Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; 35(1): 216-226, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32812277

RESUMO

Invasive species have major impacts on biodiversity and are one of the primary causes of amphibian decline and extinction. Unlike other top ant invaders that negatively affect larger fauna via chemical defensive compounds, the Argentine ant (Linepithema humile) does not have a functional sting. Nonetheless, it deploys defensive compounds against competitors and adversaries. We estimated levels of ant aggression toward 3 native terrestrial amphibians by challenging juveniles in field ant trails and in lab ant foraging arenas. We measured the composition and quantities of toxin in L. humile by analyzing pygidial glands and whole-body contents. We examined the mechanisms of toxicity in juvenile amphibians by quantifying the toxin in amphibian tissues, searching for histological damages, and calculating toxic doses for each amphibian species. To determine the potential scope of the threat to amphibians, we used global databases to estimate the number, ranges, and conservation status of terrestrial amphibian species with ranges that overlap those of L. humile. Juvenile amphibians co-occurring spatially and temporally with L. humile die when they encounter L. humile on an ant trail. In the lab, when a juvenile amphibian came in contact with L. humile the ants reacted quickly to spray pygidial-gland venom onto the juveniles. Iridomyrmecin was the toxic compound in the spray. Following absorption, it accumulated in brain, kidney, and liver tissue. Toxic dose for amphibian was species dependent. Worldwide, an estimated 817 terrestrial amphibian species overlap in range with L. humile, and 6.2% of them are classified as threatened. Our findings highlight the high potential of L. humile venom to negatively affect amphibian juveniles and provide a basis for exploring the largely overlooked impacts this ant has in its wide invasive range.


Efectos del Veneno de la Hormiga Argentina sobre los Anfibios Terrestres Resumen Las especies invasoras tienen un impacto importante sobre la biodiversidad y son una de las causas principales del declive y extinción de los anfibios. A diferencia de otras hormigas super-invasoras que afectan negativamente a animales más grandes por medio de compuestos químicos de defensa, la hormiga argentina (Linepithema humile) no tiene unaguijón funcional. Sin embargo, esta hormiga despliega compuestos defensivos contra sus competidores y adversarios. Estimamos los niveles de agresión de las hormigas hacia tres anfibios terrestres nativos exponiendo a los anfibios juveniles en pistas de hormigas en el campo y en las arenas de forrajeo de las hormigas en el laboratorio. Medimos la composición y las cantidades de toxina que presenta L. humile por medio del análisis de las glándulas pigidiales y el contenido en el cuerpo completo. Examinamos los mecanismos de la toxicidad en los anfibios juveniles cuantificando la toxina en el tejido del anfibio, buscando daños histológicos y calculando las dosis tóxicas para cada especie de anfibio. Para determinar el alcance potencial de la amenaza para los anfibios usamos bases de datos mundiales para estimar el número, distribución y estado de conservación de las especies terrestres de anfibios con distribuciones que se solapan con la de L. humile. Los anfibios juveniles que co-ocurren temporal y espacialmente con L. humile mueren al encontrarse con esta especie de hormiga en sus pistas. En el laboratorio, cuando un anfibio juvenil entró en contacto con L. humile, las hormigas reaccionaron rápidamente rociando a estos juveniles con veneno proveniente de las glándulas pigidiales. La iridomyrmecina fue el compuesto tóxico que encontramos en las glándulas pigidiales. Después de ser absorbida por la piel del anfibio, se acumuló en el cerebro, los riñones y el hígado. La dosis tóxica para los anfibios depende de la especie. A nivel mundial, se estima que 817 especies de anfibios terrestres tienen una distribución que se solapa con la de L. humile, y el 6.2% de estas especies se encuentran clasificadas como amenazadas. Nuestros hallazgos resaltan el potencial alto del veneno de L. humile para tener efectos negativos sobre los anfibios juveniles y también proporcionan una base para la exploración de los impactos de esta hormiga en su amplio rango invasivo, los cuales generalmente son ignorados.


Assuntos
Venenos de Formiga , Formigas , Anfíbios , Animais , Comportamento Animal , Conservação dos Recursos Naturais
2.
Conserv Biol ; 32(2): 366-375, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28856725

RESUMO

Conservation requires successful outcomes. However, success is perceived in many different ways depending on the desired outcome. Through a questionnaire survey, we examined perceptions of success among 355 scientists and practitioners working on amphibian conservation from over 150 organizations in more than 50 countries. We also sought to identify how different types of conservation actions and respondent experience and background influenced perceptions. Respondents identified 4 types of success: species and habitat improvements (84% of respondents); effective program management (36%); outreach initiatives such as education and public engagement (25%); and the application of science-based conservation (15%). The most significant factor influencing overall perceived success was reducing threats. Capacity building was rated least important. Perceptions were influenced by experience, professional affiliation, involvement in conservation practice, and country of residence. More experienced practitioners associated success with improvements to species and habitats and less so with education and engagement initiatives. Although science-based conservation was rated as important, this factor declined in importance as the number of programs a respondent participated in increased, particularly among those from less economically developed countries. The ultimate measure of conservation success-population recovery-may be difficult to measure in many amphibians; difficult to relate to the conservation actions intended to drive it; and difficult to achieve within conventional funding time frames. The relaunched Amphibian Conservation Action Plan provides a framework for capturing lower level processes and outcomes, identifying gaps, and measuring progress.


Assuntos
Anfíbios , Conservação dos Recursos Naturais , Animais , Ecossistema
3.
Conserv Biol ; 30(2): 340-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26306460

RESUMO

Captive breeding and reintroduction remain high profile but controversial conservation interventions. It is important to understand how such programs develop and respond to strategic conservation initiatives. We analyzed the contribution to conservation made by amphibian captive breeding and reintroduction since the launch of the International Union for Conservation of Nature (IUCN) Amphibian Conservation Action Plan (ACAP) in 2007. We assembled data on amphibian captive breeding and reintroduction from a variety of sources including the Amphibian Ark database and the IUCN Red List. We also carried out systematic searches of Web of Science, JSTOR, and Google Scholar for relevant literature. Relative to data collected from 1966 to 2006, the number of species involved in captive breeding and reintroduction projects increased by 57% in the 7 years since release of the ACAP. However, there have been relatively few new reintroductions over this period; most programs have focused on securing captive-assurance populations (i.e., species taken into captivity as a precaution against extinctions in the wild) and conservation-related research. There has been a shift to a broader representation of frogs, salamanders, and caecilians within programs and an increasing emphasis on threatened species. There has been a relative increase of species in programs from Central and South America and the Caribbean, where amphibian biodiversity is high. About half of the programs involve zoos and aquaria with a similar proportion represented in specialist facilities run by governmental or nongovernmental agencies. Despite successful reintroduction often being regarded as the ultimate milestone for such programs, the irreversibility of many current threats to amphibians may make this an impractical goal. Instead, research on captive assurance populations may be needed to develop imaginative solutions to enable amphibians to survive alongside current, emerging, and future threats.


Assuntos
Anfíbios/fisiologia , Cruzamento , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Animais , Conservação dos Recursos Naturais/tendências
4.
Conserv Biol ; 29(5): 1347-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26219571

RESUMO

Contributing to the worldwide biodiversity crisis are emerging infectious diseases, which can lead to extirpations and extinctions of hosts. For example, the infectious fungal pathogen Batrachochytrium dendrobatidis (Bd) is associated with worldwide amphibian population declines and extinctions. Sensitivity to Bd varies with species, season, and life stage. However, there is little information on whether sensitivity to Bd differs among populations, which is essential for understanding Bd-infection dynamics and for formulating conservation strategies. We experimentally investigated intraspecific differences in host sensitivity to Bd across 10 populations of wood frogs (Lithobates sylvaticus) raised from eggs to metamorphosis. We exposed the post-metamorphic wood frogs to Bd and monitored survival for 30 days under controlled laboratory conditions. Populations differed in overall survival and mortality rate. Infection load also differed among populations but was not correlated with population differences in risk of mortality. Such population-level variation in sensitivity to Bd may result in reservoir populations that may be a source for the transmission of Bd to other sensitive populations or species. Alternatively, remnant populations that are less sensitive to Bd could serve as sources for recolonization after epidemic events.


Assuntos
Quitridiomicetos/fisiologia , Micoses/veterinária , Ranidae , Animais , Conservação dos Recursos Naturais , Micoses/microbiologia , Pennsylvania , Ranidae/genética , Estações do Ano
5.
Conserv Biol ; 29(2): 391-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25354647

RESUMO

The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of amphibian populations worldwide, but management options are limited. Recent studies show that sodium chloride (NaCl) has fungicidal properties that reduce the mortality rates of infected hosts in captivity. We investigated whether similar results can be obtained by adding salt to water bodies in the field. We increased the salinity of 8 water bodies to 2 or 4 ppt and left an additional 4 water bodies with close to 0 ppt and monitored salinity for 18 months. Captively bred tadpoles of green and golden bell frog (Litoria aurea) were released into each water body and their development, levels of B. dendrobatidis infection, and survival were monitored at 1, 4, and 12 months. The effect of salt on the abundance of nontarget organisms was also investigated in before and after style analyses. Salinities remained constant over time with little intervention. Hosts in water bodies with 4 ppt salt had a significantly lower prevalence of chytrid infection and higher survival, following metamorphosis, than hosts in 0 ppt salt. Tadpoles in the 4 ppt group were smaller in length after 1 month in the release site than those in the 0 and 2 ppt groups, but after metamorphosis body size in all water bodies was similar . In water bodies with 4 ppt salt, the abundance of dwarf tree frogs (Litoria fallax), dragonfly larvae, and damselfly larvae was lower than in water bodies with 0 and 2 ppt salt, which could have knock-on effects for community structure. Based on our results, salt may be an effective field-based B. dendrobatidis mitigation tool for lentic amphibians that could contribute to the conservation of numerous susceptible species. However, as in all conservation efforts, these benefits need to be weighed against negative effects on both target and nontarget organisms.


Assuntos
Anuros , Quitridiomicetos/fisiologia , Micoses/epidemiologia , Lagoas/química , Salinidade , Animais , Longevidade , Micoses/microbiologia , New South Wales , Taxa de Sobrevida
6.
Conserv Biol ; 28(5): 1195-205, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24975971

RESUMO

Wildlife diseases pose an increasing threat to biodiversity and are a major management challenge. A striking example of this threat is the emergence of chytridiomycosis. Despite diagnosis of chytridiomycosis as an important driver of global amphibian declines 15 years ago, researchers have yet to devise effective large-scale management responses other than biosecurity measures to mitigate disease spread and the establishment of disease-free captive assurance colonies prior to or during disease outbreaks. We examined the development of management actions that can be implemented after an epidemic in surviving populations. We developed a conceptual framework with clear interventions to guide experimental management and applied research so that further extinctions of amphibian species threatened by chytridiomycosis might be prevented. Within our framework, there are 2 management approaches: reducing Batrachochytrium dendrobatidis (the fungus that causes chytridiomycosis) in the environment or on amphibians and increasing the capacity of populations to persist despite increased mortality from disease. The latter approach emphasizes that mitigation does not necessarily need to focus on reducing disease-associated mortality. We propose promising management actions that can be implemented and tested based on current knowledge and that include habitat manipulation, antifungal treatments, animal translocation, bioaugmentation, head starting, and selection for resistance. Case studies where these strategies are being implemented will demonstrate their potential to save critically endangered species.


Assuntos
Anfíbios , Quitridiomicetos/fisiologia , Conservação dos Recursos Naturais , Surtos de Doenças/veterinária , Extinção Biológica , Micoses/veterinária , Animais , Biodiversidade , Espécies em Perigo de Extinção , Micoses/epidemiologia , Micoses/genética , Micoses/microbiologia , Medição de Risco
7.
Conserv Biol ; 27(4): 741-51, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23773091

RESUMO

Climate change is believed to be causing declines of ectothermic vertebrates, but there is little evidence that climatic conditions associated with declines have exceeded critical (i.e., acutely lethal) maxima or minima, and most relevant studies are correlative, anecdotal, or short-term (hours). We conducted an 11-week factorial experiment to examine the effects of temperature (22 °C or 27 °C), moisture (wet or dry), and atrazine (an herbicide; 0, 4, 40, 400 µg/L exposure as embryos and larvae) on the survival, growth, behavior, and foraging rates of postmetamorphic streamside salamanders (Ambystoma barbouri), a species of conservation concern. The tested climatic conditions were between the critical maxima and minima of streamside salamanders; thus, this experiment quantified the long-term effects of climate change within the noncritical range of this species. Despite a suite of behavioral adaptations to warm and dry conditions (e.g., burrowing, refuge use, huddling with conspecifics, and a reduction in activity), streamside salamanders exhibited significant loss of mass and significant mortality in all but the cool and moist conditions, which were closest to the climatic conditions in which they are most active in nature. A temperature of 27 °C represented a greater mortality risk than dry conditions; death occurred rapidly at this temperature and more gradually under cool and dry conditions. Foraging decreased under dry conditions, which suggests there were opportunity costs to water conservation. Exposure to the herbicide atrazine additively decreased water-conserving behaviors, foraging efficiency, mass, and time to death. Hence, the hypothesis that moderate climate change can cause population declines is even more plausible under scenarios with multiple stressors. These results suggest that climate change within the noncritical range of species and pollution may reduce individual performance by altering metabolic demands, hydration, and foraging effort and may facilitate population declines of amphibians and perhaps other ectothermic vertebrates.


Assuntos
Adaptação Biológica/fisiologia , Ambystoma/fisiologia , Mudança Climática , Herbicidas/toxicidade , Estresse Fisiológico/fisiologia , Temperatura , Água/análise , Animais , Atrazina , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Kentucky , Funções Verossimilhança , Especificidade da Espécie , Análise de Sobrevida
8.
Conserv Biol ; 27(6): 1410-20, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24033460

RESUMO

Despite the high profile of amphibian declines and the increasing threat of drought and fragmentation to aquatic ecosystems, few studies have examined long-term rates of change for a single species across a large geographic area. We analyzed growth in annual egg-mass counts of the Columbia spotted frog (Rana luteiventris) across the northwestern United States, an area encompassing 3 genetic clades. On the basis of data collected by multiple partners from 98 water bodies between 1991 and 2011, we used state-space and linear-regression models to measure effects of patch characteristics, frequency of summer drought, and wetland restoration on population growth. Abundance increased in the 2 clades with greatest decline history, but declined where populations are considered most secure. Population growth was negatively associated with temporary hydroperiods and landscape modification (measured by the human footprint index), but was similar in modified and natural water bodies. The effect of drought was mediated by the size of the water body: populations in large water bodies maintained positive growth despite drought, whereas drought magnified declines in small water bodies. Rapid growth in restored wetlands in areas of historical population declines provided strong evidence of successful management. Our results highlight the importance of maintaining large areas of habitat and underscore the greater vulnerability of small areas of habitat to environmental stochasticity. Similar long-term growth rates in modified and natural water bodies and rapid, positive responses to restoration suggest pond construction and other forms of management can effectively increase population growth. These tools are likely to become increasingly important to mitigate effects of increased drought expected from global climate change. Papeles de las Características del Fragmento, Frecuencia de Sequía y Restauración en las Tendencias a Largo Plazo de un Anfibio Ampliamente Distribuido.


Assuntos
Conservação dos Recursos Naturais , Secas , Ranidae/fisiologia , Animais , Ecossistema , Geografia , Densidade Demográfica , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA