Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(8): e2319696121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346181

RESUMO

The phylogeny and divergence timing of the Neoavian radiation remain controversial despite recent progress. We analyzed the genomes of 124 species across all Neoavian orders, using data from 25,460 loci spanning four DNA classes, including 5,756 coding sequences, 12,449 conserved nonexonic elements, 4,871 introns, and 2,384 intergenic segments. We conducted a comprehensive sensitivity analysis to account for the heterogeneity across different DNA classes, leading to an optimal tree of Neoaves with high resolution. This phylogeny features a novel Neoavian dichotomy comprising two monophyletic clades: a previously recognized Telluraves (land birds) and a newly circumscribed Aquaterraves (waterbirds and relatives). Molecular dating analyses with 20 fossil calibrations indicate that the diversification of modern birds began in the Late Cretaceous and underwent a constant and steady radiation across the KPg boundary, concurrent with the rise of angiosperms as well as other major Cenozoic animal groups including placental and multituberculate mammals. The KPg catastrophe had a limited impact on avian evolution compared to the Paleocene-Eocene Thermal Maximum, which triggered a rapid diversification of seabirds. Our findings suggest that the evolution of modern birds followed a slow process of gradualism rather than a rapid process of punctuated equilibrium, with limited interruption by the KPg catastrophe. This study places bird evolution into a new context within vertebrates, with ramifications for the evolution of the Earth's biota.


Assuntos
Fósseis , Magnoliopsida , Gravidez , Feminino , Animais , Magnoliopsida/genética , Placenta , Filogenia , Aves/genética , Mamíferos/genética , DNA Mitocondrial/genética , Evolução Biológica
2.
Plant J ; 118(5): 1413-1422, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38341804

RESUMO

Mung bean (Vigna radiata) stands as a crucial legume crop in Asia, contributing to food security. However, our understanding of the underlying genetic foundation governing domesticated agronomic traits, especially those linked to pod architecture, remains largely unexplored. In this study, we delved into the genomic divergence between wild and domesticated mung bean varieties, leveraging germplasm obtained from diverse sources. Our findings unveiled pronounced variation in promoter regions (35%) between the two mung bean subpopulations, suggesting substantial changes in gene expression patterns during domestication. Leveraging transcriptome analysis using distinct reproductive stage pods and subpopulations, we identified candidate genes responsible for pod and seed architecture development, along with Genome-Wide Association Studies (GWAS) and Quantitative Trait Locus (QTL) analysis. Notably, our research conclusively confirmed PDH1 as a parallel domesticated gene governing pod dehiscence in legumes. This study imparts valuable insights into the genetic underpinnings of domesticated agronomic traits in mung bean, and simultaneously highlighting the parallel domestication of pivotal traits within the realm of legume crops.


Assuntos
Produtos Agrícolas , Domesticação , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Vigna , Vigna/genética , Locos de Características Quantitativas/genética , Produtos Agrícolas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Genoma de Planta/genética , Regulação da Expressão Gênica de Plantas , Genômica , Fenótipo
3.
Plant J ; 119(3): 1543-1557, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38859560

RESUMO

Aegilops longissima and Ae. sharonensis, being classified into the Sitopsis section of genus Aegilops, are distinct species both taxonomically and ecologically. Nevertheless, earlier observations indicate that the two species are not reproductively isolated to full extent and can inter-bred upon secondary contact. However, the genomic underpinnings of the morpho-ecological differentiation between the two foci species remained unexplored. Here, we resequenced 31 representative accessions of the two species and conducted in-depth comparative genomic analyses. We demonstrate recurrent and ongoing natural hybridizations between Ae. longissima and Ae. sharonensis, and depict features of genome composition of the resultant hybrids at both individual and population levels. We also delineate genomic regions and candidate genes potentially underpinning the differential morphological and edaphic adaptations of the two species. Intriguingly, a binary morphology was observed in the hybrids, suggesting existence of highly diverged genomic regions that remain uneroded by the admixtures. Together, our results provide new insights into the molding effects of interspecific hybridization on genome composition and mechanisms preventing merge of the two species.


Assuntos
Aegilops , Diploide , Genoma de Planta , Hibridização Genética , Genoma de Planta/genética , Aegilops/genética , Genômica , Evolução Molecular , Filogenia
4.
Plant J ; 118(1): 171-190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38128038

RESUMO

Sugar beet and its wild relatives share a base chromosome number of nine and similar chromosome morphologies. Yet, interspecific breeding is impeded by chromosome and sequence divergence that is still not fully understood. Since repetitive DNAs are among the fastest evolving parts of the genome, we investigated, if repeatome innovations and losses are linked to chromosomal differentiation and speciation. We traced genome and chromosome-wide evolution across 13 beet species comprising all sections of the genera Beta and Patellifolia. For this, we combined short and long read sequencing, flow cytometry, and cytogenetics to build a comprehensive framework that spans the complete scale from DNA to chromosome to genome. Genome sizes and repeat profiles reflect the separation into three gene pools with contrasting evolutionary patterns. Among all repeats, satellite DNAs harbor most genomic variability, leading to fundamentally different centromere architectures, ranging from chromosomal uniformity in Beta and Patellifolia to the formation of patchwork chromosomes in Corollinae/Nanae. We show that repetitive DNAs are causal for the genome expansions and contractions across the beet genera, providing insights into the genomic underpinnings of beet speciation. Satellite DNAs in particular vary considerably between beet genomes, leading to the evolution of distinct chromosomal setups in the three gene pools, likely contributing to the barriers in beet breeding. Thus, with their isokaryotypic chromosome sets, beet genomes present an ideal system for studying the link between repeats, genomic variability, and chromosomal differentiation and provide a theoretical fundament for understanding barriers in any crop breeding effort.


Assuntos
Beta vulgaris , Beta vulgaris/genética , Sequência de Bases , DNA Satélite , Pool Gênico , Melhoramento Vegetal , Sequências Repetitivas de Ácido Nucleico/genética , Verduras/genética , DNA , Centrômero/genética , Açúcares
5.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39101592

RESUMO

The epithelial Na+ channel (ENaC) emerged early in vertebrates and has played a role in Na+ and fluid homeostasis throughout vertebrate evolution. We previously showed that proteolytic activation of the channel evolved at the water-to-land transition of vertebrates. Sensitivity to extracellular Na+, known as Na+ self-inhibition, reduces ENaC function when Na+ concentrations are high and is a distinctive feature of the channel. A fourth ENaC subunit, δ, emerged in jawed fishes from an α subunit gene duplication. Here, we analyzed 849 α and δ subunit sequences and found that a key Asp in a postulated Na+ binding site was nearly always present in the α subunit, but frequently lost in the δ subunit (e.g. human). Analysis of site evolution and codon substitution rates provide evidence that the ancestral α subunit had the site and that purifying selection for the site relaxed in the δ subunit after its divergence from the α subunit, coinciding with a loss of δ subunit expression in renal tissues. We also show that the proposed Na+ binding site in the α subunit is a bona fide site by conferring novel function to channels comprising human δ subunits. Together, our findings provide evidence that ENaC Na+ self-inhibition improves fitness through its role in Na+ homeostasis in vertebrates.


Assuntos
Canais Epiteliais de Sódio , Evolução Molecular , Homeostase , Seleção Genética , Sódio , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Animais , Sódio/metabolismo , Humanos , Sítios de Ligação , Vertebrados/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Filogenia
6.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38318973

RESUMO

Mountains are the world's most important centers of biodiversity. The Sino-Himalayan Mountains are global biodiversity hotspot due to their extremely high species richness and endemicity. Ample research investigated the impact of the Qinghai-Tibet Plateau uplift and Quaternary glaciations in driving species diversification in plants and animals across the Sino-Himalayan Mountains. However, little is known about the role of landscape heterogeneity and other environmental features in driving diversification in this region. We utilized whole genomes and phenotypic data in combination with landscape genetic approaches to investigate population structure, demography, and genetic diversity in a forest songbird species native to the Sino-Himalayan Mountains, the red-billed leiothrix (Leiothrix lutea). We identified 5 phylogeographic clades, including 1 in the East of China, 1 in Yunnan, and 3 in Tibet, roughly consistent with differences in song and plumage coloration but incongruent with traditional subspecies boundaries. Isolation-by-resistance model best explained population differentiation within L. lutea, with extensive secondary contact after allopatric isolation leading to admixture among clades. Ecological niche modeling indicated relative stability in the extent of suitable distribution areas of the species across Quaternary glacial cycles. Our results underscore the importance of mountains in the diversification of this species, given that most of the distinct genetic clades are concentrated in a relatively small area in the Sino-Himalayan Mountain region, while a single shallow clade populates vast lower-lying areas to the east. This study highlights the crucial role of landscape heterogeneity in promoting differentiation and provides a deep genomic perspective on the mechanisms through which diversity hotspots form.


Assuntos
Deriva Genética , Passeriformes , Animais , China , Filogeografia , Florestas , Passeriformes/genética , Filogenia , Variação Genética
7.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513632

RESUMO

Chromosomal fusions represent one of the most common types of chromosomal rearrangements found in nature. Yet, their role in shaping the genomic landscape of recombination and hence genome evolution remains largely unexplored. Here, we take advantage of wild mice populations with chromosomal fusions to evaluate the effect of this type of structural variant on genomic landscapes of recombination and divergence. To this aim, we combined cytological analysis of meiotic crossovers in primary spermatocytes with inferred analysis of recombination rates based on linkage disequilibrium using single nucleotide polymorphisms. Our results suggest the presence of a combined effect of Robertsonian fusions and Prdm9 allelic background, a gene involved in the formation of meiotic double strand breaks and postzygotic reproductive isolation, in reshaping genomic landscapes of recombination. We detected a chromosomal redistribution of meiotic recombination toward telomeric regions in metacentric chromosomes in mice with Robertsonian fusions when compared to nonfused mice. This repatterning was accompanied by increased levels of crossover interference and reduced levels of estimated recombination rates between populations, together with high levels of genomic divergence. Interestingly, we detected that Prdm9 allelic background was a major determinant of recombination rates at the population level, whereas Robertsonian fusions showed limited effects, restricted to centromeric regions of fused chromosomes. Altogether, our results provide new insights into the effect of Robertsonian fusions and Prdm9 background on meiotic recombination.


Assuntos
Cromossomos , Genômica , Masculino , Animais , Camundongos , Alelos
8.
Mol Biol Evol ; 41(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38723179

RESUMO

Despite traditional beliefs of orthologous genes maintaining similar functions across species, growing evidence points to their potential for functional divergence. C-repeat binding factors/dehydration-responsive element binding protein 1s (CBFs/DREB1s) are critical in cold acclimation, with their overexpression enhancing stress tolerance but often constraining plant growth. In contrast, a recent study unveiled a distinctive role of rice OsDREB1C in elevating nitrogen use efficiency (NUE), photosynthesis, and grain yield, implying functional divergence within the CBF/DREB1 orthologs across species. Here, we delve into divergent molecular mechanisms of OsDREB1C and AtCBF2/3/1 by exploring their evolutionary trajectories across rice and Arabidopsis genomes, regulatomes, and transcriptomes. Evolutionary scrutiny shows discrete clades for OsDREB1C and AtCBF2/3/1, with the Poaceae-specific DREB1C clade mediated by a transposon event. Genome-wide binding profiles highlight OsDREB1C's preference for GCCGAC compared to AtCBF2/3/1's preference for A/GCCGAC, a distinction determined by R12 in the OsDREB1C AP2/ERF domain. Cross-species multiomic analyses reveal shared gene orthogroups (OGs) and underscore numerous specific OGs uniquely bound and regulated by OsDREB1C, implicated in NUE, photosynthesis, and early flowering, or by AtCBF2/3/1, engaged in hormone and stress responses. This divergence arises from gene gains/losses (∼16.7% to 25.6%) and expression reprogramming (∼62.3% to 66.2%) of OsDREB1C- and AtCBF2/3/1-regulated OGs during the extensive evolution following the rice-Arabidopsis split. Our findings illustrate the regulatory evolution of OsDREB1C and AtCBF2/3/1 at a genomic scale, providing insights on the functional divergence of orthologous transcription factors following gene duplications across species.


Assuntos
Arabidopsis , Oryza , Fatores de Transcrição , Oryza/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Evolução Molecular , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Syst Biol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771253

RESUMO

The ideal approach to Bayesian phylogenetic inference is to estimate all parameters of interest jointly in a single hierarchical model. However, this is often not feasible in practice due to the high computational cost. Instead, phylogenetic pipelines generally consist of sequential analyses, whereby a single point estimate from a given analysis is used as input for the next analysis (e.g., a single multiple sequence alignment is used to estimate a gene tree). In this framework, uncertainty is not propagated from step to step, which can lead to inaccurate or spuriously confident results. Here, we formally develop and test a sequential inference approach for Bayesian phylogenetic inference, which uses importance sampling to generate observations for the next step of an analysis pipeline from the posterior distribution produced in the previous step. Our sequential inference approach presented here not only accounts for uncertainty between analysis steps, but also allows for greater flexibility in software choice (and hence model availability) and can be computationally more efficient than the traditional joint inference approach when multiple models are being tested. We show that our sequential inference approach is identical in practice to the joint inference approach only if sufficient information in the data is present (a narrow posterior distribution) and/or sufficiently many importance samples are used. Conversely, we show that the common practice of using a single point estimate can be biased, e.g., a single phylogeny estimate to transform an unrooted phylogeny into a time-calibrated phylogeny. We demonstrate the theory of sequential Bayesian inference using both a toy example and an empirical case study of divergence-time estimation in insects using a relaxed clock model from transcriptome data. In the empirical example, we estimate three posterior distributions of branch lengths from the same data (DNA character matrix with a GTR+Γ+I substitution model, an amino acid data matrix with empirical substitution models, and an amino acid data matrix with the PhyloBayes CAT-GTR model). Finally, we apply three different node-calibration strategies and show that divergence-time estimates are affected by both the data source and underlying substitution process to estimate branch lengths as well as the node-calibration strategies. Thus, our new sequential Bayesian phylogenetic inference provides the opportunity to efficiently test different approaches for divergence time estimation, including branch-length estimation from other software.

10.
Syst Biol ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733563

RESUMO

Accurately reconstructing the reticulate histories of polyploids remains a central challenge for understanding plant evolution. Although phylogenetic networks can provide insights into relationships among polyploid lineages, inferring networks may be hindered by the complexities of homology determination in polyploid taxa. We use simulations to show that phasing alleles from allopolyploid individuals can improve phylogenetic network inference under the multispecies coalescent by obtaining the true network with fewer loci compared to haplotype consensus sequences or sequences with heterozygous bases represented as ambiguity codes. Phased allelic data can also improve divergence time estimates for networks, which is helpful for evaluating allopolyploid speciation hypotheses and proposing mechanisms of speciation. To achieve these outcomes in empirical data, we present a novel pipeline that leverages a recently developed phasing algorithm to reliably phase alleles from polyploids. This pipeline is especially appropriate for target enrichment data, where depth of coverage is typically high enough to phase entire loci. We provide an empirical example in the North American Dryopteris fern complex that demonstrates insights from phased data as well as the challenges of network inference. We establish that our pipeline (PATÉ: Phased Alleles from Target Enrichment data) is capable of recovering a high proportion of phased loci from both diploids and polyploids. These data may improve network estimates compared to using haplotype consensus assemblies by accurately inferring the direction of gene flow, but statistical non-identifiability of phylogenetic networks poses a barrier to inferring the evolutionary history of reticulate complexes.

11.
Syst Biol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38756097

RESUMO

Migration independently evolved numerous times in animals, with a myriad of ecological and evolutionary implications. In fishes, perhaps the most extreme form of migration is diadromy, the migration between marine and freshwater environments. Key and longstanding questions are: how many times has diadromy evolved in fishes, how frequently do diadromous clades give rise to non-diadromous species, and does diadromy influence lineage diversification rates? Many diadromous fishes have large geographic ranges with constituent populations that use isolated freshwater habitats. This may limit gene flow among some populations, increasing the likelihood of speciation in diadromous lineages relative to non-diadromous lineages. Alternatively, diadromy may reduce lineage diversification rates if migration is associated with enhanced dispersal capacity that facilitates gene flow within and between populations. Clupeiformes (herrings, sardines, shads and anchovies) is a model clade for testing hypotheses about the evolution of diadromy because it includes an exceptionally high proportion of diadromous species and several independent evolutionary origins of diadromy. However, relationships among major clupeiform lineages remain unresolved and existing phylogenies sparsely sampled diadromous species, limiting the resolution of phylogenetically-informed statistical analyses. We assembled a phylogenomic dataset and used multi-species coalescent and concatenation-based approaches to generate the most comprehensive, highly-resolved clupeiform phylogeny to date, clarifying associations among several major clades and identifying recalcitrant relationships needing further examination. We determined that variation in rates of sequence evolution (heterotachy) and base-composition (non-stationarity) had little impact on our results. Using this phylogeny, we characterized evolutionary patterns of diadromy and tested for differences in lineage diversification rates between diadromous, marine, and freshwater lineages. We identified thirteen transitions to diadromy, all during the Cenozoic Era (ten origins of anadromy, two origins of catadromy, and one origin of amphidromy), and seven losses of diadromy. Two diadromous lineages rapidly generated non-diadromous species, demonstrating that diadromy is not an evolutionary dead-end. We discovered considerably faster transition rates out of diadromy than to diadromy. The largest lineage diversification rate increase in Clupeiformes was associated with a transition to diadromy, but we uncovered little statistical support for categorically faster lineage diversification rates in diadromous versus non-diadromous fishes. We propose that diadromy may increase the potential for accelerated lineage diversification, particularly in species that migrate long distances. However, this potential may only be realized in certain biogeographic contexts, such as when diadromy allows access to ecosystems in which there is limited competition from incumbent species.

12.
Syst Biol ; 73(2): 470-485, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38507308

RESUMO

Chronograms-phylogenies with branch lengths proportional to time-represent key data on timing of evolutionary events, allowing us to study natural processes in many areas of biological research. Chronograms also provide valuable information that can be used for education, science communication, and conservation policy decisions. Yet, achieving a high-quality reconstruction of a chronogram is a difficult and resource-consuming task. Here we present DateLife, a phylogenetic software implemented as an R package and an R Shiny web application available at www.datelife.org, that provides services for efficient and easy discovery, summary, reuse, and reanalysis of node age data mined from a curated database of expert, peer-reviewed, and openly available chronograms. The main DateLife workflow starts with one or more scientific taxon names provided by a user. Names are processed and standardized to a unified taxonomy, allowing DateLife to run a name match across its local chronogram database that is curated from Open Tree of Life's phylogenetic repository, and extract all chronograms that contain at least two queried taxon names, along with their metadata. Finally, node ages from matching chronograms are mapped using the congruification algorithm to corresponding nodes on a tree topology, either extracted from Open Tree of Life's synthetic phylogeny or one provided by the user. Congruified node ages are used as secondary calibrations to date the chosen topology, with or without initial branch lengths, using different phylogenetic dating methods such as BLADJ, treePL, PATHd8, and MrBayes. We performed a cross-validation test to compare node ages resulting from a DateLife analysis (i.e, phylogenetic dating using secondary calibrations) to those from the original chronograms (i.e, obtained with primary calibrations), and found that DateLife's node age estimates are consistent with the age estimates from the original chronograms, with the largest variation in ages occurring around topologically deeper nodes. Because the results from any software for scientific analysis can only be as good as the data used as input, we highlight the importance of considering the results of a DateLife analysis in the context of the input chronograms. DateLife can help to increase awareness of the existing disparities among alternative hypotheses of dates for the same diversification events, and to support exploration of the effect of alternative chronogram hypotheses on downstream analyses, providing a framework for a more informed interpretation of evolutionary results.


Assuntos
Classificação , Filogenia , Software , Classificação/métodos , Bases de Dados Factuais
13.
Syst Biol ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320290

RESUMO

Rates of nucleotide substitution vary substantially across the Tree of Life, with potentially confounding effects on phylogenetic and evolutionary analyses. A large acceleration in mitochondrial substitution rate occurs in the cockroach family Nocticolidae, which predominantly inhabit subterranean environments. To evaluate the impacts of this among-lineage rate heterogeneity on estimates of phylogenetic relationships and evolutionary timescales, we analysed nuclear ultraconserved elements (UCEs) and mitochondrial genomes from nocticolids and other cockroaches. Substitution rates were substantially elevated in nocticolid lineages compared with other cockroaches, especially in mitochondrial protein-coding genes. This disparity in evolutionary rates is likely to have led to different evolutionary relationships being supported by phylogenetic analyses of mitochondrial genomes and UCE loci. Furthermore, Bayesian dating analyses using relaxed-clock models inferred much deeper divergence times compared with a flexible local clock. Our phylogenetic analysis of UCEs, which is the first genome-scale study to include all thirteen major cockroach families, unites Corydiidae and Nocticolidae and places Anaplectidae as the sister lineage to the rest of Blattoidea. We uncover an extraordinary level of genetic divergence in Nocticolidae, including two highly distinct clades that separated ~115 million years ago despite both containing representatives of the genus Nocticola. The results of our study highlight the potential impacts of high among-lineage rate variation on estimates of phylogenetic relationships and evolutionary timescales.

14.
Chromosome Res ; 32(2): 5, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502277

RESUMO

Artemisia is a large genus encompassing about 400 diverse species, many of which have considerable medicinal and ecological value. However, complex morphological information and variation in ploidy level and nuclear DNA content have presented challenges for evolution studies of this genus. Consequently, taxonomic inconsistencies within the genus persist, hindering the utilization of such large plant resources. Researchers have utilized satellite DNAs to aid in chromosome identification, species classification, and evolutionary studies due to their significant sequence and copy number variation between species and close relatives. In the present study, the RepeatExplorer2 pipeline was utilized to identify 10 satellite DNAs from three species (Artemisia annua, Artemisia vulgaris, Artemisia viridisquama), and fluorescence in situ hybridization confirmed their distribution on chromosomes in 24 species, including 19 Artemisia species with 5 outgroup species from Ajania and Chrysanthemum. Signals of satellite DNAs exhibited substantial differences between species. We obtained one genus-specific satellite from the sequences. Additionally, molecular cytogenetic maps were constructed for Artemisia vulgaris, Artemisia leucophylla, and Artemisia viridisquama. One species (Artemisia verbenacea) showed a FISH distribution pattern suggestive of an allotriploid origin. Heteromorphic FISH signals between homologous chromosomes in Artemisia plants were observed at a high level. Additionally, the relative relationships between species were discussed by comparing ideograms. The results of the present study provide new insights into the accurate identification and taxonomy of the Artemisia genus using molecular cytological methods.


Assuntos
Artemisia , Artemisia/genética , Hibridização in Situ Fluorescente , Filogenia , DNA Satélite/genética , Variações do Número de Cópias de DNA
15.
BMC Biol ; 22(1): 70, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519936

RESUMO

BACKGROUND: Eriophyoid mites (Eriophyoidea) are among the largest groups in the Acariformes; they are strictly phytophagous. The higher-level phylogeny of eriophyoid mites, however, remains unresolved due to the limited number of available morphological characters-some of them are homoplastic. Nevertheless, the eriophyoid mites sequenced to date showed highly variable mitochondrial (mt) gene orders, which could potentially be useful for resolving the higher-level phylogenetic relationships. RESULTS: Here, we sequenced and compared the complete mt genomes of 153 eriophyoid mite species, which showed 54 patterns of rearranged mt gene orders relative to that of the hypothetical ancestor of arthropods. The shared derived mt gene clusters support the monophyly of eriophyoid mites (Eriophyoidea) as a whole and the monophylies of six clades within Eriophyoidea. These monophyletic groups and their relationships were largely supported in the phylogenetic trees inferred from mt genome sequences as well. Our molecular dating results showed that Eriophyoidea originated in the Triassic and diversified in the Cretaceous, coinciding with the diversification of angiosperms. CONCLUSIONS: This study reveals multiple molecular synapomorphies (i.e. shared derived mt gene clusters) at different levels (i.e. family, subfamily or tribe level) from the complete mt genomes of 153 eriophyoid mite species. We demonstrated the use of derived mt gene clusters in unveiling the higher-level phylogeny of eriophyoid mites, and underlines the origin of these mites and their co-diversification with angiosperms.


Assuntos
Genoma Mitocondrial , Magnoliopsida , Ácaros , Animais , Filogenia , Ácaros/genética , Genes Mitocondriais , Família Multigênica , Magnoliopsida/genética
16.
BMC Genomics ; 25(1): 396, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649816

RESUMO

BACKGROUND: While the size of chloroplast genomes (cpDNAs) is often influenced by the expansion and contraction of inverted repeat regions and the enrichment of repeats, it is the intergenic spacers (IGSs) that appear to play a pivotal role in determining the size of Pteridaceae cpDNAs. This provides an opportunity to delve into the evolution of chloroplast genomic structures of the Pteridaceae family. This study added five Pteridaceae species, comparing them with 36 published counterparts. RESULTS: Poor alignment in the non-coding regions of the Pteridaceae family was observed, and this was attributed to the widespread presence of overlong IGSs in Pteridaceae cpDNAs. These overlong IGSs were identified as a major factor influencing variations in cpDNA size. In comparison to non-expanded IGSs, overlong IGSs exhibited significantly higher GC content and were rich in repetitive sequences. Species divergence time estimations suggest that these overlong IGSs may have already existed during the early radiation of the Pteridaceae family. CONCLUSIONS: This study reveals new insights into the genetic variation, evolutionary history, and dynamic changes in the cpDNA structure of the Pteridaceae family, providing a fundamental resource for further exploring its evolutionary research.


Assuntos
Cloroplastos , DNA de Cloroplastos , Genoma de Cloroplastos , Pteridaceae , Pteridaceae/classificação , Pteridaceae/genética , Genoma de Cloroplastos/genética , Cloroplastos/genética , Elementos de DNA Transponíveis/genética , Filogenia , DNA de Cloroplastos/genética , Evolução Molecular , Variação Genética , Repetições de Microssatélites/genética , Fatores de Tempo , Especificidade da Espécie
17.
BMC Genomics ; 25(1): 569, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844874

RESUMO

BACKGROUND: Lycium is an economically and ecologically important genus of shrubs, consisting of approximately 70 species distributed worldwide, 15 of which are located in China. Despite the economic and ecological importance of Lycium, its phylogeny, interspecific relationships, and evolutionary history remain relatively unknown. In this study, we constructed a phylogeny and estimated divergence time based on the chloroplast genomes (CPGs) of 15 species, including subspecies, of the genus Lycium from China. RESULTS: We sequenced and annotated 15 CPGs in this study. Comparative analysis of these genomes from these Lycium species revealed a typical quadripartite structure, with a total sequence length ranging from 154,890 to 155,677 base pairs (bp). The CPGs was highly conserved and moderately differentiated. Through annotation, we identified a total of 128-132 genes. Analysis of the boundaries of inverted repeat (IR) regions showed consistent positioning: the junctions of the IRb/LSC region were located in rps19 in all Lycium species, IRb/SSC between the ycf1 and ndhF genes, and SSC/IRa within the ycf1 gene. Sequence variation in the SSC region exceeded that in the IR region. We did not detect major expansions or contractions in the IR region or rearrangements or insertions in the CPGs of the 15 Lycium species. Comparative analyses revealed five hotspot regions in the CPG: trnR(UCU), atpF-atpH, ycf3-trnS(GGA), trnS(GGA), and trnL-UAG, which could potentially serve as molecular markers. In addition, phylogenetic tree construction based on the CPG indicated that the 15 Lycium species formed a monophyletic group and were divided into two typical subbranches and three minor branches. Molecular dating suggested that Lycium diverged from its sister genus approximately 17.7 million years ago (Mya) and species diversification within the Lycium species of China primarily occurred during the recent Pliocene epoch. CONCLUSION: The divergence time estimation presented in this study will facilitate future research on Lycium, aid in species differentiation, and facilitate diverse investigations into this economically and ecologically important genus.


Assuntos
Evolução Molecular , Genoma de Cloroplastos , Lycium , Filogenia , Lycium/genética , Lycium/classificação , China , Variação Genética
18.
BMC Genomics ; 25(1): 614, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890559

RESUMO

BACKGROUND: To unravel the evolutionary history of a complex group, a comprehensive reconstruction of its phylogenetic relationships is crucial. This requires meticulous taxon sampling and careful consideration of multiple characters to ensure a complete and accurate reconstruction. The phylogenetic position of the Orestias genus has been estimated partly on unavailable or incomplete information. As a consequence, it was assigned to the family Cyprindontidae, relating this Andean fish to other geographically distant genera distributed in the Mediterranean, Middle East and North and Central America. In this study, using complete genome sequencing, we aim to clarify the phylogenetic position of Orestias within the Cyprinodontiformes order. RESULTS: We sequenced the genome of three Orestias species from the Andean Altiplano. Our analysis revealed that the small genome size in this genus (~ 0.7 Gb) was caused by a contraction in transposable element (TE) content, particularly in DNA elements and short interspersed nuclear elements (SINEs). Using predicted gene sequences, we generated a phylogenetic tree of Cyprinodontiformes using 902 orthologs extracted from all 32 available genomes as well as three outgroup species. We complemented this analysis with a phylogenetic reconstruction and time calibration considering 12 molecular markers (eight nuclear and four mitochondrial genes) and a stratified taxon sampling to consider 198 species of nearly all families and genera of this order. Overall, our results show that phylogenetic closeness is directly related to geographical distance. Importantly, we found that Orestias is not part of the Cyprinodontidae family, and that it is more closely related to the South American fish fauna, being the Fluviphylacidae the closest sister group. CONCLUSIONS: The evolutionary history of the Orestias genus is linked to the South American ichthyofauna and it should no longer be considered a member of the Cyprinodontidae family. Instead, we submit that Orestias belongs to the Orestiidae family, as suggested by Freyhof et al. (2017), and that it is the sister group of the Fluviphylacidae family, distributed in the Amazonian and Orinoco basins. These two groups likely diverged during the Late Eocene concomitant with hydrogeological changes in the South American landscape.


Assuntos
Ciprinodontiformes , Evolução Molecular , Genoma , Filogenia , Animais , Ciprinodontiformes/genética , Ciprinodontiformes/classificação , Elementos de DNA Transponíveis/genética , Tamanho do Genoma
19.
BMC Genomics ; 25(1): 68, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233753

RESUMO

BACKGROUND: Costaceae, commonly known as the spiral ginger family, consists of approximately 120 species distributed in the tropical regions of South America, Africa, and Southeast Asia, of which some species have important ornamental, medicinal and ecological values. Previous studies on the phylogenetic and taxonomic of Costaceae by using nuclear internal transcribed spacer (ITS) and chloroplast genome fragments data had low resolutions. Additionally, the structures, variations and molecular evolution of complete chloroplast genomes in Costaceae still remain unclear. Herein, a total of 13 complete chloroplast genomes of Costaceae including 8 newly sequenced and 5 from the NCBI GenBank database, representing all three distribution regions of this family, were comprehensively analyzed for comparative genomics and phylogenetic relationships. RESULT: The 13 complete chloroplast genomes of Costaceae possessed typical quadripartite structures with lengths from 166,360 to 168,966 bp, comprising a large single copy (LSC, 90,802 - 92,189 bp), a small single copy (SSC, 18,363 - 20,124 bp) and a pair of inverted repeats (IRs, 27,982 - 29,203 bp). These genomes coded 111 - 113 different genes, including 79 protein-coding genes, 4 rRNA genes and 28 - 30 tRNAs genes. The gene orders, gene contents, amino acid frequencies and codon usage within Costaceae were highly conservative, but several variations in intron loss, long repeats, simple sequence repeats (SSRs) and gene expansion on the IR/SC boundaries were also found among these 13 genomes. Comparative genomics within Costaceae identified five highly divergent regions including ndhF, ycf1-D2, ccsA-ndhD, rps15-ycf1-D2 and rpl16-exon2-rpl16-exon1. Five combined DNA regions (ycf1-D2 + ndhF, ccsA-ndhD + rps15-ycf1-D2, rps15-ycf1-D2 + rpl16-exon2-rpl16-exon1, ccsA-ndhD + rpl16-exon2-rpl16-exon1, and ccsA-ndhD + rps15-ycf1-D2 + rpl16-exon2-rpl16-exon1) could be used as potential markers for future phylogenetic analyses and species identification in Costaceae. Positive selection was found in eight protein-coding genes, including cemA, clpP, ndhA, ndhF, petB, psbD, rps12 and ycf1. Maximum likelihood and Bayesian phylogenetic trees using chloroplast genome sequences consistently revealed identical tree topologies with high supports between species of Costaceae. Three clades were divided within Costaceae, including the Asian clade, Costus clade and South American clade. Tapeinochilos was a sister of Hellenia, and Parahellenia was a sister to the cluster of Tapeinochilos + Hellenia with strong support in the Asian clade. The results of molecular dating showed that the crown age of Costaceae was about 30.5 Mya (95% HPD: 14.9 - 49.3 Mya), and then started to diverge into the Costus clade and Asian clade around 23.8 Mya (95% HPD: 10.1 - 41.5 Mya). The Asian clade diverged into Hellenia and Parahellenia at approximately 10.7 Mya (95% HPD: 3.5 - 25.1 Mya). CONCLUSION: The complete chloroplast genomes can resolve the phylogenetic relationships of Costaceae and provide new insights into genome structures, variations and evolution. The identified DNA divergent regions would be useful for species identification and phylogenetic inference in Costaceae.


Assuntos
Genoma de Cloroplastos , Filogenia , Teorema de Bayes , Genômica/métodos , DNA
20.
Ecol Lett ; 27(5): e14430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714364

RESUMO

Wintering birds serve as vital climate sentinels, yet they are often overlooked in studies of avian diversity change. Here, we provide a continental-scale characterization of change in multifaceted wintering avifauna and examine the effects of climate change on these dynamics. We reveal a strong functional reorganization of wintering bird communities marked by a north-south gradient in functional diversity change, along with a superimposed mild east-west gradient in trait composition change. Assemblages in the northern United States saw contractions of the functional space and increases in functional evenness and originality, while the southern United States saw smaller contractions of the functional space and stasis in evenness and originality. Shifts in functional diversity were underlined by significant reshuffling in trait composition, particularly pronounced in the western and northern United States. Finally, we find strong contributions of climate change to this functional reorganization, underscoring the importance of wintering birds in tracking climate change impacts on biodiversity.


Assuntos
Biodiversidade , Aves , Mudança Climática , Estações do Ano , Animais , Aves/fisiologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA