Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.091
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(17): 4564-4578.e18, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34302739

RESUMO

The mesencephalic locomotor region (MLR) is a key midbrain center with roles in locomotion. Despite extensive studies and clinical trials aimed at therapy-resistant Parkinson's disease (PD), debate on its function remains. Here, we reveal the existence of functionally diverse neuronal populations with distinct roles in control of body movements. We identify two spatially intermingled glutamatergic populations separable by axonal projections, mouse genetics, neuronal activity profiles, and motor functions. Most spinally projecting MLR neurons encoded the full-body behavior rearing. Loss- and gain-of-function optogenetic perturbation experiments establish a function for these neurons in controlling body extension. In contrast, Rbp4-transgene-positive MLR neurons project in an ascending direction to basal ganglia, preferentially encode the forelimb behaviors handling and grooming, and exhibit a role in modulating movement. Thus, the MLR contains glutamatergic neuronal subpopulations stratified by projection target exhibiting roles in action control not restricted to locomotion.


Assuntos
Locomoção/fisiologia , Mesencéfalo/anatomia & histologia , Animais , Gânglios da Base/metabolismo , Comportamento Animal , Feminino , Integrases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Optogenética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Medula Espinal/metabolismo , Transgenes , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
2.
Annu Rev Neurosci ; 47(1): 63-83, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38424473

RESUMO

Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.


Assuntos
Encéfalo , Estimulação Encefálica Profunda , Doença de Parkinson , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Animais , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Movimento/fisiologia , Distonia/terapia , Distonia/fisiopatologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia
3.
Cell ; 169(6): 1029-1041.e16, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575667

RESUMO

We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice.


Assuntos
Estimulação Encefálica Profunda/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/instrumentação , Eletrodos , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Estimulação Transcraniana por Corrente Contínua/instrumentação
4.
Proc Natl Acad Sci U S A ; 121(14): e2314918121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527192

RESUMO

Subcallosal cingulate (SCC) deep brain stimulation (DBS) is an emerging therapy for refractory depression. Good clinical outcomes are associated with the activation of white matter adjacent to the SCC. This activation produces a signature cortical evoked potential (EP), but it is unclear which of the many pathways in the vicinity of SCC is responsible for driving this response. Individualized biophysical models were built to achieve selective engagement of two target bundles: either the forceps minor (FM) or cingulum bundle (CB). Unilateral 2 Hz stimulation was performed in seven patients with treatment-resistant depression who responded to SCC DBS, and EPs were recorded using 256-sensor scalp electroencephalography. Two distinct EPs were observed: a 120 ms symmetric response spanning both hemispheres and a 60 ms asymmetrical EP. Activation of FM correlated with the symmetrical EPs, while activation of CB was correlated with the asymmetrical EPs. These results support prior model predictions that these two pathways are predominantly activated by clinical SCC DBS and provide first evidence of a link between cortical EPs and selective fiber bundle activation.


Assuntos
Estimulação Encefálica Profunda , Substância Branca , Humanos , Estimulação Encefálica Profunda/métodos , Giro do Cíngulo/fisiologia , Corpo Caloso , Potenciais Evocados
5.
J Neurosci ; 44(27)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38724284

RESUMO

While ipsilesional cortical electroencephalography has been associated with poststroke recovery mechanisms and outcomes, the role of the cerebellum and its interaction with the ipsilesional cortex is still largely unknown. We have previously shown that poststroke motor control relies on increased corticocerebellar coherence (CCC) in the low beta band to maintain motor task accuracy and to compensate for decreased excitability of the ipsilesional cortex. We now extend our work to investigate corticocerebellar network changes associated with chronic stimulation of the dentato-thalamo-cortical pathway aimed at promoting poststroke motor rehabilitation. We investigated the excitability of the ipsilesional cortex, the dentate (DN), and their interaction as a function of treatment outcome measures. Relative to baseline, 10 human participants (two women) at the end of 4-8 months of DN deep brain stimulation (DBS) showed (1) significantly improved motor control indexed by computerized motor tasks; (2) significant increase in ipsilesional premotor cortex event-related desynchronization that correlated with improvements in motor function; and (3) significant decrease in CCC, including causal interactions between the DN and ipsilesional cortex, which also correlated with motor function improvements. Furthermore, we show that the functional state of the DN in the poststroke state and its connectivity with the ipsilesional cortex were predictive of motor outcomes associated with DN-DBS. The findings suggest that as participants recovered, the ipsilesional cortex became more involved in motor control, with less demand on the cerebellum to support task planning and execution. Our data provide unique mechanistic insights into the functional state of corticocerebellar-cortical network after stroke and its modulation by DN-DBS.


Assuntos
Núcleos Cerebelares , Estimulação Encefálica Profunda , Recuperação de Função Fisiológica , Acidente Vascular Cerebral , Humanos , Feminino , Estimulação Encefálica Profunda/métodos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Recuperação de Função Fisiológica/fisiologia , Idoso , Núcleos Cerebelares/fisiopatologia , Núcleos Cerebelares/fisiologia , Córtex Motor/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Adulto , Eletroencefalografia
6.
Annu Rev Neurosci ; 40: 453-477, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28772097

RESUMO

Modern functional neurosurgery for movement disorders such as Parkinson's disease, tremor, and dystonia involves the placement of focal lesions or the application of deep brain stimulation (DBS) within circuits that modulate motor function. Precise targeting of these motor structures can be further refined by the use of electrophysiological approaches. In particular, microelectrode recordings enable the delineation of neuroanatomic structures. In the course of these operations, there is an opportunity not only to map basal ganglia structures but also to gain insights into how disturbances in neural activity produce movement disorders. In this review, we aim to highlight what the field has uncovered thus far about movement disorders through DBS. The work to date lays the foundation for future studies that will shed further light on dysfunctional circuits mediating diseases of the nervous system and how we might modulate these circuits therapeutically.


Assuntos
Gânglios da Base/fisiopatologia , Distúrbios Distônicos/fisiopatologia , Distúrbios Distônicos/terapia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Tremor/fisiopatologia , Tremor/terapia , Gânglios da Base/cirurgia , Estimulação Encefálica Profunda , Distúrbios Distônicos/cirurgia , Humanos , Procedimentos Neurocirúrgicos , Doença de Parkinson/cirurgia , Tremor/cirurgia
7.
Brain ; 147(4): 1190-1196, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38193320

RESUMO

Most research in Parkinson's disease focuses on improving motor symptoms. Yet, up to 80% of patients present with non-motor symptoms that often have a large impact on patients' quality of life. Impairment in working memory, a fundamental cognitive process, is common in Parkinson's disease. While deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms in Parkinson's disease, its impact on cognitive functions is less well studied. Here, we examine the effect of DBS in the theta, beta, low and high gamma frequency on working memory in 20 Parkinson's disease patients with bilateral STN-DBS. A linear mixed effects model demonstrates that STN-DBS in the theta frequency improves working memory performance. This effect is frequency-specific and was absent for beta and gamma frequency stimulation. Further, this effect is specific to cognitive performance, as theta frequency DBS did not affect motor function. A non-parametric cluster-based permutation analysis of whole-brain normative structural connectivity shows that working memory enhancement by theta frequency stimulation is associated with higher connectivity between the stimulated subthalamic area and the right middle frontal gyrus. Again, this association is frequency- and task-specific. These findings highlight the potential of theta frequency STN-DBS as a targeted intervention to improve working memory in patients with Parkinson's disease.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Memória de Curto Prazo , Qualidade de Vida
8.
Brain ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916480

RESUMO

BACKGROUND: Pain is a non-motor symptom that impairs quality of life in Parkinson's patients. Pathological nociceptive hypersensitivity in patients could be due to changes in the processing of somatosensory information at the level of the basal ganglia, including the subthalamic nucleus (STN), but the underlying mechanisms are not yet defined. Here, we investigated the interaction between the STN and the dorsal horn of the spinal cord (DHSC), by first examining the nature of STN neurons that respond to peripheral nociceptive stimulation and the nature of their responses under normal and pathological conditions. Next, we studied the consequences of deep brain stimulation (DBS) of the STN on the electrical activity of DHSC neurons. Then, we investigated whether the therapeutic effect of STN-DBS would be mediated by the brainstem descending pathway involving the rostral ventromedial medulla (RVM). Finally, to better understand how the STN modulates allodynia, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) expressed in the STN. METHODS: The study was carried out on the 6-OHDA rodent model of Parkinson's disease, obtained by stereotactic injection of the neurotoxin into the medial forebrain bundle of rats and mice. In these animals, we used motor and nociceptive behavioral tests, in vivo electrophysiology of STN and wide dynamic range (WDR) DHSC neurons in response to peripheral stimulation, deep brain stimulation of the STN and the selective DREADD approach. Vglut2-ires-cre mice were used to specifically target and inhibit STN glutamatergic neurons. RESULTS: STN neurons are able to detect nociceptive stimuli, encode their intensity and generate windup-like plasticity, like WDR neurons in the DHSC. These phenomena are impaired in dopamine-depleted animals, as the intensity response is altered in both spinal and subthalamic neurons. Furthermore, As with L-Dopa, STN-DBS in rats ameliorated 6-OHDA-induced allodynia, and this effect is mediated by descending brainstem projections leading to normalization of nociceptive integration in DHSC neurons. Furthermore, this therapeutic effect was reproduced by selective inhibition of STN glutamatergic neurons in Vglut2-ires-cre mice. CONCLUSION: Our study highlights the centrality of the STN in nociceptive circuits, its interaction with the DHSC and its key involvement in pain sensation in Parkinson's disease. Furthermore, our results provide for the first-time evidence that subthalamic DBS produces analgesia by normalizing the responses of spinal WDR neurons via descending brainstem pathways. These effects are due to direct inhibition, rather than activation of glutamatergic neurons in the STN or passage fibers, as shown in the DREADDs experiment.

9.
Brain ; 147(3): 911-922, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128546

RESUMO

Continuous deep brain stimulation (cDBS) of the subthalamic nucleus (STN) or globus pallidus is an effective treatment for the motor symptoms of Parkinson's disease. The relative benefit of one region over the other is of great interest but cannot usually be compared in the same patient. Simultaneous DBS of both regions may synergistically increase the therapeutic benefit. Continuous DBS is limited by a lack of responsiveness to dynamic, fluctuating symptoms intrinsic to the disease. Adaptive DBS (aDBS) adjusts stimulation in response to biomarkers to improve efficacy, side effects, and efficiency. We combined bilateral DBS of both STN and globus pallidus (dual target DBS) in a prospective within-participant, clinical trial in six patients with Parkinson's disease (n = 6, 55-65 years, n = 2 females). Dual target cDBS was tested for Parkinson's disease symptom control annually over 2 years, measured by motor rating scales, on time without dyskinesia, and medication reduction. Random amplitude experiments probed system dynamics to estimate parameters for aDBS. We then implemented proportional-plus-integral aDBS using a novel distributed (off-implant) architecture. In the home setting, we collected tremor and dyskinesia scores as well as individualized ß and DBS amplitudes. Dual target cDBS reduced motor symptoms as measured by Unified Parkinson's Disease Rating Scale (UPDRS) to a greater degree than either region alone (P < 0.05, linear mixed model) in the cohort. The amplitude of ß-oscillations in the STN correlated to the speed of hand grasp movements for five of six participants (P < 0.05, Pearson correlation). Random amplitude experiments provided insight into temporal windowing to avoid stimulation artefacts and demonstrated a correlation between STN ß amplitude and DBS amplitude. Proportional plus integral control of aDBS reduced average power, while preserving UPDRS III scores in the clinic (P = 0.28, Wilcoxon signed rank), and tremor and dyskinesia scores during blinded testing at home (n = 3, P > 0.05, Wilcoxon ranked sum). In the home setting, DBS power reductions were slight but significant. Dual target cDBS may offer an improvement in treatment of motor symptoms of Parkinson's disease over DBS of either the STN or globus pallidus alone. When combined with proportional plus integral aDBS, stimulation power may be reduced, while preserving the increased benefit of dual target DBS.


Assuntos
Estimulação Encefálica Profunda , Discinesias , Doença de Parkinson , Feminino , Humanos , Doença de Parkinson/terapia , Tremor , Estudos Prospectivos
10.
Brain ; 147(2): 505-520, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675644

RESUMO

Mesial temporal lobe epilepsy (MTLE), the most common form of focal epilepsy in adults, is often refractory to medication and associated with hippocampal sclerosis. Deep brain stimulation represents an alternative treatment option for drug-resistant patients who are ineligible for resective brain surgery. In clinical practice, closed-loop stimulation at high frequencies is applied to interrupt ongoing seizures, yet has (i) a high incidence of false detections; (ii) the drawback of delayed seizure-suppressive intervention; and (iii) limited success in sclerotic tissue. As an alternative, low-frequency stimulation (LFS) has been explored recently in patients with focal epilepsies. In preclinical epilepsy models, hippocampal LFS successfully prevented seizures when applied continuously. Since it would be advantageous to reduce the stimulation load, we developed a protocol for on-demand LFS. Given the importance of the hippocampus for navigation and memory, we investigated potential consequences of LFS on hippocampal function. To this end, we used the intrahippocampal kainate mouse model, which recapitulates the key features of MTLE, including spontaneous seizure activity and hippocampal sclerosis. Specifically, our online detection algorithm monitored epileptiform activity in hippocampal local field potential recordings and identified short epileptiform bursts preceding focal seizure clusters, triggering hippocampal LFS to stabilize the network state. To probe behavioural performance, we tested the acute influence of LFS on anxiety-like behaviour in the light-dark box test, spatial and non-spatial memory in the object location memory and novel object recognition test, as well as spatial navigation and long-term memory in the Barnes maze. On-demand LFS was almost as effective as continuous LFS in preventing focal seizure clusters but with a significantly lower stimulation load. When we compared the behavioural performance of chronically epileptic mice to healthy controls, we found that both groups were equally mobile, but epileptic mice displayed an increased anxiety level, altered spatial learning strategy and impaired memory performance. Most importantly, with the application of hippocampal LFS before behavioural training and test sessions, we could rule out deleterious effects on cognition and even show an alleviation of deficits in long-term memory recall in chronically epileptic mice. Taken together, our findings may provide a promising alternative to current therapies, overcoming some of their major limitations, and inspire further investigation of LFS for seizure control in focal epilepsy syndromes.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Esclerose Hipocampal , Humanos , Camundongos , Animais , Convulsões , Hipocampo , Epilepsia do Lobo Temporal/terapia
11.
Brain ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808482

RESUMO

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomo-functional mechanisms governing human behaviour as well as the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. While the ventral tegmental area has been successfully targeted with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region has not been fully understood. Here using fiber micro-dissections in human cadaveric hemispheres, population-based high-definition fiber tractography, and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain, and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches, and aggressive behaviors.

12.
Brain ; 147(6): 2038-2052, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38195196

RESUMO

In Parkinson's disease, imbalances between 'antikinetic' and 'prokinetic' patterns of neuronal oscillatory activity are related to motor dysfunction. Invasive brain recordings from the motor network have suggested that medical or surgical therapy can promote a prokinetic state by inducing narrowband gamma rhythms (65-90 Hz). Excessive narrowband gamma in the motor cortex promotes dyskinesia in rodent models, but the relationship between narrowband gamma and dyskinesia in humans has not been well established. To assess this relationship, we used a sensing-enabled deep brain stimulator system, attached to both motor cortex and basal ganglia (subthalamic or pallidal) leads, paired with wearable devices that continuously tracked motor signs in the contralateral upper limbs. We recorded 984 h of multisite field potentials in 30 hemispheres of 16 subjects with Parkinson's disease (2/16 female, mean age 57 ± 12 years) while at home on usual antiparkinsonian medications. Recordings were done 2-4 weeks after implantation, prior to starting therapeutic stimulation. Narrowband gamma was detected in the precentral gyrus, subthalamic nucleus or both structures on at least one side of 92% of subjects with a clinical history of dyskinesia. Narrowband gamma was not detected in the globus pallidus. Narrowband gamma spectral power in both structures co-fluctuated similarly with contralateral wearable dyskinesia scores (mean correlation coefficient of ρ = 0.48 with a range of 0.12-0.82 for cortex, ρ = 0.53 with a range of 0.5-0.77 for subthalamic nucleus). Stratification analysis showed the correlations were not driven by outlier values, and narrowband gamma could distinguish 'on' periods with dyskinesia from 'on' periods without dyskinesia. Time lag comparisons confirmed that gamma oscillations herald dyskinesia onset without a time lag in either structure when using 2-min epochs. A linear model incorporating the three oscillatory bands (beta, theta/alpha and narrowband gamma) increased the predictive power of dyskinesia for several subject hemispheres. We further identified spectrally distinct oscillations in the low gamma range (40-60 Hz) in three subjects, but the relationship of low gamma oscillations to dyskinesia was variable. Our findings support the hypothesis that excessive oscillatory activity at 65-90 Hz in the motor network tracks with dyskinesia similarly across both structures, without a detectable time lag. This rhythm may serve as a promising control signal for closed-loop deep brain stimulation using either cortical or subthalamic detection.


Assuntos
Estimulação Encefálica Profunda , Ritmo Gama , Córtex Motor , Doença de Parkinson , Humanos , Doença de Parkinson/fisiopatologia , Feminino , Masculino , Pessoa de Meia-Idade , Ritmo Gama/fisiologia , Estimulação Encefálica Profunda/métodos , Córtex Motor/fisiopatologia , Idoso , Adulto , Discinesias/fisiopatologia , Discinesias/etiologia , Núcleo Subtalâmico/fisiopatologia , Rede Nervosa/fisiopatologia
13.
Brain ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436939

RESUMO

The subthalamic nucleus (STN) of the basal ganglia is key to the inhibitory control of movement. Consequently, it is a primary target for the neurosurgical treatment of movement disorders like Parkinson's Disease, where modulating the STN via deep-brain stimulation (DBS) can release excess inhibition of thalamo-cortical motor circuits. However, the STN is also anatomically connected to other thalamo-cortical circuits, including those underlying cognitive processes like attention. Notably, STN-DBS can also affect these processes. This suggests that the STN may also contribute to the inhibition of non-motor activity, and that STN-DBS may cause changes to this inhibition. We here tested this hypothesis in humans. We used a novel, wireless outpatient method to record intracranial local field potentials (LFP) from STN DBS implants during a visual attention task (Experiment 1, N=12). These outpatient measurements allowed the simultaneous recording of high-density EEG, which we used to derive the steady-state visual evoked potential (SSVEP), a well-established neural index of visual attentional engagement. By relating STN activity to this neural marker of attention (instead of overt behavior), we avoided possible confounds resulting from STN's motor role. We aimed to test whether the STN contributes to the momentary inhibition of the SSVEP caused by unexpected, distracting sounds. Furthermore, we causally tested this association in a second experiment, where we modulated STN via DBS across two sessions of the task, spaced at least one week apart (N=21, no sample overlap with Experiment 1). The LFP recordings in Experiment 1 showed that reductions of the SSVEP after distracting sounds were preceded by sound-related γ-frequency (>60Hz) activity in the STN. Trial-to-trial modeling further showed that this STN activity statistically mediated the sounds' suppressive effect on the SSVEP. In Experiment 2, modulating STN activity via DBS significantly reduced these sound-related SSVEP reductions. This provides causal evidence for the role of the STN in the surprise-related inhibition of attention. These findings suggest that the human STN contributes to the inhibition of attention, a non-motor process. This supports a domain-general view of the inhibitory role of the STN. Furthermore, these findings also suggest a potential mechanism underlying some of the known cognitive side-effects of STN-DBS treatment, especially on attentional processes. Finally, our newly-established outpatient LFP recording technique facilitates the testing of the role of subcortical nuclei in complex cognitive tasks, alongside recordings from the rest of the brain, and in much shorter time than perisurgical recordings.

14.
Proc Natl Acad Sci U S A ; 119(14): e2114985119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35357970

RESUMO

Dystonia is a debilitating disease with few treatment options. One effective option is deep brain stimulation (DBS) to the internal pallidum. While cervical and generalized forms of isolated dystonia have been targeted with a common approach to the posterior third of the nucleus, large-scale investigations regarding optimal stimulation sites and potential network effects have not been carried out. Here, we retrospectively studied clinical results following DBS for cervical and generalized dystonia in a multicenter cohort of 80 patients. We model DBS electrode placement based on pre- and postoperative imaging and introduce an approach to map optimal stimulation sites to anatomical space. Second, we investigate which tracts account for optimal clinical improvements, when modulated. Third, we investigate distributed stimulation effects on a whole-brain functional connectome level. Our results show marked differences of optimal stimulation sites that map to the somatotopic structure of the internal pallidum. While modulation of the striatopallidofugal axis of the basal ganglia accounted for optimal treatment of cervical dystonia, modulation of pallidothalamic bundles did so in generalized dystonia. Finally, we show a common multisynaptic network substrate for both phenotypes in the form of connectivity to the cerebellum and somatomotor cortex. Our results suggest a brief divergence of optimal stimulation networks for cervical vs. generalized dystonia within the pallidothalamic loop that merge again on a thalamo-cortical level and share a common whole-brain network.


Assuntos
Estimulação Encefálica Profunda , Distúrbios Distônicos , Torcicolo , Estimulação Encefálica Profunda/métodos , Distúrbios Distônicos/terapia , Globo Pálido , Humanos , Tálamo , Torcicolo/terapia , Resultado do Tratamento
15.
Proc Natl Acad Sci U S A ; 119(16): e2113518119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412900

RESUMO

Fear is essential for survival, but excessive anxiety behavior is debilitating. Anxiety disorders affecting millions of people are a global health problem, where new therapies and targets are much needed. Deep brain stimulation (DBS) is established as a therapy in several neurological disorders, but is underexplored in anxiety disorders. The lateral hypothalamus (LH) has been recently revealed as an origin of anxiogenic brain signals, suggesting a target for anxiety treatment. Here, we develop and validate a DBS strategy for modulating anxiety-like symptoms by targeting the LH. We identify a DBS waveform that rapidly inhibits anxiety-implicated LH neural activity and suppresses innate and learned anxiety behaviors in a variety of mouse models. Importantly, we show that the LH DBS displays high temporal and behavioral selectivity: Its affective impact is fast and reversible, with no evidence of side effects such as impaired movement, memory loss, or epileptic seizures. These data suggest that acute hypothalamic DBS could be a useful strategy for managing treatment-resistant anxiety disorders.


Assuntos
Transtornos de Ansiedade , Estimulação Encefálica Profunda , Região Hipotalâmica Lateral , Animais , Transtornos de Ansiedade/terapia , Estimulação Encefálica Profunda/métodos , Camundongos , Orexinas/antagonistas & inibidores , Orexinas/fisiologia
16.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34921100

RESUMO

Impulsive overeating is a common, disabling feature of eating disorders. Both continuous deep brain stimulation (DBS) and responsive DBS, which limits current delivery to pathological brain states, have emerged as potential therapies. We used in vivo fiber photometry in wild-type, Drd1-cre, and A2a-cre mice to 1) assay subtype-specific medium spiny neuron (MSN) activity of the nucleus accumbens (NAc) during hedonic feeding of high-fat food, and 2) examine DBS strategy-specific effects on NAc activity. D1, but not D2, NAc GCaMP activity increased immediately prior to high-fat food approach. Responsive DBS triggered a GCaMP surge throughout the stimulation period and durably reduced high-fat intake. However, with continuous DBS, this surge decayed, and high-fat intake reemerged. Our results argue for a stimulation strategy-dependent modulation of D1 MSNs with a more sustained decrease in consumption with responsive DBS. This study illustrates the important role in vivo imaging can play in understanding effects of such novel therapies.


Assuntos
Encéfalo/fisiologia , Estimulação Encefálica Profunda/métodos , Comportamento Alimentar/fisiologia , Animais , Comportamento Impulsivo , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
17.
Nano Lett ; 24(1): 270-278, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38157214

RESUMO

Here, we introduce the magneto-mechanical-genetic (MMG)-driven wireless deep brain stimulation (DBS) using magnetic nanostructures for therapeutic benefits in the mouse model of Parkinson's disease (PD). Electrical DBS of the subthalamic nucleus (STN) is an effective therapy for mitigating Parkinson's motor symptoms. However, its broader application is hampered by the requirement for implanted electrodes and the lack of anatomical and cellular specificity. Using the nanoscale magnetic force actuators (m-Torquer), which deliver torque force under rotating magnetic fields to activate pre-encoded Piezo1 ion channels on target neurons, our system enables wireless and STN-specific DBS without implants, addressing key unmet challenges in the DBS field. In both late- and early-stage PD mice, MMG-DBS significantly improved locomotor activity and motor balance by 2-fold compared to untreated PD mice. Moreover, MMG-DBS enabled sustained therapeutic effects. This approach provides a non-invasive and implant-free DBS with cellular targeting capability for the effective treatment of Parkinsonian symptoms.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Transtornos Parkinsonianos , Núcleo Subtalâmico , Camundongos , Animais , Doença de Parkinson/genética , Doença de Parkinson/terapia , Transtornos Parkinsonianos/terapia , Núcleo Subtalâmico/fisiologia , Neurônios/fisiologia , Canais Iônicos
18.
J Neurosci ; 43(46): 7812-7821, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37758474

RESUMO

In human and nonhuman primates, deep brain stimulation applied at or near the internal medullary lamina of the thalamus [a region referred to as "central thalamus," (CT)], but not at nearby thalamic sites, elicits major changes in the level of consciousness, even in some minimally conscious brain-damaged patients. The mechanisms behind these effects remain mysterious, as the connections of CT had not been specifically mapped in primates. In marmoset monkeys (Callithrix jacchus) of both sexes, we labeled the axons originating from each of the various CT neuronal populations and analyzed their arborization patterns in the cerebral cortex and striatum. We report that, together, these CT populations innervate an array of high-level frontal, posterior parietal, and cingulate cortical areas. Some populations simultaneously target the frontal, parietal, and cingulate cortices, while others predominantly target the dorsal striatum. Our data indicate that CT stimulation can simultaneously engage a heterogeneous set of projection systems that, together, target the key nodes of the attention, executive control, and working-memory networks of the brain. Increased functional connectivity in these networks has been previously described as a signature of consciousness.SIGNIFICANCE STATEMENT In human and nonhuman primates, deep brain stimulation at a specific site near the internal medullary lamina of the thalamus ["central thalamus," (CT)] had been shown to restore arousal and awareness in anesthetized animals, as well as in some brain-damaged patients. The mechanisms behind these effects remain mysterious, as CT connections remain poorly defined in primates. In marmoset monkeys, we mapped with sensitive axon-labeling methods the pathways originated from CT. Our data indicate that stimulation applied in CT can simultaneously engage a heterogeneous set of projection systems that, together, target several key nodes of the attention, executive control, and working-memory networks of the brain. Increased functional connectivity in these networks has been previously described as a signature of consciousness.


Assuntos
Lesões Encefálicas , Callithrix , Masculino , Animais , Feminino , Humanos , Tálamo/fisiologia , Córtex Cerebral/fisiologia , Nível de Alerta/fisiologia , Estado de Consciência/fisiologia , Vias Neurais/fisiologia
19.
J Neurosci ; 43(43): 7175-7185, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37684029

RESUMO

When choosing between rewards that differ in temporal proximity (intertemporal choice), human preferences are typically stable, constituting a clinically relevant transdiagnostic trait. Here we show, in female and male human patients undergoing deep brain stimulation (DBS) of the anterior limb of the internal capsule/NAcc region for treatment-resistant obsessive-compulsive disorder, that long-term chronic (but not phasic) DBS disrupts intertemporal preferences. Hierarchical Bayesian modeling accounting for temporal discounting behavior across multiple time points allowed us to assess both short-term and long-term reliability of intertemporal choice. In controls, temporal discounting was highly reliable, both long-term (6 months) and short-term (1 week). In contrast, in patients undergoing DBS, short-term reliability was high, but long-term reliability (6 months) was severely disrupted. Control analyses confirmed that this effect was not because of range restriction, the presence of obsessive-compulsive disorder symptoms or group differences in choice stochasticity. Model-agnostic between- and within-subject analyses confirmed this effect. These findings provide initial evidence for long-term modulation of cognitive function via DBS and highlight a potential contribution of the human NAcc region to intertemporal preference stability over time.SIGNIFICANCE STATEMENT Choosing between rewards that differ in temporal proximity is in part a stable trait with relevance for many mental disorders, and depends on prefrontal regions and regions of the dopamine system. Here we show that chronic deep brain stimulation of the human anterior limb of the internal capsule/NAcc region for treatment-resistant obsessive-compulsive disorder disrupts the stability of intertemporal preferences. These findings show that chronic stimulation of one of the brain's central motivational hubs can disrupt preferences thought to depend on this circuit.


Assuntos
Estimulação Encefálica Profunda , Desvalorização pelo Atraso , Humanos , Masculino , Feminino , Núcleo Accumbens/fisiologia , Reprodutibilidade dos Testes , Teorema de Bayes , Resultado do Tratamento
20.
J Neurosci ; 43(45): 7575-7586, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940596

RESUMO

Deep brain stimulation (DBS) is an effective therapy for various neurologic and neuropsychiatric disorders, involving chronic implantation of electrodes into target brain regions for electrical stimulation delivery. Despite its safety and efficacy, DBS remains an underutilized therapy. Advances in the field of DBS, including in technology, mechanistic understanding, and applications have the potential to expand access and use of DBS, while also improving clinical outcomes. Developments in DBS technology, such as MRI compatibility and bidirectional DBS systems capable of sensing neural activity while providing therapeutic stimulation, have enabled advances in our understanding of DBS mechanisms and its application. In this review, we summarize recent work exploring DBS modulation of target networks. We also cover current work focusing on improved programming and the development of novel stimulation paradigms that go beyond current standards of DBS, many of which are enabled by sensing-enabled DBS systems and have the potential to expand access to DBS.


Assuntos
Estimulação Encefálica Profunda , Encéfalo/fisiologia , Estimulação Elétrica , Imageamento por Ressonância Magnética , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA