Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am Nat ; 203(6): 726-735, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781524

RESUMO

AbstractIn the world's highest mountain ranges, uncertainty about the upper elevational range limits of alpine animals represents a critical knowledge gap regarding the environmental limits of life and presents a problem for detecting range shifts in response to climate change. Here we report results of mountaineering mammal surveys in the Central Andes, which led to the discovery of multiple species of mice living at extreme elevations that far surpass previously assumed range limits for mammals. We livetrapped small mammals from ecologically diverse sites spanning >6,700 m of vertical relief, from the desert coast of northern Chile to the summits of the highest volcanoes in the Andes. We used molecular sequence data and whole-genome sequence data to confirm the identities of species that represent new elevational records and to test hypotheses regarding species limits. These discoveries contribute to a new appreciation of the environmental limits of vertebrate life.


Assuntos
Altitude , Animais , Camundongos/genética , Camundongos/fisiologia , Chile , Filogenia , Distribuição Animal
2.
Plant Cell Environ ; 47(6): 2192-2205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38481108

RESUMO

Physiological water stress induced by low root temperatures might contribute to species-specific climatic limits of tree distribution. We investigated the low temperature sensitivity of root water uptake and transport in seedlings of 16 European tree species which reach their natural upper elevation distribution limits at different distances to the alpine treeline. We used 2H-H2O pulse-labelling to quantify the water uptake and transport velocity from roots to leaves in seedlings exposed to constant 15°C, 7°C or 2°C root temperature, but identical aboveground temperatures between 20°C and 25°C. In all species, low root temperatures reduced the water transport rate, accompanied by reduced stem water potentials and stomatal conductance. At 7°C root temperature, the relative water uptake rates among species correlated positively with the species-specific upper elevation limits, indicating an increasingly higher sensitivity to lower root zone temperatures, the lower a species' natural elevational distribution limit. Conversely, 2°C root temperature severely inhibited water uptake in all species, irrespective of the species' thermal elevational limits. We conclude that low temperature-induced hydraulic constraints contribute to the cold distribution limits of temperate tree species and are a potential physiological cause behind the low temperature limits of plant growth in general.


Assuntos
Temperatura Baixa , Raízes de Plantas , Especificidade da Espécie , Árvores , Água , Água/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Árvores/fisiologia , Árvores/metabolismo , Altitude , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Plântula/fisiologia , Plântula/metabolismo , Transporte Biológico , Estômatos de Plantas/fisiologia
3.
Ecol Lett ; 24(12): 2739-2749, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34636129

RESUMO

Understanding the ecological factors that shape geographic range limits and the evolutionary constraints that prevent populations from adaptively evolving beyond these limits is an unresolved question. Here, we investigated why the euryhaline fish, Poecila reticulata, is confined to freshwater within its native range, despite being tolerant of brackish water. We hypothesised that competitive interactions with a close relative, Poecilia picta, in brackish water prevents P. reticulata from colonising brackish water. Using a combination of field transplant, common garden breeding, and laboratory behaviour experiments, we find support for this hypothesis, as P. reticulata are behaviourally subordinate and have lower survival in brackish water with P. picta. We also found a negative genetic correlation between P. reticulata growth in brackish water versus freshwater in the presence of P. picta, suggesting a genetically based trade-off between salinity tolerance and competitive ability could constrain adaptive evolution at the range limit.


Assuntos
Água Doce , Tolerância ao Sal , Animais , Salinidade
4.
Mol Ecol ; 27(3): 752-772, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29218784

RESUMO

Intraspecific genetic diversity and divergence have a large influence on the adaption and evolutionary potential of species. The widely distributed starfish, Coscinasterias tenuispina, combines sexual reproduction with asexual reproduction via fission. Here we analyse the phylogeography of this starfish to reveal historical and contemporary processes driving its intraspecific genetic divergence. We further consider whether asexual reproduction is the most important method of propagation throughout the distribution range of this species. Our study included 326 individuals from 16 populations, covering most of the species' distribution range. A total of 12 nuclear microsatellite loci and sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene were analysed. COI and microsatellites were clustered in two isolated lineages: one found along the southwestern Atlantic and the other along the northeastern Atlantic and Mediterranean Sea. This suggests the existence of two different evolutionary units. Marine barriers along the European coast would be responsible for population clustering: the Almeria-Oran Front that limits the entrance of migrants from the Atlantic to the Mediterranean, and the Siculo-Tunisian strait that divides the two Mediterranean basins. The presence of identical genotypes was detected in all populations, although two monoclonal populations were found in two sites where annual mean temperatures and minimum values were the lowest. Our results based on microsatellite loci showed that intrapopulation genetic diversity was significantly affected by clonality whereas it had lower effect for the global phylogeography of the species, although still some impact on populations' genetic divergence could be observed between some populations.


Assuntos
Variação Genética , Estrelas-do-Mar/genética , Alelos , Animais , Oceano Atlântico , Teorema de Bayes , Análise por Conglomerados , Complexo IV da Cadeia de Transporte de Elétrons/genética , Geografia , Mar Mediterrâneo , Repetições de Microssatélites/genética , Filogeografia , Especificidade da Espécie
5.
Glob Chang Biol ; 24(7): 2952-2964, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29635859

RESUMO

Species are often controlled by biotic factors such as competition at the warm edge of their distribution range. Disturbances at the treeline, disrupting competitive dominance, may thus enable alpine species to utilize lower altitudes. We searched for evidence for range expansion in grazed, fire-managed Ethiopian subalpine Erica heathlands across a 25-year chronosequence. We examined vascular plant composition in 48 plots (5 × 5 m) across an altitudinal range of 3,465-3,711 m.a.s.l. and analyzed how community composition changed in relation to increasing competition over time (using a Shade index based on Erica shrub height and cover) and altitude. Species' habitats and altitudinal ranges were derived from literature. Time since fire explained more variation (r2  = .41) in species composition than altitude did (r2  = .32) in an NMDS analysis. Community-weighted altitudinal optima for species in a plot decreased strongly with increasing shade (GLM, Standardized Regression Coefficient SRC = -.41, p = .003), but increased only weakly with altitude (SRC = .26, p = .054). In other words, young stands were dominated by species with higher altitudinal optima than old stands. Forest species richness increased with Log Shade index (SRC = .12, p = .008), but was unaffected by altitude (SRC = -.07, p = .13). However, richness of alpine and heathland species was not highest in plots with lowest Shade index, but displayed a unimodal pattern with an initial increase, followed by a decrease when shading increased (altitude was not significant). Our results indicate that disturbance from the traditional patch burning increases the available habitat for less competitive high-altitude plants and prevents tree line ascent. Therefore, maintaining, but regulating, the traditional land use increases the Afro-alpine flora's resilience to global warming. However, this system is threatened by a new REDD+ program attempting to increase carbon storage via fire suppression. This study highlights the importance of understanding traditional management regimes for biodiversity conservation in cultural landscapes in an era of global change.


Assuntos
Mudança Climática , Incêndios , Desenvolvimento Vegetal , Plantas/classificação , África , Altitude , Biodiversidade
6.
Am J Bot ; 106(6): 757-759, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31162640
7.
Tree Physiol ; 43(5): 722-736, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36715627

RESUMO

In cold and humid temperate forests, low temperature, late frost and frequent freeze-thaw cycles are the main factors limiting tree growth and survival. Ring- and diffuse-porous tree species differing in xylem anatomy coexist in these forests, but their divergent adaptations to these factors have been poorly explored. To fill this knowledge gap, we compared four ring-porous and four diffuse-porous tree species from the same temperate forest in Northeast China by quantifying their leaf and stem functional traits, their stem growth rates using tree ring analysis and their resistance to cold represented by upper altitude species distribution borders from survey data. We found that the ring-porous trees were characterized by traits related to more rapid water transport, carbon gain and stem growth rates than those of the diffuse-porous species. Compared with the diffuse-porous species, the ring-porous species had a significantly higher shoot hydraulic conductance (Ks-shoot, 0.52 vs 1.03 kg m-1 s-1 MPa-1), leaf photosynthetic rate (An, 11.28 vs 15.83 µmol m-2 s-1), relative basal area increment (BAIr, 2.28 vs 0.72 cm year-1) and stem biomass increment (M, 0.34 vs 0.09 kg year-1 m-1). However, the observed upper elevational distribution limit of the diffuse-porous species was higher than that of the ring-porous species and was associated with higher values of conservative traits, such as longer leaf life span (R2 = 0.52). Correspondingly, BAIr and M showed significant positive correlations with acquisitive traits such as Ks-shoot (R2 = 0.77) and leaf photosynthetic rate (R2 = 0.73) across the eight species, with the ring-porous species occurring at the fast-acquisitive side of the spectrum and the diffuse-porous species located on the opposite side. The observed contrasts in functional traits between the two species groups improved our understanding of their differences in terms of growth strategies and adaptive capabilities in the cold, humid temperate forests.


Assuntos
Florestas , Árvores , Porosidade , Xilema , Folhas de Planta , Água
8.
Tree Physiol ; 42(7): 1311-1324, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35038338

RESUMO

Low root zone temperatures restrict water and carbon (C) uptake and transport in plants and may contribute to the low temperature limits of tree growth. Here, we quantified the effects of low root temperatures on xylem conductance, photosynthetic C assimilation and phloem C transport in seedlings of four temperate tree species (two broad-leaved and two conifer species) by applying a simultaneous stable isotope labelling of 2H-enriched source water and 13C-enriched atmospheric CO2. Six days before the pulse labelling, the seedlings were transferred to hydroponic tubes and exposed to three different root temperatures (2, 7 and 15 °C), while all seedlings received the same, warm air temperatures (between 18 and 24 °C). Root cooling led to drought-like symptoms with reduced growth, leaf water potentials and stomatal conductance, indicating increasingly adverse conditions for water uptake and transport with decreasing root temperatures. Averaged across all four species, water transport to leaves was reduced by 40% at 7 °C and by 70% at 2 °C root temperature relative to the 15 °C treatment, while photosynthesis was reduced by 20 and 40% at 7 and 2 °C, respectively. The most severe effects were found on the phloem C transport to roots, which was reduced by 60% at 7 °C and almost ceased at 2 °C in comparison with the 15 °C root temperature treatment. This extreme effect on C transport was likely due to a combination of simultaneous reductions of phloem loading, phloem mass flow and root growth. Overall, the dual stable isotope labelling proved to be a useful method to quantify water and C relations in cold-stressed trees and highlighted the potentially important role of hydraulic constraints induced by low soil temperatures as a contributing factor for the climatic distribution limits of temperate tree species.


Assuntos
Plântula , Árvores , Carbono , Marcação por Isótopo , Fotossíntese , Folhas de Planta , Temperatura , Água
9.
J Phycol ; 47(3): 451-462, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27021974

RESUMO

Marginal populations are often geographically isolated, smaller, and more fragmented than central populations and may frequently have to face suboptimal local environmental conditions. Persistence of these populations frequently involves the development of adaptive traits at phenotypic and genetic levels. We compared population structure and demographic variables in two fucoid macroalgal species contrasting in patterns of genetic diversity and phenotypic plasticity at their southern distribution limit with a more central location. Models were Ascophyllum nodosum (L.) Le Jol. (whose extreme longevity and generation overlap may buffer genetic loss by drift) and Fucus serratus L. (with low genetic diversity at southern margins). At edge locations, both species exhibited trends in life-history traits compatible with population persistence but by using different mechanisms. Marginal populations of A. nodosum had higher reproductive output in spite of similar mortality rates at all life stages, making edge populations denser and with smaller individuals. In F. serratus, rather than demographic changes, marginal populations differed in habitat, occurring restricted to a narrower vertical habitat range. We conclude that persistence of both A. nodosum and F. serratus at the southern-edge locations depends on different strategies. Marginal population persistence in A. nodosum relies on a differentiation in life-history traits, whereas F. serratus, putatively poorer in evolvability potential, is restricted to a narrower vertical range at border locations. These results contribute to the general understanding of mechanisms that lead to population persistence at distributional limits and to predict population resilience under a scenario of environmental change.

10.
Ecol Evol ; 11(12): 8332-8346, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188890

RESUMO

Climate change is driving range shifts, and a lack of cold tolerance is hypothesized to constrain insect range expansion at poleward latitudes. However, few, if any, studies have tested this hypothesis during autumn when organisms are subjected to sporadic low-temperature exposure but may not have become cold-tolerant yet. In this study, we integrated organismal thermal tolerance measures into species distribution models for larvae of the Giant Swallowtail butterfly, Papilio cresphontes (Lepidoptera: Papilionidae), living at the northern edge of its actively expanding range. Cold hardiness of field-collected larvae was determined using three common metrics of cold-induced physiological thresholds: the supercooling point, critical thermal minimum, and survival following cold exposure. P. cresphontes larvae were determined to be tolerant of chilling but generally die at temperatures below their SCP, suggesting they are chill-tolerant or modestly freeze-avoidant. Using this information, we examined the importance of low temperatures at a broad scale, by comparing species distribution models of P. cresphontes based only on environmental data derived from other sources to models that also included the cold tolerance parameters generated experimentally. Our modeling revealed that growing degree-days and precipitation best predicted the distribution of P. cresphontes, while the cold tolerance variables did not explain much variation in habitat suitability. As such, the modeling results were consistent with our experimental results: Low temperatures in autumn are unlikely to limit the distribution of P. cresphontes. Understanding the factors that limit species distributions is key to predicting how climate change will drive species range shifts.

11.
Ecol Evol ; 11(9): 3726-3736, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976771

RESUMO

Climate is widely assumed to be the primary process that limits the distribution ranges of plants. Yet, savannas have vegetation not at equilibrium with climate, instead its structure and function are shaped by interactions between fire, herbivory, climate, and vegetation. I use the rich literature of a dominant African savanna woody plant, Colophospermum mopane, to demonstrate that climate and disturbance interact with each demographic stage to shape this species range limits. This synthesis highlights that climate-based predictions for the range of C. mopane inadequately represents the processes that shape its distribution. Instead, seed bank depletion and rainfall limitation create a demographic bottleneck at the early seedling stage. The legacy of top-kill from disturbance changes tree stand architecture causing a critical limitation in seed supply. Exposure to top-kill at all demographic stages causes a vigorous resprouting response and shifts tree architecture from that of 1-2 stemmed tall trees to that of a short multi-stemmed shrub. The shorter, multi-stemmed shrubs are below the height threshold (4 m) at which they can produce seeds, resulting in shrub-dominated landscapes that are effectively sterile. This effect is likely most pronounced at the range edge where top-kill-inducing disturbances increase in frequency. The proposed mechanistic, demographic-based understanding of C. mopane's range limits highlights the complexity of processes that interact to shape its range edges. This insight serves as a conceptual model for understanding the determinants of range limits of other dominant woody savannas species living in disturbance limited ecosystems.

12.
Sci Total Environ ; 778: 146128, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030376

RESUMO

Aedes aegypti and Aedes albopictus transmit diseases such as dengue, and are of major public health concern. Driven by climate change and global trade/travel both species have recently spread to new tropic/subtropic regions and Ae. albopictus also to temperate ecoregions. The capacity of both species to adapt to new environments depends on their ecophysiological plasticity, which is the width of functional niches where a species can survive. Mechanistic distribution models often neglect to incorporate ecophysiological plasticity especially in regards to overwintering capacity in cooler habitats. To portray the ecophysiological plasticity concerning overwintering capability, we conducted temperature experiments with multiple populations of both species originating from an altitudinal gradient in South Asia and tested as follows: the cold tolerance of eggs (-2 °C- 8 days and - 6 °C- 2 days) without and with an experimental winter onset (acclimation: 10 °C- 60 days), differences between a South Asian and a European Ae. albopictus population and the temperature response in life cycles (13 °C, 18 °C, 23 °C, 28 °C). Ecophysiological plasticity in overwintering capacity in Ae. aegypti is high in populations originating from low altitude and in Ae. albopictus populations from high altitude. Overall, ecophysiological plasticity is higher in Ae. albopictus compared to Ae. aegypti. In both species acclimation and in Ae. albopictus temperate continental origin had a huge positive effect on survival. Our results indicate that future mechanistic prediction models can include data on winter survivorship of both, tropic and subtropic Ae. aegypti, whereas for Ae. albopictus this depends on the respective temperate, tropical region the model is focusing on. Future research should address cold tolerance in multiple populations worldwide to evaluate the full potential of the ecophysiological plasticity in the two species. Furthermore, we found that Ae. aegypti can survive winter cold especially when acclimated and will probably further spread to colder ecoregions driven by climate change.


Assuntos
Aedes , Aclimatação , Animais , Ásia , Temperatura Baixa , Temperatura
13.
PhytoKeys ; 145: 63-92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32327927

RESUMO

Records of new species of vascular plants in Greenland from the last four decades are presented and new phytogeographical data leading to extension of the known distribution limits in Greenland are discussed. Since the publication of the latest edition of the Flora of Greenland in 1978 (Böcher et al. 1978) fieldwork by Greenland Botanical Survey and other expeditions have taken place especially in West and East Greenland and in many remote areas in North and Northeast Greenland. This paper serves as an update of the Flora of Greenland. Twenty species, one subspecies and one new forma have been added to the flora of Greenland: Carex membranacea Hook., Carex miliaris Michx., Carex rhomalea (Fernald) Mack., Equisetum hyemale L., Festuca edlundiae S. Aiken, Consaul and Lefkovich, Festuca groenlandica (Schol.) Frederiksen, Festuca saximontana Rydb., Galium verum L., Geum rossii (R. Br.) Ser., Papaver cornwallisense D. Löve, Papaver dahlianum Nordh., Papaver labradoricum (Fedde) Solstad and Elven, Papaver lapponicum (Tolm.) Nordh., Pedicularis sudetica Willd. ssp. albolabiata Hult., Poa flexuosa Sm., Puccinellia bruggemanni Th. Sør., Ranunculus subrigidus W.B. Drew., Silene vulgaris (Moench) Garcke, Trientalis europaea L. and Veronica officinalis L. in addition to one subspecies Phippsia algida (Sol.) R. Br. ssp. algidiformis (H. Sm.) Löve and Löve. The viviparous form of Poa hartzii f. prolifera has been reported for the first time in Greenland. Presently, the total number of vascular plant species in Greenland is 532. 89 new northern and 28 new southern distribution limits are presented and 26 species are new to the flora province East Greenland, whereas 15 species are new to West Greenland. The numbers of new species to flora provinces North and South Greenland are 14 and one, respectively.

14.
Parasit Vectors ; 13(1): 178, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264941

RESUMO

BACKGROUND: Aedes aegypti is a potential vector for several arboviruses including dengue and Zika viruses. The species seems to be restricted to subtropical/tropical habitats and has difficulties in establishing permanent populations in southern Europe, probably due to constraints during the winter season. The aim of this study was to systematically analyze the cold tolerance (CT) of Ae. aegypti in its most cold-resistant life stage, the eggs. METHODS: The CT of Ae. aegypti eggs was compared with that of Ae. albopictus which is well established in large parts of Europe. By systematically studying the literature (meta-analysis), we recognized that CT has been rarely tested in Ae. aegypti eggs, but eggs can survive at zero and sub-zero temperatures for certain exposure periods. To overcome potential bias from experimental differences between studies, we then conducted species comparisons using a harmonized high-resolution CT measuring method. From subtropical populations of the same origin, the survival (hatching in %) and emergence of adults of both species were measured after zero and sub-zero temperature exposures for up to 9 days (3 °C, 0 °C and - 2 °C: ≤ 9 days; - 6 °C: ≤ 2 days). RESULTS: Our data show that Ae. aegypti eggs can survive low and sub-zero temperatures for a short time period similar to or even better than those of Ae. albopictus. Moreover, after short sub-zero exposures of eggs of both species, individuals still developed into viable adults (Ae. aegypti: 3 adults emerged after 6 days at - 2 °C, Ae. albopictus: 1 adult emerged after 1 day at - 6 °C). CONCLUSIONS: Thus, both the literature and the present experimental data indicate that a cold winter may not be the preventing factor for the re-establishment of the dengue vector Ae. aegypti in southern Europe.


Assuntos
Aedes/fisiologia , Comportamento Animal , Temperatura Baixa , Estações do Ano , Animais , Europa (Continente) , Feminino , Larva/fisiologia , Mosquitos Vetores/fisiologia , Óvulo/fisiologia
15.
Environ Sci Pollut Res Int ; 25(12): 11775-11786, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29442312

RESUMO

Seaweeds living at their temperature limits of distribution are naturally exposed to physiological stressors, facing additional stress when exposed to coastal pollution. The physiological responses of seaweeds to environmental conditions combining natural and anthropogenic stressors provide important information on their vulnerability. We assessed the physiological effects and ultrastructural alterations of trace metals enrichment at concentrations observed in polluted regions within the temperature ranges of distribution of the endemic seaweed Halimeda jolyana, an important component of tropical southwestern Atlantic reefs. Biomass yield and photosynthetic performance declined substantially in samples exposed to metal, although photosynthesis recovered partially at the highest temperature when metal enrichment was ceased. Metal enrichment caused substantial ultrastructural alterations to chloroplasts regardless of temperatures. The lack of photosynthetic recovery at the lower temperatures indicates a higher vulnerability of the species at its temperature limits of distribution in the southwestern Atlantic.


Assuntos
Clorófitas/efeitos dos fármacos , Metais/toxicidade , Alga Marinha/efeitos dos fármacos , Poluentes da Água/toxicidade , Biomassa , Cloroplastos , Temperatura Baixa , Temperatura Alta , Fotossíntese , Temperatura
16.
J Insect Physiol ; 99: 113-121, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28396211

RESUMO

Phenotypic plasticity is considered as one of the key traits responsible for the establishment of populations of the invasive mosquito Aedes albopictus, an important vector of viral and parasitic pathogens. The successful spread of this species to higher altitudes and latitudes may be explained by its ability to rapidly induce a heritable low-temperature phenotype (cold hardiness in eggs). As a result of the low genetic diversity of founder populations, an epigenetic short-term mechanism has been suggested as the driver of this diversification. We investigated if random epigenetic alterations promoted the cold hardiness of Ae. albopictus eggs from a transgenerational study of two epigenetic agents (genistein and vinclozolin). To this end, we evaluated changes in lethal time for 50% of pharate larvae (Lt50) from eggs exposed to -2°C in two subsequent generations that used a new dose-response test design. We detected a significant diversification of the cold hardiness of eggs (up to 64.5%) that was associated with the epigenetic change in the two subsequent offspring generations. An effect size of epigenetically modulated cold hardiness of this magnitude is likely to have an impact on the spatial distribution of this species. Our results provide a framework for further research on epigenetic temperature adaptation of invasive species to better explain and predict their rapid range expansions.


Assuntos
Aedes/fisiologia , Temperatura Baixa , Epigênese Genética , Aedes/genética , Animais , Genisteína/administração & dosagem , Espécies Introduzidas , Larva/genética , Larva/fisiologia , Óvulo/fisiologia , Oxazóis/administração & dosagem , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA