Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(7): 3913-3925, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38345161

RESUMO

BACKGROUND: Food adulteration has long been considered a major problem. It compromises the quality, safety, and nutritional value of food, posing significant risks to public health. Novel techniques are required to control it. RESULTS: A graphene-based T-shaped monopole antenna sensor was tested for its ability to detect adulteration in liquid foods. Mustard oil was the pure reference sample used for product quality analysis. Olive oil and rice bran oil were adulterants added to the pure sample. It was found that the sensor could be immersed easily in the liquid sample and provided precise results. CONCLUSION: The graphene-based T-shaped monopole antenna sensor can be used for the quality assessment of liquid food products and is suitable for real-time monitoring. © 2024 Society of Chemical Industry.


Assuntos
Grafite , Azeite de Oliva/análise , Contaminação de Alimentos/análise , Óleo de Farelo de Arroz/análise
2.
J Contemp Dent Pract ; 25(3): 260-266, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38690700

RESUMO

AIM AND BACKGROUND: This study aimed to explore the potential synergistic interaction of virgin coconut oil (VCO) and virgin olive oil (VOO) mixture against Streptococcus sanguinis, Streptococcus mutans, and Lactobacillus casei in a single and mixture species through the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antiadherence, and antibiofilm activities. MATERIALS AND METHODS: The broth microdilution technique was used to individually determine the MIC of both oils and an oil mixture (in the ratio of 1:1) in a 96-well microtiter plate. As for the MBC, the subcultured method was used. The fractional inhibitory concentration index (ΣFIC) was determined to identify the interaction types between both oils. The oil mixture at its MIC was then tested on its antibiofilm and antiadherence effect. RESULTS: The MIC of the oil mixture against the tested microbiota was 50-100%. The oil mixture was bactericidal at 100% concentration for all the mentioned microbes except S. mutans. The ΣFIC value was 2 to 4, indicating that the VCO and VOO acted additively against the microbiota. Meanwhile, the oil mixture at MIC (50% for S. sanguinis and L. casei; 100% for S. mutans and mixture species) exhibited antiadherence and antibiofilm activity toward the microbiota in mixture species. CONCLUSION: The oil mixture possesses antibacterial, antibiofilm, and antiadherence properties toward the tested microbiota, mainly at 50-100% concentration of oil mixture. There was no synergistic interaction found between VCO and VOO. CLINICAL SIGNIFICANCE: Children and individuals with special care may benefit from using the oil mixture, primarily to regulate the biofilm formation and colonization of the bacteria. Furthermore, the oil mixture is natural and nontoxic compared to chemical-based oral healthcare products. How to cite this article: Ng YM, Sockalingam SNMP, Shafiei Z, et al. Biological Activities of Virgin Coconut and Virgin Olive Oil Mixture against Oral Primary Colonizers: An In Vitro Study. J Contemp Dent Pract 2024;25(3):260-266.


Assuntos
Biofilmes , Óleo de Coco , Lacticaseibacillus casei , Testes de Sensibilidade Microbiana , Azeite de Oliva , Streptococcus mutans , Streptococcus sanguis , Azeite de Oliva/farmacologia , Streptococcus mutans/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Óleo de Coco/farmacologia , Técnicas In Vitro , Streptococcus sanguis/efeitos dos fármacos , Lacticaseibacillus casei/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos
3.
Anal Biochem ; 682: 115348, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37821036

RESUMO

Tert-butylhydroquinone (TBHQ) is widely used to increase the stability of food products; however, it is considered to be a highly unsafe preservative ingredient that has caused serious damage to human health. Thus, in this paper, a novel molecularly imprinted electrochemical sensor was designed for ultrasensitive, and selective detection of TBHQ in edible oils. The sensor was based on the molecularly imprinted polymer (MIP) synthesized with multiwalled carbon nanotube (MWCNT), and gold nanoparticle (GNP), as the coating materials, o-phenylenediamine (o-PDA) as the functional monomer, and TBHQ as the template molecule. The electrochemical behavior of MIP/GNP/MWCNT/GCE was studied using several electrochemical methods, which showed a low detection limit of 5 nM. Furthermore the sensor demostrated excellent stability, selectivity, repeatability, and reproducibility. It was successfully used to detect TBHQ in edible oils, with recoveries ranging from 98.44% to 102.09% and relative standard deviations (RSDs) of less than 2.16%, indicating that TBHQ detection in actual samples is both possible and accurate.


Assuntos
Nanopartículas Metálicas , Impressão Molecular , Humanos , Polímeros/química , Ouro/química , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Óleos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Impressão Molecular/métodos , Eletrodos
4.
Crit Rev Food Sci Nutr ; : 1-28, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37671900

RESUMO

The application of oils in the food industry is challenging, owing to their inherent factors such as oxidation. Therefore, new technologies, such as nanoencapsulation, are being developed. Among the nanoencapsulated oils, essential oils (EO) and edible oils stand out for their high consumer demand. This review analyzes the production, characterization, stability, and market scenario of edible and EO nanoparticles applied in foods. Homogenization was found to be the most common technique for producing oil nanoparticles. Different encapsulants were used, and Tween 80 was the main emulsifier. Approximately 80% of the nanoparticles were smaller than 200 nm, and the polydispersibility index and zeta potential values were satisfactory, mainly for nanoparticles containing EO, whereas encapsulation efficiency varied based on the technique and the type of oil used. Oil nanoparticles were mainly applied on meat products. The temperatures and times used in the stability tests of foods containing oil nanoparticles varied depending on the food matrix, especially in microbiological and physicochemical analyses. Only one product with nanoencapsulated oil in its composition was found in the market. Oil nanoparticles have great potential in the development of innovative, economically viable, and sustainable techniques for producing new food products that are high in nutrition value.

5.
Crit Rev Food Sci Nutr ; 63(7): 873-901, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34347552

RESUMO

Adulteration of edible substances is a potent contemporary food safety issue. Perhaps the overt concern derives from the fact that adulterants pose serious ill effects on human health. Edible oils are one of the most adulterated food products. Perpetrators are adopting ways and means that effectively masks the presence of the adulterants from human organoleptic limits and traditional oil adulteration detection techniques. This review embodies a detailed account of chemical, biosensors, chromatography, spectroscopy, differential scanning calorimetry, non-thermal plasma, dielectric spectroscopy research carried out in the area of falsification assessment of edible oils for the past three decades and a collection of patented oil adulteration detection techniques. The detection techniques reviewed have some advantages and certain limitations, chemical tests are simple; biosensors and nuclear magnetic resonance are rapid but have a low sensitivity; chromatography and spectroscopy are highly accurate with a deterring price tag; dielectric spectroscopy is rapid can be portable and has on-line compatibility; however, the results are susceptible to variation of electric current frequency and intrinsic factors (moisture, temperature, structural composition). This review paper can be useful for scientists or for knowledge seekers eager to be abreast with edible oil adulteration detection techniques.


Assuntos
Alimentos , Óleos de Plantas , Humanos , Óleos de Plantas/química , Análise Espectral/métodos , Contaminação de Alimentos/análise
6.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36762672

RESUMO

Osteoarthritis (OA) is a common joint disease and has been studied extensively in recent years as no promising therapy available so far for its treatment and remains a great challenge for health care specialists. Although the identification of some major mechanisms that contribute to this disease suggests a plethora of bioactive agents in tackling the associated complications yet OA's pathophysiology is still poorly understood owing to complex mechanistic changes observed. Experimental research is now exploring a wide range of therapeutically effective agents in an effort to find a way to repair OA-related joint degeneration and halt it from getting worse. Data was acquired and reviewed from most relevant and recent studies. This review summarizes the studies that are currently available and focuses on how various unconventional functional oils affect osteoarthritis and the affected joint tissues. An analysis of the recent scientific literature allowed us to highlight the potential anti-arthritic properties of edible oils and their main constituents, which seems to suggest an interesting new potential therapeutic application. Due to eccentric nature of OA, it is necessary to concentrate initially on the management of symptoms. The evidence supporting functional oils chondroprotective potential is still accumulating, underpinning a global need for more sustainable natural sources of treatment. More clinical research that focuses on the consequences of long-term treatment, possible negative effects, and epigenetic implications is necessary to get optimistic results. However, different animal or clinical studies suggest that linolenic and linoleic fatty acids decreased chondrocyte oxidative stress, cartilage breakdown, and expression of inflammatory markers. Distinct fatty acids along with minor components of oils also reduced the generation of prostaglandins and decreased oxidative stress. Furthermore, the potential roles of the main components of edible oils and possible negative results (if any) are also reported. While no severe side effects have been reported for any edible oils. Overall, these studies identify and support the use of functional oils as an adjuvant therapy for the management of OA and as a means of symptomatic alleviation for OA patients. However, to prove the effectiveness or to draw precise conclusions, high-quality clinical trials are required.

7.
Nutr Neurosci ; : 1-8, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37997257

RESUMO

Objectives: This study aimed to assess the contribution of edible/cooking oils and mayonnaise sauce in the severity, motor and non-motor symptoms, and risk of Parkinson's disease (PD).Methods: In this study, 120 patients with PD and 50 healthy individuals participated. The frequency and quantity of edible/cooking oils including animal and plant source oils (hydrogenated and nonhydrogenated) and mayonnaise sauce used by participants were determined using a food frequency questionnaire. The severity of PD was determined by the Unified Parkinson's Disease Rating Scale (UPDRS).Results: Patients with PD had lower use of hydrogenated plant-based oil (HPO) (p < 0.001) and animal oils (p < 0.001) but had higher use of non-hydrogenated plant-based oil (NHPO) (p < 0.001), olive oil (p = 0.02), and mayonnaise sauce (p < 0.001) compared with the healthy subjects. Use of each unit HPO reduced 4% the odds of PD (p = 0.01). The odds of PD increased 20% by each unit increase in NHPO usage (p = 0.001), 49% by olive oil (p = 0.02), and 127% by mayonnaise sauce (p = 0.004) intake. According to receiver operator characteristics curve analysis, mayonnaise sauce and NHPO had the largest area under the curve in predicting PD. Intake of animal oil was positively correlated with total score of UPDRS (p = 0.05) and motor symptoms (p = 0.04). Intake of butter was positively correlated with total score of UPDRS (p = 0.047), nonmotor aspects of experiences of daily living (p = 0.02), and motor examination (p = 0.02).Discussion: The findings indicate that high intake of HPO reduces, while high intake of NHPO, olive oil, and mayonnaise sauce increases the odds of PD.

8.
Food Microbiol ; 109: 104148, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309447

RESUMO

Despite increasing interest to investigate horizontal gene transfer as a leading cause of antibiotic resistance spread, the resistome is not only influenced by the influx and efflux of genes in different environments. Rather, the expression of existing genes under different stress conditions requires special attention. This study determined whether pre-adapting Lactiplantibacillus pentosus strains, isolated from Aloreña green table olives, to vegetable-based edible oils influence their phenotypic and genotypic responses to antibiotics. This has significant diet, food matrix, gut health, and food safety concerns. Pre-adapting L. pentosus strains to oils significantly changed their susceptibility profile to antibiotics. However, results generally differed among the three strains; although changes in the Minimum Inhibitory Concentration (MIC) of antibiotics occurred, it depended on the L. pentosus strain and the oil used for adaptation. The pre-adaptation of L. pentosus strains with olive, sunflower, argan and linseed oils induced gene expressions (e.g., rpsL, recA and uvrB) in several stress responses. Thus, to analyze this fact in-depth, transcriptional changes were reported in the selected potential probiotic L. pentosus CF2-10 adapted with olive or sunflower, rerouting its metabolic pathways to export toxic molecules through efflux pumps and ABC transporters. Pre-adaptation of some lactobacilli with olive or sunflower oils may represent a novel approach for manufacturing probiotic products with improved stability, functionality and robustness.


Assuntos
Lactobacillus pentosus , Olea , Probióticos , Microbiologia de Alimentos , Fermentação , Lactobacillus pentosus/metabolismo , Probióticos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Óleos
9.
Sensors (Basel) ; 23(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37514589

RESUMO

Food quality assurance is an important field that directly affects public health. The organoleptic aroma of food is of crucial significance to evaluate and confirm food quality and origin. The volatile organic compound (VOC) emissions (detectable aroma) from foods are unique and provide a basis to predict and evaluate food quality. Soybean and corn oils were added to sesame oil (to simulate adulteration) at four different mixture percentages (25-100%) and then chemically analyzed using an experimental 9-sensor metal oxide semiconducting (MOS) electronic nose (e-nose) and gas chromatography-mass spectroscopy (GC-MS) for comparisons in detecting unadulterated sesame oil controls. GC-MS analysis revealed eleven major VOC components identified within 82-91% of oil samples. Principle component analysis (PCA) and linear detection analysis (LDA) were employed to visualize different levels of adulteration detected by the e-nose. Artificial neural networks (ANNs) and support vector machines (SVMs) were also used for statistical modeling. The sensitivity and specificity obtained for SVM were 0.987 and 0.977, respectively, while these values for the ANN method were 0.949 and 0.953, respectively. E-nose-based technology is a quick and effective method for the detection of sesame oil adulteration due to its simplicity (ease of application), rapid analysis, and accuracy. GC-MS data provided corroborative chemical evidence to show differences in volatile emissions from virgin and adulterated sesame oil samples and the precise VOCs explaining differences in e-nose signature patterns derived from each sample type.


Assuntos
Óleo de Gergelim , Compostos Orgânicos Voláteis , Óleo de Gergelim/análise , Óleo de Gergelim/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Nariz Eletrônico , Redes Neurais de Computação
10.
Int J Mol Sci ; 24(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37834444

RESUMO

Dispersions of core-shell nanocapsules (nanoemulsion) composed of liquid oil cores and polysaccharide-based shells were fabricated with emulsification using various mixtures of edible oils and amphiphilic hyaluronate derivatized with 12-carbon alkyl chains forming the shells. Such nanocapsules, with typical diameters in the 100-500 nm range, have been previously shown as promising carriers of lipophilic bioactive compounds. Here, the influence of some properties of the oil cores on the size and stability of the capsules were systematically investigated using oil binary mixtures. The results indicated that, in general, the lower the density, viscosity, and interfacial tension (IFT) between the oil and aqueous polymer solution phases, the smaller the size of the capsules. Importantly, an unexpected synergistic reduction of IFT of mixed oils was observed leading to the values below the measured for individual oils. Such a behavior may be used to tailor size but also other properties of the nanocapsules (e.g., stability, solubility of encapsulated compounds) that could not be achieved applying just a single oil. It is in high demand for applications in pharmaceutical or food industries and opens opportunities of using more complex combinations of oils with more components to achieve an even further reduction of IFT leading to even smaller nanocapsules.


Assuntos
Nanocápsulas , Óleos , Portadores de Fármacos , Polímeros , Cápsulas , Tamanho da Partícula
11.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446766

RESUMO

In the process of production, processing, transportation, and storage of edible oils, the oils inevitably come into contact with plastic products. As a result, plasticizers migrate into edible oils, are harmful to human health, and can exhibit reproductive toxicity. Therefore, the determination of plasticizers in edible oils is very important, and a series of sample preparation methods and determination techniques have been developed for the determination of plasticizers in edible oils. Phthalic acid ester (PAE) plasticizers are the most widely used among all plasticizers. This review aims to provide a comprehensive overview of the sample preparation methods and detection techniques reported for the determination of PAEs in edible oils since 2010, focusing on sample preparation methods of edible oils combined with various separation-based analytical techniques, such as gas chromatography (GC) and liquid chromatography (LC) with different detectors. Furthermore, the advantages, disadvantages, and limitations of these techniques as well as the prospective future developments are also discussed.


Assuntos
Ácidos Ftálicos , Plastificantes , Humanos , Plastificantes/análise , Ácidos Ftálicos/análise , Óleos de Plantas/química , Ésteres/análise
12.
Molecules ; 28(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687222

RESUMO

With population and economic development increasing worldwide, the public is increasingly concerned with the health benefits and nutritional properties of vegetable oils (VOs). In this review, the chemical composition and health-promoting benefits of 39 kinds of VOs were selected and summarized using Web of Science TM as the main bibliographic databases. The characteristic chemical compositions were analyzed from fatty acid composition, tocols, phytosterols, squalene, carotenoids, phenolics, and phospholipids. Health benefits including antioxidant activity, prevention of cardiovascular disease (CVD), anti-inflammatory, anti-obesity, anti-cancer, diabetes treatment, and kidney and liver protection were examined according to the key components in representative VOs. Every type of vegetable oil has shown its own unique chemical composition with significant variation in each key component and thereby illustrated their own specific advantages and health effects. Therefore, different types of VOs can be selected to meet individual needs accordingly. For example, to prevent CVD, more unsaturated fatty acids and phytosterols should be supplied by consuming pomegranate seed oil, flaxseed oil, or rice bran oil, while coconut oil or perilla seed oil have higher contents of total phenolics and might be better choices for diabetics. Several oils such as olive oil, corn oil, cress oil, and rice bran oil were recommended for their abundant nutritional ingredients, but the intake of only one type of vegetable oil might have drawbacks. This review increases the comprehensive understanding of the correlation between health effects and the characteristic composition of VOs, and provides future trends towards their utilization for the general public's nutrition, balanced diet, and as a reference for disease prevention. Nevertheless, some VOs are in the early stages of research and lack enough reliable data and long-term or large consumption information of the effect on the human body, therefore further investigations will be needed for their health benefits.


Assuntos
Doenças Cardiovasculares , Óleos de Plantas , Humanos , Óleo de Farelo de Arroz , Óleo de Milho , Óleo de Coco , Doenças Cardiovasculares/prevenção & controle
13.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615530

RESUMO

Fourier-Transform mid-infrared (FTIR) spectroscopy offers a strong candidate screening tool for rapid, non-destructive and early detection of unauthorized virgin olive oil blends with other edible oils. Potential applications to the official anti-fraud control are supported by dozens of research articles with a "proof-of-concept" study approach through different chemometric workflows for comprehensive spectral analysis. It may also assist non-targeted authenticity testing, an emerging goal for modern food fraud inspection systems. Hence, FTIR-based methods need to be standardized and validated to be accepted by the olive industry and official regulators. Thus far, several literature reviews evaluated the competence of FTIR standalone or compared with other vibrational techniques only in view of the chemometric methodology, regardless of the inherent characteristics of the product spectra or the application scope. Regarding authenticity testing, every step of the methodology workflow, and not only the post-acquisition steps, need thorough validation. In this context, the present review investigates the progress in the research methodology on FTIR-based detection of virgin olive oil adulteration over a period of more than 25 years with the aim to capture the trends, identify gaps or misuses in the existing literature and highlight intriguing topics for future studies. An extensive search in Scopus, Web of Science and Google Scholar, combined with bibliometric analysis, helped to extract qualitative and quantitative information from publication sources. Our findings verified that intercomparison of literature results is often impossible; sampling design, FTIR spectral acquisition and performance evaluation are critical methodological issues that need more specific guidance and criteria for application to product authenticity testing.


Assuntos
Olea , Projetos de Pesquisa , Azeite de Oliva/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Quimiometria , Óleos de Plantas/química , Contaminação de Alimentos/análise
14.
Compr Rev Food Sci Food Saf ; 22(3): 2161-2196, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36995170

RESUMO

Oilseeds are sources of not only major compounds such as oil and meal but also of bioactive compounds. Their conventional extraction is related to long extraction time, large non-renewable solvent consumption, high temperature, and therefore, high energy consumption. Ultrasound-assisted extraction (UAE) has emerged as a new and green technology, which can accelerate and/or improve the extraction process of these compounds. Moreover, the possibility of using renewable solvents in the UAE enhances its application and allows obtaining both extracted and remaining products more compatible with current human consumption requirements. This article examines the mechanisms, concepts, and factors that impact oilseeds' UAE with an emphasis on the extraction yield and quality of oil, meal, and bioactive compounds. Furthermore, the effects of combining UAE with other technologies are addressed. Gaps detected in the analyzed literature about oilseed treatment and quality and properties of products, in addition to perspectives about their uses as food ingredients, are also included. Moreover, it highlights the need for increasing research on process scalability, on environmental and economic impacts of the whole process, and on the phenomenological description about the effect of process variables on extraction performances, which will be a key tool for process design, optimization, and control. Understanding ultrasound processing techniques for the extraction of different compounds from oilseeds will serve as useful information for fats and oils and meal scientists in academia and industry to explore the possibility of employing this sustainable approach during the extraction treatment of various crops.


Assuntos
Ingredientes de Alimentos , Humanos , Solventes , Óleos de Plantas , Produtos Agrícolas
15.
Natl Acad Sci Lett ; : 1-4, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37363279

RESUMO

India is largely import dependent in meeting its domestic demand of edible oils. This study aims to discuss the consequences of recent global events such as COVID-19 and the Russia-Ukraine war on edible oil imports. Due to prevailing supply chain disruptions and local shortages in significant supplier countries, international prices became highly volatile, and import volumes were hit severely. This led to an almost doubling of the cost of imports from US $ billion 9.52 in 2019-20 to US $18.70 billion in 2021-22, putting an enormous burden on the Indian exchequer. Overall, an increase in the price of all edible oils has been recorded since the later parts of 2021, exerting inflationary pressure on the food price index. As edible oils are part of staple diets, the import dependency of such a large magnitude makes India extremely vulnerable to external shocks. This calls for immediate attention to the issue of self-sufficiency (atma nirbharata) in edible oils production by emphasizing long-term measures.

16.
J Food Sci Technol ; 60(1): 393-403, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618064

RESUMO

Coconut oil, rice bran oil and sunflower oil were added to rice, corn, banana and mung bean starches and the effect on physicochemical properties, amylose-lipid formation and digestive properties were investigated. Starch samples were heated while oil was added and starch treated without oil addition served as the control. Starches with different botanical origins complexed diversely with vegetable oils. The RDS content in corn and rice starches with oil addition decreased, while SDS and RS fractions increased. By contrast, the RS content of treated banana and mung bean starches decreased compared with native starch but RS and SDS contents increased when oil was added compared with the control sample. The A-type crystalline polymorph of corn and rice starches changed to a mixed A + V form, whereas native mung bean (C(A)-type) changed to B-pattern and banana starch remained unchanged (B-type). FTIR spectra indicated new peaks corresponding to starch-lipid complexes. Starches added with oils and the control showed lower peak viscosity, trough viscosity final viscosity and setback but higher pasting temperature and delayed pasting time compared to native starch. Heat-moisture treatment with added vegetable oil showed promise as a process to prepare functional starch high in SDS and RS.

17.
Crit Rev Food Sci Nutr ; 62(29): 8009-8027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33977844

RESUMO

Authenticity and adulteration detection are primary concerns of various stakeholders, such as researchers, consumers, manufacturers, traders, and regulatory agencies. Traditional approaches for authenticity and adulteration detection in edible oils are time-consuming, complicated, laborious, and expensive; they require technical skills when interpreting the data. Over the last several years, much effort has been spent in academia and industry on developing vibrational spectroscopic techniques for quality, authenticity, and adulteration detection in edible oils. Among them, Fourier transforms infrared (FT-IR) spectroscopy has gained enormous attention as a green analytical technique for the rapid monitoring quality of edible oils at all stages of production and for detecting and quantifying adulteration and authenticity in edible oils. The technique has several benefits such as rapid, precise, inexpensive, and multi-analytical; hence, several parameters can be predicted simultaneously from the same spectrum. Associated with chemometrics, the technique has been successfully implemented for the rapid detection of adulteration and authenticity in edible oils. After presenting the fundamentals, the latest research outcomes in the last 10 years on quality, authenticity, and adulteration detection in edible oils using FT-IR spectroscopy will be highlighted and described in this review. Additionally, opportunities, challenges, and future trends of FT-IR spectroscopy will also be discussed.


Assuntos
Gorduras Insaturadas na Dieta , Contaminação de Alimentos , Gorduras Insaturadas na Dieta/análise , Alimentos , Contaminação de Alimentos/análise , Óleos de Plantas/química , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Mikrochim Acta ; 189(8): 274, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804247

RESUMO

A novel, green, and effective strategy employing Fe3O4-modified carbon nanofibers (CNFs) combined with deep eutectic solvent (DES) is proposed as an extraction agent to extract five pesticides in edible oil samples via dual microextraction modes, followed by high-performance liquid chromatography for determination. The Fe3O4@CNFs nanomaterial and a sequence of hydrophilic DES were prepared at first and then characterized by multiple techniques. Subsequently, the extraction performance of DES and Fe3O4@CNFs-DES was compared and Fe3O4@CNFs-DES exhibited better extraction ability. After that, several influencing parameters such as the composition of DES, the amount of Fe3O4@CNFs-DES, the dispersion methods, and the extraction time were investigated and optimized. Eventually, Fe3O4@CNFs as the solid adsorbent combined with tetrabutylammonium chloride-lactic acid-based DES as the extraction solvent were selected to extract target pesticides from oil samples. The established method received good linearity in the range 25-1000 ng·g-1. The limits of detection for all analytes were in the range 2.25-7.50 ng·mL-1. Satisfactory recoveries of target pesticides were obtained (ranging from 82 to 117%) with a relative standard deviation of 0.26-9.46%. The proposed method has been successfully applied to the rapid detection of target pesticides in oil samples, demonstrating its great potential for quick screening and analysis.


Assuntos
Microextração em Fase Líquida , Nanofibras , Praguicidas , Carbono , Solventes Eutéticos Profundos , Microextração em Fase Líquida/métodos , Praguicidas/análise , Solventes/química
19.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144797

RESUMO

The food quality of edible oils is dependent on basic chemical and structural changes that can occur by oxidation during preparation and storage. A rapid and efficient analytical method of the different steps of oil oxidation is described using a time-domain nuclear magnetic resonance (TD-NMR) sensor for measuring signals related to the chemical and physical properties of the oil. The degree of thermal oxidation of edible oils at 80 °C was measured by the conventional methodologies of peroxide and aldehyde analysis. Intact non-modified samples of the same oils were more rapidly analyzed for oxidation using a TD-NMR sensor for 2D T1-T2 and self-diffusion (D) measurements. A good linear correlation between the D values and the conventional chemical analysis was achieved, with the highest correlation of R2 = 0.8536 for the D vs. the aldehyde concentrations during the thermal oxidation of poly-unsaturated linseed oils, the oil most susceptible to oxidation. A good correlation between the D and aldehyde levels was also achieved for all the other oils. The possibility to simplify and minimize the time of oxidative analysis using the TD NMR sensors D values is discussed as an indicator of the oil's oxidation quality, as a rapid and accurate methodology for the oil industry.


Assuntos
Qualidade dos Alimentos , Óleos de Plantas , Aldeídos/análise , Espectroscopia de Ressonância Magnética/métodos , Peróxidos/análise , Óleos de Plantas/química
20.
J Sci Food Agric ; 102(8): 3179-3192, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34787315

RESUMO

BACKGROUND: The palm oil (PO), leaf lard oil (LO), rapeseed oil (RO), sunflower oil (SO) and linseed oil (LN) are five of the most typical dietary lipids in most Asian countries. However, their influences on gut health, and the connections between the fatty acid composition, the gut microbiota, and the bile acid metabolism are not fully understood. RESULTS: In the present study, results showed that compared with polyunsaturated fatty acid (PUFA)-rich SO and LN, the saturated fatty acid (SFA)-rich and monounsaturated fatty acid (MUFA)-rich PO, LO and RO were more likely to decrease the re-absorption of bile acid in the colon, which was probably caused by their different role in modulating the gut microbiota structure. LO consumption significantly up-regulated the Cyp27a1, FXR and TGR5 gene expression level (P < 0.05). The correlation results suggested that the C18:0 was significantly positive correlated with these three genes, indicating that intake of SFA-rich dietary lipids, especially for the C18:0, could specifically increase the bile acid production by stimulating the bile acid alternative synthesis pathway. Although the bile acid receptor expression in the colon was increased, the re-absorption of bile acid did not show a significant increase (P > 0.05) as compared with other dietary lipids. Moreover, the C18:2-rich SO maintained the bile acid metabolic balance probably by decreasing the Romboutsia, while increasing the Bifidobacterium abundance in the colon. CONCLUSIONS: The different dietary lipids showed different effects on the bile acid metabolism, which was probably connected with the alterations in the gut microbiota structure. The present study could provide basic understandings about the influences of the different dietary lipids consumption on gut homeostasis and bile acid metabolism. © 2021 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Animais , Ratos , Ácidos e Sais Biliares , Gorduras na Dieta/metabolismo , Ácidos Graxos , Óleo de Semente do Linho/metabolismo , Metabolismo dos Lipídeos , Óleo de Palmeira , Óleos de Plantas/química , Óleo de Brassica napus , Ratos Sprague-Dawley , Óleo de Girassol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA