affinity purification sequencing. These genes were involved in strigolactone biosynthesis, transcriptional reprogramming, and bidirectional nutrient exchange. Moreover, we identified the receptor-like kinase, Arbuscule Development Kinase 1 (OsADK1), as a new target of OsPHR1/2/3. Electrophoretic mobility shift assays and transactivation assays showed that OsPHR2 can bind directly to the P1BS elements within the OsADK1 promoter to activate its transcription. OsADK1 appeared to be required for mycorrhizal colonization and arbuscule development. In addition, hydroponic experiments suggested that OsADK1 may be involved in plant Pi starvation responses. Our findings validate a role for OsPHR1/2/3 as master regulators of mycorrhizal-related genes involved in various stages of symbiosis, and uncover a new RLK involved in AM symbiosis and plant Pi starvation responses.


Assuntos
Micorrizas , Micorrizas/fisiologia , Simbiose/fisiologia , Fosfatos/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
BMC Plant Biol ; 21(1): 453, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615461

RESUMO

BACKGROUND: Appropriate flowering time is very important to the success of modern agriculture. Maize (Zea mays L.) is a major cereal crop, originated in tropical areas, with photoperiod sensitivity. Which is an important obstacle to the utilization of tropical/subtropical germplasm resources in temperate regions. However, the study on the regulation mechanism of photoperiod sensitivity of maize is still in the early stage. Although it has been previously reported that ZmCCT is involved in the photoperiod response and delays maize flowering time under long-day conditions, the underlying mechanism remains unclear. RESULTS: Here, we showed that ZmCCT overexpression delays flowering time and confers maize drought tolerance under LD conditions. Implementing the Gal4-LexA/UAS system identified that ZmCCT has a transcriptional inhibitory activity, while the yeast system showed that ZmCCT has a transcriptional activation activity. DAP-Seq analysis and EMSA indicated that ZmCCT mainly binds to promoters containing the novel motifs CAAAAATC and AAATGGTC. DAP-Seq and RNA-Seq analysis showed that ZmCCT could directly repress the expression of ZmPRR5 and ZmCOL9, and promote the expression of ZmRVE6 to delay flowering under long-day conditions. Moreover, we also demonstrated that ZmCCT directly binds to the promoters of ZmHY5, ZmMPK3, ZmVOZ1 and ZmARR16 and promotes the expression of ZmHY5 and ZmMPK3, but represses ZmVOZ1 and ZmARR16 to enhance stress resistance. Additionally, ZmCCT regulates a set of genes associated with plant development. CONCLUSIONS: ZmCCT has dual functions in regulating maize flowering time and stress response under LD conditions. ZmCCT negatively regulates flowering time and enhances maize drought tolerance under LD conditions. ZmCCT represses most flowering time genes to delay flowering while promotes most stress response genes to enhance stress tolerance. Our data contribute to a comprehensive understanding of the regulatory mechanism of ZmCCT in controlling maize flowering time and stress response.


Assuntos
Adaptação Fisiológica/genética , Flores/crescimento & desenvolvimento , Flores/genética , Fotoperíodo , Estresse Fisiológico/genética , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Adaptação Fisiológica/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Magnoliopsida/genética , Magnoliopsida/crescimento & desenvolvimento , Fenótipo , Estresse Fisiológico/fisiologia
10.
New Phytol ; 231(2): 726-746, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33567124

RESUMO

Plants undergo several developmental transitions during their life cycle. In grapevine, a perennial woody fruit crop, the transition from vegetative/green-to-mature/woody growth involves transcriptomic reprogramming orchestrated by a small group of genes encoding regulators, but the underlying molecular mechanisms are not fully understood. We investigated the function of the transcriptional regulator VviNAC33 by generating and characterizing transgenic overexpressing grapevine lines and a chimeric repressor, and by exploring its putative targets through a DNA affinity purification sequencing (DAP-seq) approach combined with transcriptomic data. We demonstrated that VviNAC33 induces leaf de-greening, inhibits organ growth and directly activates the expression of STAY-GREEN PROTEIN 1 (SGR1), which is involved in Chl and photosystem degradation, and AUTOPHAGY 8f (ATG8f), which is involved in the maturation of autophagosomes. Furthermore, we show that VviNAC33 directly inhibits AUXIN EFFLUX FACILITATOR PIN1, RopGEF1 and ATP SYNTHASE GAMMA CHAIN 1T (ATPC1), which are involved in photosystem II integrity and activity. Our results show that VviNAC33 plays a major role in terminating photosynthetic activity and organ growth as part of a regulatory network governing the vegetative-to-mature phase transition.


Assuntos
Regulação da Expressão Gênica de Plantas , Folhas de Planta , Frutas/genética , Transcriptoma/genética
11.
New Phytol ; 232(5): 2071-2088, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34480759

RESUMO

A group of MADS transcription factors (TFs) are believed to control temperature-mediated bud dormancy. These TFs, called DORMANCY-ASSOCIATED MADS-BOX (DAM), are encoded by genes similar to SHORT VEGETATIVE PHASE (SVP) from Arabidopsis. MADS proteins form transcriptional complexes whose combinatory composition defines their molecular function. However, how MADS multimeric complexes control the dormancy cycle in trees is unclear. Apple MdDAM and other dormancy-related MADS proteins form complexes with MdSVPa, which is essential for the ability of transcriptional complexes to bind to DNA. Sequential DNA-affinity purification sequencing (seq-DAP-seq) was performed to identify the genome-wide binding sites of apple MADS TF complexes. Target genes associated with the binding sites were identified by combining seq-DAP-seq data with transcriptomics datasets obtained using a glucocorticoid receptor fusion system, and RNA-seq data related to apple dormancy. We describe a gene regulatory network (GRN) formed by MdSVPa-containing complexes, which regulate the dormancy cycle in response to environmental cues and hormonal signaling pathways. Additionally, novel molecular evidence regarding the evolutionary functional segregation between DAM and SVP proteins in the Rosaceae is presented. MdSVPa sequentially forms complexes with the MADS TFs that predominate at each dormancy phase, altering its DNA-binding specificity and, therefore, the transcriptional regulation of its target genes.


Assuntos
Arabidopsis , Malus , Arabidopsis/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
J Exp Bot ; 72(5): 1782-1794, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33270106

RESUMO

Leaf angle is an important agronomic trait in cereals and shares a close relationship with crop architecture and grain yield. Although it has been previously reported that ZmCLA4 can influence leaf angle, the underlying mechanism remains unclear. In this study, we used the Gal4-LexA/UAS system and transactivation analysis to demonstrate in maize (Zea mays) that ZmCLA4 is a transcriptional repressor that regulates leaf angle. DNA affinity purification sequencing (DAP-Seq) analysis revealed that ZmCLA4 mainly binds to promoters containing the EAR motif (CACCGGAC) as well as to two other motifs (CCGARGS and CDTCNTC) to inhibit the expression of its target genes. Further analysis of ZmCLA4 target genes indicated that ZmCLA4 functions as a hub of multiple plant hormone signaling pathways: ZmCLA4 was found to directly bind to the promoters of multiple genes including ZmARF22 and ZmIAA26 in the auxin transport pathway, ZmBZR3 in the brassinosteroid signaling pathway, two ZmWRKY genes involved in abscisic acid metabolism, ZmCYP genes (ZmCYP75B1, ZmCYP93D1) related to jasmonic acid metabolism, and ZmABI3 involved in the ethylene response pathway. Overall, our work provides deep insights into the ZmCLA4 regulatory network in controlling leaf angle in maize.


Assuntos
Folhas de Planta , Zea mays , Brassinosteroides , Regulação da Expressão Gênica de Plantas , Hormônios , Transdução de Sinais , Zea mays/genética
13.
J Exp Bot ; 72(20): 7092-7106, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34313722

RESUMO

LATERAL ORGAN BOUNDARIES DOMAIN (LBD) genes encode plant-specific transcription factors that participate in regulating various developmental processes. In this study, we genetically characterized PagLBD3 encoding an important regulator of secondary growth in poplar (Populus alba × Populus glandulosa). Overexpression of PagLBD3 increased stem secondary growth in Populus with a significantly higher rate of cambial cell differentiation into phloem, while dominant repression of PagLBD3 significantly decreased the rate of cambial cell differentiation into phloem. Furthermore, we identified 1756 PagLBD3 genome-wide putative direct target genes (DTGs) through RNA sequencing (RNA-seq)-coupled DNA affinity purification followed by sequencing (DAP-seq) assays. Gene Ontology analysis revealed that genes regulated by PagLBD3 were enriched in biological pathways regulating meristem development, xylem development, and auxin transport. Several central regulator genes for vascular development, including PHLOEM INTERCALATED WITH XYLEM (PXY), WUSCHEL RELATED HOMEOBOX4 (WOX4), Secondary Wall-Associated NAC Domain 1s (SND1-B2), and Vascular-Related NAC-Domain 6s (VND6-B1), were identified as PagLBD3 DTGs. Together, our results indicate that PagLBD3 and its DTGs form a complex transcriptional network to modulate cambium activity and phloem/xylem differentiation.


Assuntos
Populus , Câmbio/genética , Câmbio/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilema/genética , Xilema/metabolismo
14.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562219

RESUMO

Seed dormancy and germination are key events in plant development and are critical for crop production, and defects in seed germination or the inappropriate release of seed dormancy cause substantial losses in crop yields. Rice is the staple food for more than half of the world's population, and preharvest sprouting (PHS) is one of the most severe problems in rice production, due to a low level of seed dormancy, especially under warm and damp conditions. Therefore, PHS leads to yield loss and a decrease in rice quality and vitality. We reveal that mutation of OsbZIP09 inhibited rice PHS. Analysis of the expression of OsbZIP09 and its encoded protein sequence and structure indicated that OsbZIP09 is a typical bZIP transcription factor that contains conserved bZIP domains, and its expression is induced by ABA. Moreover, RNA sequencing (RNA-seq) and DNA affinity purification sequencing (DAP-seq) analyses were performed and 52 key direct targets of OsbZIP09 were identified, including OsLOX2 and Late Embryogenesis Abundant (LEA) family genes, which are involved in controlling seed germination. Most of these key targets showed consistent changes in expression in response to abscisic acid (ABA) treatment and OsbZIP09 mutation. The data characterize a number of key target genes that are directly regulated by OsbZIP09 and contribute to revealing the molecular mechanism that underlies how OsbZIP09 controls rice seed germination.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Germinação , Oryza/crescimento & desenvolvimento , Dormência de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Oryza/genética , Proteínas de Plantas/genética , Sementes/genética
15.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572582

RESUMO

The abscisic acid (ABA) increase and auxin decline are both indicators of ripening initiation in grape berry, and norisoprenoid accumulation also starts at around the onset of ripening. However, the relationship between ABA, auxin, and norisoprenoids remains largely unknown, especially at the transcriptome level. To investigate the transcriptional and posttranscriptional regulation of the ABA and synthetic auxin 1-naphthaleneacetic acid (NAA) on norisoprenoid production, we performed time-series GC-MS and RNA-seq analyses on Vitis vinifera L. cv. Cabernet Sauvignon grape berries from pre-veraison to ripening. Higher levels of free norisoprenoids were found in ABA-treated mature berries in two consecutive seasons, and both free and total norisoprenoids were significantly increased by NAA in one season. The expression pattern of known norisoprenoid-associated genes in all samples and the up-regulation of specific alternative splicing isoforms of VviDXS and VviCRTISO in NAA-treated berries were predicted to contribute to the norisoprenoid accumulation in ABA and NAA-treated berries. Combined weighted gene co-expression network analysis (WGCNA) and DNA affinity purification sequencing (DAP-seq) analysis suggested that VviGATA26, and the previously identified switch genes of myb RADIALIS (VIT_207s0005g02730) and MAD-box (VIT_213s0158g00100) could be potential regulators of norisoprenoid accumulation. The positive effects of ABA on free norisoprenoids and NAA on total norisoprenoid accumulation were revealed in the commercially ripening berries. Since the endogenous ABA and auxin are sensitive to environmental factors, this finding provides new insights to develop viticultural practices for managing norisoprenoids in vineyards in response to changing climates.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Norisoprenoides/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/efeitos dos fármacos , Vitis/genética , Ácido Abscísico/metabolismo , Processamento Alternativo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Metabolômica , Ácidos Naftalenoacéticos/metabolismo , Vitis/crescimento & desenvolvimento , Vitis/metabolismo
16.
Plant Cell Physiol ; 61(5): 988-1004, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32142141

RESUMO

Pollen development is critical to the reproductive success of flowering plants, but how it is regulated is not well understood. Here, we isolated two allelic male-sterile mutants of OsMYB80 and investigated how OsMYB80 regulates male fertility in rice. OsMYB80 was barely expressed in tissues other than anthers, where it initiated the expression during meiosis, reached the peak at the tetrad-releasing stage and then quickly declined afterward. The osmyb80 mutants exhibited premature tapetum cell death, lack of Ubisch bodies, no exine and microspore degeneration. To understand how OsMYB80 regulates anther development, RNA-seq analysis was conducted to identify genes differentially regulated by OsMYB80 in rice anthers. In addition, DNA affinity purification sequencing (DAP-seq) analysis was performed to identify DNA fragments interacting with OsMYB80 in vitro. Overlap of the genes identified by RNA-seq and DAP-seq revealed 188 genes that were differentially regulated by OsMYB80 and also carried an OsMYB80-interacting DNA element in the promoter. Ten of these promoter elements were randomly selected for gel shift assay and yeast one-hybrid assay, and all showed OsMYB80 binding. The 10 promoters also showed OsMYB80-dependent induction when co-expressed in rice protoplast. Functional annotation of the 188 genes suggested that OsMYB80 regulates male fertility by directly targeting multiple biological processes. The identification of these genes significantly enriched the gene networks governing anther development and provided much new information for the understanding of pollen development and male fertility.


Assuntos
Oryza/fisiologia , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Transdução de Sinais , Sítios de Ligação , Fertilidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação/genética , Motivos de Nucleotídeos/genética , Oryza/genética , Oryza/ultraestrutura , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Pólen/genética , Pólen/ultraestrutura , Regiões Promotoras Genéticas , Ligação Proteica , Reprodutibilidade dos Testes
17.
Biochem Biophys Res Commun ; 526(4): 1100-1105, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32307082

RESUMO

There is a growing body of evidence that abscisic acid (ABA) and the phytochrome-interacting factor (PIF) family of transcription factors interact in light signaling, the regulation of plant growth development, and adaptation to environmental stimuli. In this study, we investigate the role that PIFs play in the regulation of ABA signaling in Arabidopsis thaliana seedlings grown under long-day conditions. We showed that PIFs positively regulate ABA signaling in post-germination seedling growth. We analyzed the DNA-binding sites for PIF3 and PIF5 by DNA-affinity purification sequencing (DAP-seq) genome-wide. The DAP-seq data showed that G-box motif is the direct binding site of PIF3 and PIF5, and a number of ABA responsive genes are potential targets of PIFs, including PYL3, PYL6, PYL12, SnRK2.2, CPK4, CPK6, ABI5, ABF3, and KIN1. Our results provide a basis for understanding the mechanism for PIFs in regulating ABA signal transduction.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fitocromo/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Sítios de Ligação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Mutação com Perda de Função/genética , Motivos de Nucleotídeos/genética , Plântula/efeitos dos fármacos
18.
J Exp Bot ; 71(10): 2943-2955, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31990030

RESUMO

Leaf angle (LA) is a critical agronomic trait in maize, with more upright leaves allowing higher planting density, leading to more efficient light capture and higher yields. A few genes responsible for variation in LA have been identified by map-based cloning. In this study, we cloned maize ZmIBH1-1, which encodes a bHLH transcription factor with both a basic binding region and a helix-loop-helix domain, and the results of qRT-PCR showed that it is a negative regulator of LA. Histological analysis indicated that changes in LA were mainly caused by differential cell wall lignification and cell elongation in the ligular region. To determine the regulatory framework of ZmIBH1-1, we conducted RNA-seq and DNA affinity purification (DAP)-seq analyses. The combined results revealed 59 ZmIBH1-1-modulated target genes with annotations, and they were mainly related to the cell wall, cell development, and hormones. Based on the data, we propose a regulatory model for the control of plant architecture by ZmIBH1-1 in maize.


Assuntos
Folhas de Planta , Zea mays , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo
19.
Plants (Basel) ; 13(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931140

RESUMO

Interaction between transcription factors (TFs) and motifs is essential for gene regulation and the subsequent phenotype formation. Soybean (Glycine max) JAGGEED 1 (GmJAG1) is a key TF that controls leaf shape, seed number and flower size. To understand the GmJAG1 binding motifs, in this study, we performed the GmJAG1 DNA affinity purification sequencing (DAP-seq) experiment, which is a powerful tool for the de novo motif prediction method. Two new significant GmJAG1 binding motifs were predicted and the EMSA experiments further verified the ability of GmJAG1 bound to these motifs. The potential binding sites in the downstream gene promoter were identified through motif scanning and a potential regulatory network mediated by GmJAG1 was constructed. These results served as important genomic resources for further understanding the regulatory mechanism of GmJAG1.

20.
Plant Physiol Biochem ; 214: 108924, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38991593

RESUMO

LBD (LATERAL ORGAN BOUNDARIES DOMAIN) transcription factors are key regulators of plant growth and development. In this study, we functionally characterized the PagLBD4 gene in Populus (Populus alba × Populus glandulosa). Overexpression of PagLBD4 (PagLBD4OE) significantly repressed secondary xylem differentiation and secondary cell wall (SCW) deposition, while CRISPR/Cas9-mediated PagLBD4 knockout (PagLBD4KO) significantly increased secondary xylem differentiation and SCW deposition. Consistent with the functional analysis, gene expression analysis revealed that SCW biosynthesis pathways were significantly down-regulated in PagLBD4OE plants but up-regulated in PagLBD4KO plants. We also performed DNA affinity purification followed by sequencing (DAP-seq) to identify genes bound by PagLBD4. Integration of RNA sequencing (RNA-seq) and DAP-seq data identified 263 putative direct target genes (DTGs) of PagLBD4, including important regulatory genes for SCW biosynthesis, such as PagMYB103 and PagIRX12. Together, our results demonstrated that PagLBD4 is a repressor of secondary xylem differentiation and SCW biosynthesis in Populus, which possibly lead to the dramatic growth repression in PagLBD4OE plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA