RESUMO
The formation of DNA adducts by genotoxic agents is an early event in cancer development, and it may lead to gene mutations, thereby initiating tumor development. The measurement of DNA adducts can provide critical information about the genotoxic potential of a chemical and its mechanism of carcinogenesis. In recent decades, liquid chromatography coupled with mass spectrometry has become the most important technique for analyzing DNA adducts. The improvements in resolution achievable with new chromatographic separation techniques coupled with the high specificity and sensitivity and wide dynamic range of new mass spectrometry systems have been used for both qualitative and quantitative analyses of DNA adducts. This review discusses the challenges in qualitative and quantitative analyses of DNA adducts by liquid chromatography coupled with mass spectrometry and highlights recent developments towards overcoming the limitations of liquid chromatography coupled with mass spectrometry methods. The key steps and new solutions, such as sample preparation, mass spectrometry fragmentation, and method validation, are summarized. In addition, the fundamental principles and latest advances in DNA adductomic approaches are reviewed.
Assuntos
Adutos de DNA/análise , Sequência de Bases , Cromatografia Líquida , Humanos , Espectrometria de MassasRESUMO
Covalent modification of DNA, resulting in the formation of DNA adducts, plays a central role in chemical carcinogenesis. Investigating these modifications is of fundamental importance in assessing the mutagenicity potential of specific exposures and understanding their mechanisms of action. Methods for assessing the covalent modification of DNA, which is one of the initiating steps for mutagenesis, include immunohistochemistry, 32P-postlabeling, and mass spectrometry-based techniques. However, a tool to comprehensively characterize the covalent modification of DNA, screening for all DNA adducts and gaining information on their chemical structures, was lacking until the recent development of "DNA adductomics". Advances in the field of mass spectrometry have allowed for the development of this methodology. In this perspective, we discuss the current state of the field, highlight the latest developments, and consider the path forward for DNA adductomics to become a standard method to investigate covalent modification of DNA. We specifically advocate for the need to take full advantage of this new era of mass spectrometry to acquire the highest quality and most reliable data possible, as we believe this is the only way for DNA adductomics to gain its place next to the other "-omics" methodologies as a powerful bioanalytical tool.
RESUMO
DNA adductomics is the global study of all DNA adducts and was first proposed in 2006 by the Matsuda group. Its development has been greatly credited to the advances in mass spectrometric techniques, particularly tandem and multiple-stage mass spectrometry. In fact, liquid chromatography-mass spectrometry (LC-MS)-based methods are virtually the sole technique with practicality for DNA adductomic studies to date. At present, DNA adductomics is primarily used as a tool to search for DNA adducts, known and unknown, providing evidence for exposure to exogenous genotoxins and/or for the molecular mechanisms of their genotoxicity. Some DNA adducts discovered in this way have the potential to predict cancer risks and/or to be associated with adverse health outcomes. DNA adductomics has been successfully used to identify and determine exogenous carcinogens that may contribute to the etiology of certain cancers, including bacterial genotoxins and an N-nitrosamine. Also using the DNA adductomic approach, multiple DNA adducts have been observed to show age dependence and may serve as aging biomarkers. These achievements highlight the capability and power of DNA adductomics in the studies of medicine, biological science, and environmental science. Nonetheless, DNA adductomics is still in its infancy, and great advances are expected in the future.
Assuntos
Adutos de DNA , Adutos de DNA/metabolismo , Humanos , Animais , Espectrometria de Massas/métodos , Cromatografia Líquida , Neoplasias/metabolismo , Neoplasias/genéticaRESUMO
Genotoxicants originating from inflammation, diet, and environment can covalently modify DNA, possibly initiating the process of carcinogenesis. DNA adducts have been known for long, but the old methods allowed to target only a few known DNA adducts at a time, not providing a global picture of the "DNA adductome". DNA adductomics is a new research field, aiming to screen for unknown DNA adducts by high resolution mass spectrometry (HRMS). However, DNA adductomics presents several analytical challenges such as the need for high sensitivity and for the development of effective screening approaches to identify novel DNA adducts. In this work, a sensitive untargeted DNA adductomics method was developed by using ultra-high performance liquid chromatography (UHPLC) coupled via an ESI source to a quadrupole-time of flight mass spectrometric instrumentation. Mobile phases with ammonium bicarbonate gave the best signal enhancement. The MS capillary voltage, cone voltage, and detector voltage had most effect on the response of the DNA adducts. A low adsorption vial was selected for reducing analyte loss. Hybrid surface-coated analytical columns were tested for reducing adsorption of the DNA adducts. The optimized method was applied to analyse DNA adducts in calf thymus, cat colon, and human colon DNA by performing a MSE acquisition (all-ion fragmentation acquisition) and screening for the loss of deoxyribose and the nucleobase fragment ions. Fifty-four DNA adducts were tentatively identified, hereof 38 never reported before. This is the first untargeted DNA adductomics study on human colon tissue, and one of the few untargeted DNA adductomics studies in the literature reporting the identification of such a high number of unknowns. This demonstrates promising results for the application of this sensitive method in future human studies for investigating novel potential cancer-causing factors.
RESUMO
DNA adducts and strand breaks are induced by various exogenous and endogenous agents. Accumulation of DNA damage is implicated in many disease processes, including cancer, aging, and neurodegeneration. The continuous acquisition of DNA damage from exogenous and endogenous stressors coupled with defects in DNA repair pathways contribute to the accumulation of DNA damage within the genome and genomic instability. While mutational burden offers some insight into the level of DNA damage a cell may have experienced and subsequently repaired, it does not quantify DNA adducts and strand breaks. Mutational burden also infers the identity of the DNA damage. With advances in DNA adduct detection and quantification methods, there is an opportunity to identify DNA adducts driving mutagenesis and correlate with a known exposome. However, most DNA adduct detection methods require isolation or separation of the DNA and its adducts from the context of the nuclei. Mass spectrometry, comet assays, and other techniques precisely quantify lesion types but lose the nuclear context and even tissue context of the DNA damage. The growth in spatial analysis technologies offers a novel opportunity to leverage DNA damage detection with nuclear and tissue context. However, we lack a wealth of techniques capable of detecting DNA damage in situ. Here, we review the limited existing in situ DNA damage detection methods and examine their potential to offer spatial analysis of DNA adducts in tumors or other tissues. We also offer a perspective on the need for spatial analysis of DNA damage in situ and highlight Repair Assisted Damage Detection (RADD) as an in situ DNA adduct technique with the potential to integrate with spatial analysis and the challenges to be addressed.
Assuntos
Adutos de DNA , Neoplasias , Humanos , Dano ao DNA , Reparo do DNA , Mutagênese , Neoplasias/genéticaRESUMO
BACKGROUND: A comprehensive understanding of DNA adducts, one of the most plausible origins of cancer mutations, is still elusive, especially in human tissues in clinical settings. Recent technological developments have facilitated the identification of multiple DNA adducts in a single experiment. Only a few attempts toward this "DNA adductome approach" in human tissues have been reported. Geospatial information on DNA adducts in human organs has been scarce. AIM: Mass spectrometry of human gastric mucosal DNA was performed to identify DNA adducts associated with environmental factors. MATERIALS AND METHODS: From 59 subjects who had received gastrectomy for gastric cancer, 306 samples of nontumor tissues and 15 samples of tumors (14 cases) were taken for DNA adductome analysis. Gastric nontumor tissue from autopsies of 7 subjects without gastric cancer (urothelial cancer, hepatocellular carcinoma, lung cancer each; the other four cases were without any cancers) was also investigated. Briefly, DNA was extracted from each sample with antioxidants, digested into nucleosides, separated by liquid chromatography, and then electrospray-ionized. Specific DNA adducts were identified by mass/charge number and column retention time compared to standards. Information on lifestyle factors such as tobacco smoking and alcohol drinking was taken from the clinical records of each subject. RESULTS: Seven DNA adducts, including modified bases, C5-methyl-2'-deoxycytidine, 2'-deoxyinosine, C5-hydroxymethyl-2'-deoxycytidine, N6-methyl-2'-deoxyadenosine, 1,N6-etheno-2'-deoxyadenosine, N6-hydroxymethyl-2'-deoxyadenosine, and C8-oxo-2'-deoxyguanosine, were identified in the human stomach and characterized. Intraindividual differences according to the multiple sites of these adducts were noted but were less substantial than interindividual differences. N6-hydroxymethyl-2'-deoxyadenosine was identified in the human stomach for the first time. The amount of C5-hydroxymethyl-2'-deoxycytidine was higher in the stomachs of subjects without gastric cancer than in the nontumor and tumor portions of the stomach in gastric cancer patients. Higher levels of 1,N6-etheno-2'-deoxyadenosine were detected in the subjects who reported both smoking and drinking than in those without these habits. These DNA adducts showed considerable correlations with each other. CONCLUSIONS: We characterized 7 DNA adducts in the nontumor portion of the human stomach in both gastric cancer subjects and nongastric cancer subjects. A reduction in C5-hydroxymethyl-dC even in the nontumor mucosa of patients with gastric cancer was observed. Smoking and drinking habits significantly influenced the quantity of one of the lipid peroxidation-derived adducts, etheno-dA. A more expansive DNA adductome profile would provide a comprehensive understanding of the origin of human cancer in the future.
RESUMO
BACKGROUND: Field cancerization is a popular concept regarding where cancer cells arise in a plane, such as the opened-up gastrointestinal mucosa. The geospatial distribution of DNA adducts, some of which are believed to initiate mutation, may be a clue to understanding the landscape of the preferred occurrence of gastric cancer in the human stomach, such that the occurrence is much more frequent in the lesser curvature than in the greater curvature. METHODS: Seven DNA adducts, C5-methyl-2'-deoxycytidine, 2'-deoxyinosine, C5-hydroxymethyl-2'-deoxycytidine, N6-methyl-2'-deoxyadenosine, 1,N6-etheno-2'-deoxyadenosine, N6-hydroxymethyl-2'-deoxyadenosine, and C8-oxo-2'-deoxyguanosine, from different points and zones of the human stomach were semi quantitatively measured by liquid chromatography/tandem mass spectrometry. The differences in the quantity of these DNA adducts from the lesser and greater curvature, the upper, middle and lower third zones, the anterior and posterior wall of the stomach, and the mucosae distant from and near the tumor were compared to determine whether the location preference of cancer in the stomach could be explained by the distribution of these DNA adducts. Comparisons were conducted considering the tumor locations and operation methods. CONCLUSIONS: Regarding the DNA adducts investigated, significant differences in quantities and locations in the whole stomach were not noted; thus, these DNA adducts do not explain the preferential occurrence of cancer in particular locations of the human stomach.
RESUMO
BACKGROUND: DNA adducts, covalent modifications to DNA due to exposure to specific carcinogens, cause the mispairing of DNA bases, which ultimately results in DNA mutations. DNA methylation in the promoter region, another type of DNA base modification, alters the DNA transcription process, and has been implicated in carcinogenesis in humans due to the down-regulation of tumor suppressor genes. Difficulties are associated with demonstrating the existence of DNA adducts or chemically modified bases in the human urological system. Apart from aristolochic acid-DNA adducts, which cause urothelial carcinoma and endemic nephropathy in a particular geographical area (Balkan), limited information is currently available on DNA adduct profiles in renal cell carcinoma and upper urinary tract urothelial carcinoma, including renal pelvic cancer and ureteral cancer. METHOD: To elucidate the significance of DNA adducts in carcinogenesis in the urothelial system, we investigated 53 DNA adducts in the non-tumoral renal parenchyma and non-tumoral renal pelvis of patients with renal cell carcinoma, upper urinary tract urothelial carcinoma, and other diseases using liquid chromatography coupled with tandem mass spectrometry. A comparative analysis of tissue types, the status of malignancy, and clinical characteristics, including lifestyle factors, was performed. RESULTS: C5-Methyl-2'-deoxycytidine, C5-hydroxymethyl-2'-deoxycytidine (5hmdC), C5-formyl-2'-deoxycytidine, 2'-deoxyinosine, C8-oxo-2'-deoxyadenosine, and C8-oxo-2'-deoxyguanosine (8-OHdG) were detected in the renal parenchyma and renal pelvis. 8-OHdG was more frequently detected in the renal pelvis than in the renal cortex and medulla (p = 0.048 and p = 0.038, respectively). 5hmdC levels were significantly lower in the renal pelvis of urothelial carcinoma patients (n = 10) than in the urothelium of patients without urothelial carcinoma (n = 15) (p = 0.010). Regarding 5hmdC levels in the renal cortex and medulla, Spearman's rank correlation test revealed a negative correlation between age and 5hmdC levels (r = - 0.46, p = 0.018 and r = - 0.45, p = 0.042, respectively). CONCLUSIONS: The present results revealed a reduction of 5hmdC levels in the non-tumoral urinary tract mucosa of patients with upper urinary tract urothelial carcinoma. Therefore, the urothelial cell epithelia of patients with upper urinary tract cancer, even in non-cancerous areas, may be predisposed to urothelial cancer.
RESUMO
A DNA adduct screening pipeline was constructed to apply triple quadrupole mass spectrometry comparative DNA adductomics to investigate the effects of the naturally-occurring plant constituent, safrole (4-allyl-1,2-methylenedioxybenzene), on human hepatoma cells, Hep G2. DNA from Hep G2 cells that were exposed to or not exposed to safrole were digested to 2'-deoxynucleosides and analyzed by liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) whereby the neutral loss of 2'-deoxyribose was targeted by monitoring the [M+H]+ > [M+H - 116]+ transition over a defined range. Comparative analyses through construction of DNA adductome maps revealed numerous putative DNA adduct candidates. Targeted product ion scan investigations allowed for detailed fragmentation ion analyses and the identities of at least five bulky alkylated adducts of 2'-deoxyguanosine and 2'-deoxyadenosine with molar masses greater than 400 Da each were proposed. All adducts were derived from safrole exposure and pathways to explain the occurrence of these adducts in Hep G2 cells through metabolism of safrole are discussed. This study demonstrates the potential utility of constructing triple quadrupole MS comparative DNA adductomics pipelines to screen chemicals for DNA adducts by using human cell lines.
Assuntos
Células Cultivadas/efeitos dos fármacos , Adutos de DNA/efeitos dos fármacos , Adutos de DNA/ultraestrutura , Células Hep G2/efeitos dos fármacos , Células Hep G2/ultraestrutura , Safrol/toxicidade , Espectrometria de Massas em Tandem/métodos , HumanosRESUMO
In the development of new chemical substances, genetic toxicity evaluations are a high priority for safety risk management. Evaluation of the possibility of compound carcinogenicity with accuracy and at reasonable cost in the early stages of development by in vitro techniques is preferred. Currently, DNA damage-related in vitro genotoxicity tests are widely-used screening tools after which next generation toxicity testing may be applied to confirm DNA damage. DNA adductomics may be used to evaluate DNA damage in vitro, however confirmation of DNA adduct identities through comparison to authentic standards may be time-consuming and expensive processes. Considering this, a streamlined method for confirming putative DNA adducts that are detected by DNA adductomics may be useful. With this aim, in vitro DNA adductome methods in conjunction with in vitro RNA adductome methods may be proposed as a DNA adductome verification approach by which to eliminate false positive annotations. Such an approach was evaluated by conducting in vitro assays whereby Hep G2 cell lines that were exposed to or not exposed to benzo[a]pyrene were digested to their respective 2'-deoxynucleosides or ribonucleosides and analyzed by liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) by comparative DNA and RNA adductomics through neutral loss targeting of the [M + H]+ > [M + H - 116]+ or [M + H]+ > [M + H -132]+ transitions over predetermined ranges. Comparisons of DNA adductome maps revealed putative DNA adducts that were detected in exposed cells but not in unexposed cells. Similarly, comparisons of RNA adductome maps revealed putative RNA adducts in exposed cells but not in unexposed cells. Taken together these experiments revealed that analogous forms of putative damage had occurred in both DNA and RNA which supported that putative DNA adducts detected by DNA adductomics were DNA adducts. High resolution mass spectrometry (HRMS) was utilized to confirm that putative nucleic acid adducts detected in both DNA and RNA were derived from benzo[a]pyrene exposure and these putative adducts were identified as 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene- (B[a]PDE)-type adducts. Overall, this study demonstrates the usefulness of utilizing DNA/RNA adductomics to screen for nucleic acid damage.
RESUMO
DNA can be damaged through covalent modifications of the nucleobases by endogenous processes. These modifications, commonly referred to as DNA adducts, can persist and may lead to mutations, and ultimately to the initiation of cancer. A screening methodology for the majority of known endogenous DNA adducts would be a powerful tool for investigating the etiology of cancer and for the identification of individuals at high-risk to the detrimental effects of DNA damage. This idea led to the development of a DNA adductomic approach using high resolution data-dependent scanning, an extensive MS2 fragmentation inclusion list of known endogenous adducts, and neutral loss MS3 triggering to profile all DNA modifications. In this method, the detection of endogenous DNA adducts is performed by observation of their corresponding MS3 neutral loss triggered events and their relative quantitation using the corresponding full scan extracted ion chromatograms. The method's inclusion list consists of the majority of known endogenous DNA adducts, compiled, and reported here, as well as adducts specific to tobacco exposure included to compare the performance of the method with previously developed targeted approaches. The sensitivity of the method was maximized by reduction of extraneous background signal through the purification and minimization of the amount of commercially obtained enzymes used for the DNA hydrolysis. In addition, post-hydrolysis sample purification was performed using off-line HPLC fraction collection to eliminate the highly abundant unmodified bases, and to avoid introduction of plasticizers found in solid-phase extraction cartridges. Also, several instrument parameters were evaluated to optimize the ion signal intensities and fragmentation spectra quality. The method was tested on an animal model of lung carcinogenesis where A/J mice were exposed to the tobacco specific lung carcinogen 4-methylnitrosamino-1-3-pyridyl-1-butanone (NNK) with its effects enhanced by co-exposure to the pro-inflammatory agent lipopolysaccharide (LPS). Lung DNA were screened for endogenous DNA adducts known to result from oxidative stress and LPS-induced lipid peroxidation, as well as for adducts due to NNK exposure. The relative quantitation of the detected DNA adducts was performed using parallel reaction monitoring MS2 analysis, demonstrating a general workflow for analysis of endogenous DNA adducts.
RESUMO
Toward the development of ecotoxicology methods to investigate microbial markers of impacts of hydrocarbon processing activities, DNA adductomic analyses were conducted on a sphingomonad soil bacterium. From growing cells that were exposed or unexposed to acrolein, a commonly used biocide in hydraulic fracturing processes, DNA was extracted, digested to 2'-deoxynucleosides and analyzed by liquid chromatography-positive ionization electrospray-tandem mass spectrometry in selected reaction monitoring mode transmitting the [M + H](+) > [M + H - 116](+) transition over 100 transitions. Overall data shown as DNA adductome maps revealed numerous putative DNA adducts under both conditions with some occurring specifically for each condition. Adductomic analyses of triplicate samples indicated that elevated levels of some targeted putative adducts occurred in exposed cells. Two exposure-specific adducts were identified in exposed cells as 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro-6-hydroxy-(and 8-hydroxy-)pyrimido[1,2-a]- purine-(3H)-one (6- and 8-hydroxy-PdG) following synthesis of authentic standards of these compounds and subsequent analyses. A time course experiment showed that 6- and 8-hydroxy-PdG were detected in bacterial DNA within 30 min of acrolein exposure but were not detected in unexposed cells. This work demonstrated the first application of DNA adductomics to examine DNA damage in a bacterium and sets a foundation for future work.