Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.532
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 63: 383-406, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662586

RESUMO

The long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are found in seafood, supplements, and concentrated pharmaceutical preparations. Prospective cohort studies demonstrate an association between higher intakes of EPA+DHA or higher levels of EPA and DHA in the body and lower risk of developing cardiovascular disease (CVD), especially coronary heart disease and myocardial infarction, and of cardiovascular mortality in the general population. The cardioprotective effect of EPA and DHA is due to the beneficial modulation of a number of risk factors for CVD. Some large trials support the use of EPA+DHA (or EPA alone) in high-risk patients, although the evidence is inconsistent. This review presents key studies of EPA and DHA in the primary and secondary prevention of CVD, briefly describes potential mechanisms of action, and discusses recently published RCTs and meta-analyses. Potential adverse aspects of long-chain omega-3 fatty acids in relation to CVD are discussed.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Ácidos Graxos Ômega-3 , Humanos , Estudos Prospectivos , Ácidos Graxos Ômega-3/efeitos adversos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle
2.
Semin Immunol ; 59: 101597, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35227568

RESUMO

The COVID-19 pandemic has raised international awareness of the importance of rigorous scientific evidence and the havoc caused by uncontrolled excessive inflammation. Here we consider the evidence on whether the specialized pro-resolving mediators (SPMs) are ready to meet this challenge as well as targeted metabololipidomics of the resolution-inflammation metabolomes. Specific stereochemical mechanisms in the biosynthesis of SPMs from omega-3 essential fatty acids give rise to unique local-acting lipid mediators. SPMs possess stereochemically defined potent bioactive structures that are high-affinity ligands for cognate G protein-coupled surface receptors that evoke the cellular responses required for efficient resolution of acute inflammation. The SPMs biosynthesized from the major omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are coined Resolvins (resolution phase interaction products; E series and D-series), Protectins and Maresins (macrophage mediators in resolving inflammation). Their biosynthesis and stereochemical assignments are established and confirmed (>1,441 resolvin publications in PubMed.gov) as well as their functional roles on innate immune cells and adaptive immune cells (both lymphocyte T-cell subsets and B-cells). The resolution of a protective acute inflammatory response is governed mainly by phagocytes that actively clear apoptotic cells, debris, blood clots and pathogens. These resolution phase functions of the acute inflammatory response are enhanced by SPMs, which together prepare the inflammatory loci for homeostasis and stimulate tissue regeneration via activating stem cells and the biosynthesis of novel cys-SPMs (e.g. MCTRs, PCTRs and RCTRs). These cys-SPMs also activate regeneration, are organ protective and stimulate resolution of local inflammation. Herein, we review the biosynthesis and functions of the E-series resolvins, namely resolvin E1 (the first n-3 resolvin identified), resolvin E2, resolvin E3 and resolvin E4 biosynthesized from their precursor eicosapentaenoic acid (EPA), and the critical role of total organic synthesis in confirming SPM complete stereochemistry, establishing their potent functions in resolution of inflammation, and novel structures. The physical properties of each biologically derived SPM, i.e., ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, were matched to SPMs biosynthesized and prepared by stereospecific total organic synthesis. We briefly review this approach, also used with the endogenous D-series resolvins, protectins and maresins confirming their potent functions in resolution of inflammation, that paves the way for their rigorous evaluation in human tissues and clinical trials. The assignment of complete stereochemistry for each of the E and D series Resolvins, Protectins and Maresins was a critical and required step that enabled human clinical studies as in SPM profiling in COVID-19 infections and experimental animal disease models that also opened the promise of resolution physiology, resolution pharmacology and targeted precision nutrition as new areas for monitoring health and disease mechanisms.


Assuntos
COVID-19 , Ácido Eicosapentaenoico , Animais , Humanos , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Inflamação , Mediadores da Inflamação/metabolismo , Metaboloma , Pandemias , Síndrome de COVID-19 Pós-Aguda , Ensaios Clínicos como Assunto
3.
Semin Immunol ; 59: 101605, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35660338

RESUMO

Specialized pro-resolving mediators (SPMs) are endogenous small molecules produced mainly from dietary omega-3 polyunsaturated fatty acids by both structural cells and cells of the active and innate immune systems. Specialized pro-resolving mediators have been shown to both limit acute inflammation and promote resolution and return to homeostasis following infection or injury. There is growing evidence that chronic immune disorders are characterized by deficiencies in resolution and SPMs have significant potential as novel therapeutics to prevent and treat chronic inflammation and immune system disorders. This review focuses on important breakthroughs in understanding how SPMs are produced by, and act on, cells of the adaptive immune system, specifically macrophages, B cells and T cells. We also highlight recent evidence demonstrating the potential of SPMs as novel therapeutic agents in topics including immunization, autoimmune disease and transplantation.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Humanos , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Graxos Ômega-3/uso terapêutico , Inflamação/tratamento farmacológico , Mediadores da Inflamação/uso terapêutico , Imunidade
4.
Circulation ; 150(6): 425-434, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38873793

RESUMO

BACKGROUND: Low plasma levels of eicosapentaenoic acid (EPA) are associated with cardiovascular events. This trial aimed to assess the clinical benefits of icosapent ethyl in patients with coronary artery disease, a low EPA/arachidonic acid (AA) ratio, and statin treatment. METHODS: In this prospective, multicenter, randomized, open-label, blinded end-point study, patients with stable coronary artery disease and a low EPA/AA ratio (<0.4) were randomized to EPA (1800 of icosapent ethyl administered daily) or control group. The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal ischemic stroke, unstable angina pectoris, and coronary revascularization. The secondary composite end points of coronary events included sudden cardiac death, fatal and nonfatal myocardial infarction, unstable angina requiring emergency hospitalization and coronary revascularization, or coronary revascularization. RESULTS: Overall, 3884 patients were enrolled at 95 sites in Japan. Among them, 2506 patients had a low EPA/AA ratio, and 1249 and 1257 patients were randomized to the EPA and control group, respectively. The median EPA/AA ratio was 0.243 (interquartile range, 0.180-0.314) and 0.235 (interquartile range, 0.163-0.310) in the EPA and control group, respectively. Over a median period of 5 years, the primary end point occurred in 112 of 1225 patients (9.1%) and 155 of 1235 patients (12.6%) in the EPA and control group, respectively (hazard ratio, 0.79 [95% CI, 0.62-1.00]; P=0.055). Meanwhile, the secondary composite end point of coronary events in the EPA group was significantly lower (81/1225 [6.6%] versus 120/1235 [9.7%] patients; hazard ratio, 0.73 [95% CI, 0.55-0.97]). Adverse events did not differ between the groups, but the rate of new-onset atrial fibrillation was significantly higher in the EPA group (3.1% versus 1.6%; P=0.017). CONCLUSIONS: Icosapent ethyl treatment resulted in a numerically lower risk of cardiovascular events that did not reach statistical significance in patients with chronic coronary artery disease, a low EPA/AA ratio, and statin treatment. REGISTRATION: URL: https://www.umin.ac.jp/ctr/; Unique identifier: UMIN000012069.


Assuntos
Doença da Artéria Coronariana , Ácido Eicosapentaenoico , Inibidores de Hidroximetilglutaril-CoA Redutases , Prevenção Secundária , Humanos , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/uso terapêutico , Ácido Eicosapentaenoico/efeitos adversos , Ácido Eicosapentaenoico/sangue , Masculino , Feminino , Idoso , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Doença da Artéria Coronariana/tratamento farmacológico , Pessoa de Meia-Idade , Estudos Prospectivos , Quimioterapia Combinada , Resultado do Tratamento , Japão/epidemiologia
5.
Circulation ; 150(6): 488-503, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39102482

RESUMO

The pro- and antiarrhythmic effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been extensively studied in preclinical and human trials. Despite early evidence of an antiarrhythmic role of n-3 PUFA in the prevention of sudden cardiac death and postoperative and persistent atrial fibrillation (AF), subsequent well-designed randomized trials have largely not shown an antiarrhythmic benefit. Two trials that tested moderate and high-dose n-3 PUFA demonstrated a reduction in sudden cardiac death, but these findings have not been widely replicated, and the potential of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to reduce arrhythmic death in combination, or as monotherapy, remains uncertain. The accumulated clinical evidence does not support supplementation of n-3 PUFA for postoperative AF or secondary prevention of AF. Several large, contemporary, randomized controlled trials of high-dose n-3 PUFA for primary or secondary cardiovascular prevention have demonstrated a small, significant, dose-dependent increased risk of incident AF compared with mineral oil or corn oil comparator. These findings were reproduced with both icosapent ethyl monotherapy and a mixed EPA+DHA formulation. The proarrhythmic mechanism of increased AF in contemporary cohorts exposed to high-dose n-3 PUFA is unknown. EPA and DHA and their metabolites have pleiotropic cardiometabolic and pro- and antiarrhythmic effects, including modification of the lipid raft microenvironment; alteration of cell membrane structure and fluidity; modulation of sodium, potassium, and calcium currents; and regulation of gene transcription, cell proliferation, and inflammation. Further characterization of the complex association between EPA, EPA+DHA, and DHA and AF is needed. Which formulations, dose ranges, and patient subgroups are at highest risk, remain unclear.


Assuntos
Arritmias Cardíacas , Ácidos Graxos Ômega-3 , Humanos , Ácidos Graxos Ômega-3/uso terapêutico , Arritmias Cardíacas/prevenção & controle , Animais , Fibrilação Atrial/prevenção & controle , Fibrilação Atrial/tratamento farmacológico , Morte Súbita Cardíaca/prevenção & controle , Morte Súbita Cardíaca/etiologia , Antiarrítmicos/uso terapêutico , Suplementos Nutricionais , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Ácidos Docosa-Hexaenoicos/uso terapêutico
6.
Arterioscler Thromb Vasc Biol ; 44(1): 89-107, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916414

RESUMO

Both cardiovascular disease (CVD) and cognitive decline are common features of aging. One in 5 deaths is cardiac for both men and women in the United States, and an estimated 50 million are currently living with dementia worldwide. In this review, we summarize sex and racial differences in the role of fish and its very long chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in preventing CVD events and cognitive decline. In prospective studies, women with higher nonfried and fatty fish intake and women and Black individuals with higher plasma levels of EPA and DHA had a lower risk of CVD. In randomized controlled trials of EPA and DHA supplementation in primary CVD prevention, Black subjects benefited in a secondary outcome. In secondary CVD prevention, both men and women benefited, and Asians benefited as a prespecified subgroup. Fish and omega-3 polyunsaturated fatty acids are associated with prevention of cognitive decline in prospective studies. In randomized controlled trials of EPA and DHA supplementation, women have cognitive benefit. DHA seems more beneficial than EPA, and supplementation is more beneficial when started before cognitive decline. Although studies in women and racial groups are limited, life-long intake of nonfried and fatty fish lowers the risk of CVD and cognitive decline, and randomized controlled trials also show the benefit of EPA and DHA supplementation. These findings should be factored into recommendations for future research and clinical recommendations as dietary modalities could be cost-effective for disease prevention.


Assuntos
Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Masculino , Animais , Feminino , Humanos , Ácidos Graxos Ômega-3/uso terapêutico , Estudos Prospectivos , Fatores Raciais , Suplementos Nutricionais , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Docosa-Hexaenoicos/uso terapêutico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/tratamento farmacológico , Cognição
7.
Proc Natl Acad Sci U S A ; 119(30): e2122158119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858418

RESUMO

Eicosapentaenoic acid (EPA), an omega-3 (ω-3) polyunsaturated fatty acid, is an essential nutrient that exhibits antiinflammatory, neuroprotective, and cardiovascular-protective activities. Although EPA is used as a nutrient-based pharmaceutical agent or dietary supplement, its molecular target(s) is debatable. Here, we showed that EPA and its metabolites strongly and reversibly inhibit vesicular nucleotide transporter (VNUT), a key molecule for vesicular storage and release of adenosine triphosphate (ATP) in purinergic chemical transmission. In vitro analysis showed that EPA inhibits human VNUT-mediated ATP uptake at a half-maximal inhibitory concentration (IC50) of 67 nM, acting as an allosteric modulator through competition with Cl-. EPA impaired vesicular ATP release from neurons without affecting the vesicular release of other neurotransmitters. In vivo, VNUT-/- mice showed a delay in the onset of neuropathic pain and resistance to both neuropathic and inflammatory pain. EPA potently attenuated neuropathic and inflammatory pain in wild-type mice but not in VNUT-/- mice without affecting the basal nociception. The analgesic effect of EPA was canceled by the intrathecal injection of purinoceptor agonists and was stronger than that of existing drugs used for neuropathic pain treatment, with few side effects. Neuropathic pain impaired insulin sensitivity in previous studies, which was improved by EPA in the wild-type mice but not in the VNUT-/- mice. Our results showed that VNUT is a molecular target of EPA that attenuates neuropathic and inflammatory pain and insulin resistance. EPA may represent a unique nutrient-based treatment and prevention strategy for neurological, immunological, and metabolic diseases by targeting purinergic chemical transmission.


Assuntos
Ácido Eicosapentaenoico , Neuralgia , Proteínas de Transporte de Nucleotídeos , Trifosfato de Adenosina/metabolismo , Animais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Humanos , Resistência à Insulina , Camundongos , Neuralgia/tratamento farmacológico , Neuralgia/genética , Nociceptividade , Proteínas de Transporte de Nucleotídeos/antagonistas & inibidores , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo
8.
J Lipid Res ; : 100666, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39395792

RESUMO

Cellular metabolism is a complex process involving the consumption and production of metabolites, as well as the regulation of enzyme synthesis and activity. Modeling of metabolic processes is important to understand the underlying mechanisms, with a wide range of applications in metabolic engineering and health sciences. Cybernetic modeling is a powerful technique that accounts for unknown intricate regulatory mechanisms in complex cellular processes. It models regulation as goal-oriented, where the levels and activities of enzymes are modulated by the cybernetic control variables to achieve the cybernetic objective. This study employed cybernetic model to study the enzyme competition between arachidonic acid (AA) and eicosapentaenoic acid (EPA) metabolism in murine macrophages. AA and EPA compete for the shared enzyme cyclooxygenase (COX). Upon external stimuli, AA produces pro-inflammatory 2-series prostaglandins (PGs) and EPA metabolizes to anti-inflammatory 3-series PGs, where pro- and anti- inflammatory responses are necessary for homeostasis. The cybernetic model adequately captured the experimental data for control and EPA-supplemented conditions. The model is validated by performing an F-test, conducting leave-one-out-metabolite cross-validation, and predicting an unseen experimental condition. The cybernetic variables provide insights into the competition between AA and EPA for the COX enzyme. Predictions from our model suggest that the system undergoes a switch from a predominantly pro-inflammatory state in the control to an anti-inflammatory state with EPA-supplementation. The model can also be used to analytically determine the AA and EPA concentrations required for the switch to occur. The quantitative outcomes enhance understanding of pro- and anti-inflammatory metabolism in RAW 264.7 macrophages.

9.
Int J Cancer ; 154(5): 873-885, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855394

RESUMO

Urinary prostaglandin (PG) E metabolite (PGE-M) and 11-dehydro (d)-thromboxane (TX) B2 are biomarkers of cyclooxygenase-dependent prostanoid synthesis. We investigated (1) the effect of aspirin 300 mg daily and eicosapentaenoic acid (EPA) 2000 mg daily, alone and in combination, on urinary biomarker levels and, (2) whether urinary biomarker levels predicted colorectal polyp risk, during participation in the seAFOod polyp prevention trial. Urinary PGE-M and 11-d-TXB2 were measured by liquid chromatography-tandem mass spectrometry. The relationship between urinary biomarker levels and colorectal polyp outcomes was investigated using negative binomial (polyp number) and logistic (% with one or more polyps) regression models. Despite wide temporal variability in PGE-M and 11-d-TXB2 levels within individuals, both aspirin and, to a lesser extent, EPA decreased levels of both biomarkers (74% [P ≤ .001] and 8% [P ≤ .05] reduction in median 11-d-TXB2 values, respectively). In the placebo group, a high (quartile [Q] 2-4) baseline 11-d-TXB2 level predicted increased polyp number (incidence rate ratio [IRR] [95% CI] 2.26 [1.11,4.58]) and risk (odds ratio [95% CI] 3.56 [1.09,11.63]). A low (Q1) on-treatment 11-d-TXB2 level predicted reduced colorectal polyp number compared to placebo (IRR 0.34 [0.12,0.93] for combination aspirin and EPA treatment) compared to high on-treatment 11-d-TXB2 values (0.61 [0.34,1.11]). Aspirin and EPA both inhibit PGE-M and 11-d-TXB2 synthesis in keeping with shared in vivo cyclooxygenase inhibition. Colorectal polyp risk and treatment response prediction by 11-d-TXB2 is consistent with a role for platelet activation during early colorectal carcinogenesis. The use of urinary 11-d-TXB2 measurement for a precision approach to colorectal cancer risk prediction and chemoprevention requires prospective evaluation.


Assuntos
Aspirina , Pólipos do Colo , Humanos , Aspirina/farmacologia , Aspirina/uso terapêutico , Ácido Eicosapentaenoico , Prostaglandina-Endoperóxido Sintases , Tromboxano B2/urina , Biomarcadores , Prostaglandinas , Ativação Plaquetária
10.
BMC Plant Biol ; 24(1): 309, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649801

RESUMO

BACKGROUND: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs. RESULT: In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool). CONCLUSIONS: This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.


Assuntos
Diacilglicerol O-Aciltransferase , Diatomáceas , Nicotiana , Diatomáceas/genética , Diatomáceas/enzimologia , Diatomáceas/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Nicotiana/genética , Nicotiana/enzimologia , Nicotiana/metabolismo , Acil Coenzima A/metabolismo , Plantas Geneticamente Modificadas , Triglicerídeos/biossíntese , Triglicerídeos/metabolismo , Ácido Eicosapentaenoico/biossíntese , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Ômega-3/biossíntese , Ácidos Graxos Ômega-3/metabolismo , Engenharia Metabólica
11.
J Virol ; 97(11): e0120923, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37843366

RESUMO

IMPORTANCE: Porcine epidemic diarrhea caused by porcine coronaviruses remains a major threat to the global swine industry. Fatty acids are extensively involved in the whole life of the virus. In this study, we found that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) significantly reduced the viral load of porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine delta coronavirus (PDCoV) and acted on the replication of the viruses rather than attachment and entry. We further confirmed that DHA and EPA inhibited PEDV replication by alleviating the endoplasmic reticulum stress. Meanwhile, DHA and EPA alleviate PEDV-induced inflammation and reactive oxygen species (ROS) levels and enhance the cellular antioxidant capacity. These data indicate that DHA and EPA have antiviral effects on porcine coronaviruses and provide a molecular basis for the development of new fatty acid-based therapies to control porcine coronavirus infection and transmission.


Assuntos
Infecções por Coronavirus , Coronavirus , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Doenças dos Suínos , Animais , Coronavirus/fisiologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/tratamento farmacológico , Vírus da Gastroenterite Transmissível/fisiologia , Replicação Viral/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos
12.
J Nutr ; 154(9): 2862-2870, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025329

RESUMO

BACKGROUND: Long-chain PUFA (LC-PUFA) influence varying aspects of inflammation. One mechanism by which they regulate inflammation is by controlling the size and molecular composition of lipid rafts. Lipid rafts are sphingolipid/cholesterol-enriched plasma membrane microdomains that compartmentalize signaling proteins and thereby control downstream inflammatory gene expression and cytokine production. OBJECTIVES: This review summarizes developments in our understanding of how LC-PUFA acyl chains of phospholipids, in addition to oxidized derivatives of LC-PUFAs such as oxidized 1-palmitoyl-2-arachidonyl-phosphatidylcholine (oxPAPC), manipulate formation of lipid rafts and thereby inflammation. METHODS: We reviewed the literature, largely from the past 2 decades, on the impact of LC-PUFA acyl chains and oxidized products of LC-PUFAs on lipid raft biophysical organization of myeloid and lymphoid cells. The majority of the studies are based on rodent or cellular experiments with supporting mechanistic studies using biomimetic membranes and molecular dynamic simulations. These studies have focused largely on the LC-PUFA docosahexaenoic acid, with some studies addressing eicosapentaenoic acid. A few studies have investigated the role of oxidized phospholipids on rafts. RESULTS: The biophysical literature suggests a model in which n-3 LC-PUFAs, in addition to oxPAPC, localize predominately to nonraft regions and impart a disordering effect in this environment. Rafts become larger because of the ensuing increase in the difference in order between raft and nonrafts. Biochemical studies suggest that some n-3 LC-PUFAs can be found within rafts. This deviation from homeostasis is a potential trigger for controlling aspects of innate and adaptive immunity. CONCLUSION: Overall, select LC-PUFA acyl chains and oxidized acyl chains of phospholipids control lipid raft dynamics and downstream inflammation. Gaps in knowledge remain, particularly on underlying molecular mechanisms by which plasma membrane receptor organization is controlled in response to oxidized LC-PUFA acyl chains of membrane phospholipids. Validation in humans is also an area for future study.


Assuntos
Ácidos Graxos Insaturados , Inflamação , Microdomínios da Membrana , Oxirredução , Fosfolipídeos , Microdomínios da Membrana/metabolismo , Humanos , Inflamação/metabolismo , Fosfolipídeos/metabolismo , Fosfolipídeos/química , Animais , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/farmacologia
13.
J Nutr ; 154(7): 2108-2119, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710305

RESUMO

BACKGROUND: The intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been associated with health benefits. Blood levels of these fatty acids, measured by gas chromatography (GC), are associated with their dietary intake, but the relationships with lipidomic measurements are not well defined. OBJECTIVES: This study aimed to determine the lipidomic biomarkers in whole blood that predict intakes of EPA + DHA and examine the relationship between lipidomic and GC-based n-3 polyunsaturated fatty acid (n-3 PUFA) biomarkers. METHODS: Lipidomic and fatty acid analyses were completed on 120 whole blood samples collected from Danish participants. Dietary intakes were completed using a web-based 7-d food diary. Stepwise multiple linear regression was used to identify the fatty acid and lipidomic variables that predict intakes of EPA + DHA and to determine lipidomic species that predict commonly used fatty acid biomarkers. RESULTS: Stepwise regression selected lipidomic variables with an R2 = 0.52 for predicting EPA + DHA intake compared to R2 = 0.40 for the selected fatty acid GC-based variables. More predictive models were generated when the lipidomic variables were selected for females only (R2 = 0.62, n = 68) and males only (R2 = 0.72, n = 52). Phosphatidylethanolamine plasmalogen species containing EPA or DHA tended to be the most predictive lipidomic variables. Stepwise regression also indicated that selected lipidomic variables can predict commonly used fatty acid GC-based n-3 PUFA biomarkers as the R2 values ranged from 0.84 to 0.91. CONCLUSIONS: Both fatty acid and lipidomic data can be used to predict EPA + DHA intakes, and fatty acid GC-based biomarkers can be emulated by lipidomic species. Lipidomic-based biomarkers appear to be influenced by sex differences, probably in n-3 PUFA and lipoprotein metabolism. These results improve our ability to understand the relationship between novel lipidomic data and GC fatty acid data and will increase our ability to apply lipidomic methods to fatty acid and lipid nutritional research.


Assuntos
Biomarcadores , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Lipidômica , Humanos , Ácido Eicosapentaenoico/sangue , Ácido Eicosapentaenoico/administração & dosagem , Ácidos Docosa-Hexaenoicos/sangue , Ácidos Docosa-Hexaenoicos/administração & dosagem , Feminino , Masculino , Biomarcadores/sangue , Dinamarca , Pessoa de Meia-Idade , Adulto , Dieta , Ácidos Graxos/sangue , Idoso , Registros de Dieta
14.
Brain Behav Immun ; 118: 459-467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499208

RESUMO

Omega-3 polyunsaturated fatty acids (PUFAs) may benefit migraine improvement, though prior studies are inconclusive. This study evaluated the effect of eicosapentaenoic acid (EPA) on episodic migraine (EM) prevention. Seventy individuals with EM participated in a 12-week randomized, double-blind, placebo-controlled trial from March 2020 and May 2022. They were randomly assigned to either the EPA (N = 35, 2 g fish oil with 1.8 g of EPA as a stand-alone treatment daily), or the placebo group (N = 35, 2 g soybean oil daily). Migraine frequency and headache severity were assessed using the monthly migraine days, visual analog scale (VAS), Migraine Disability Assessment (MIDAS), Hospital Anxiety and Depression Scale (HADS), Migraine-Specific Quality-of-Life Questionnaire (MSQ), and Pittsburgh Sleep Quality Index (PSQI) in comparison to baseline measurements. The EPA group significantly outperformed the placebo in reducing monthly migraine days (-4.4 ± 5.1 days vs. - 0.6 ± 3.5 days, p = 0.001), days using acute headache medication (-1.3 ± 3.0 days vs. 0.1 ± 2.3 days, p = 0.035), improving scores for headache severity (ΔVAS score: -1.3 ± 2.4 vs. 0.0 ± 2.2, p = 0.030), disability (ΔMIDAS score: -13.1 ± 16.2 vs. 2.6 ± 20.2, p = 0.001), anxiety and depression (ΔHADS score: -3.9 ± 9.4 vs. 1.1 ± 9.1, p = 0.025), and quality of life (ΔMSQ score: -11.4 ± 19.0 vs. 3.1 ± 24.6, p = 0.007). Notably, female particularly benefited from EPA, underscoring its potential in migraine management. In conclusion, high-dose EPA has significantly reduced migraine frequency and severity, improved psychological symptoms and quality of life in EM patients, and shown no major adverse events, suggesting its potential as a prophylactic for EM.


Assuntos
Ácido Eicosapentaenoico , Transtornos de Enxaqueca , Feminino , Humanos , Método Duplo-Cego , Ácido Eicosapentaenoico/uso terapêutico , Cefaleia , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/prevenção & controle , Qualidade de Vida , Resultado do Tratamento , Masculino
15.
Brain Behav Immun ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39454693

RESUMO

The comorbidity of obesity and depression has major public health impacts, highlighting the need to understand their shared mechanisms. This study explored the connection between obesity and depression through the transient receptor potential V1 (TRPV1) signaling pathway, using obese/depressed murine models and clinical data. Mice fed a high-fat diet showed altered TRPV1 pathway expression in brain regions of the mice: downregulated in the medial prefrontal cortex (mPFC) and hippocampus, and upregulated in the hypothalamus and amygdala, influencing depression-like behaviors and inflammation. Treatments like eicosapentaenoic acid (EPA) and acupoint catgut embedding (ACE) reversed these effects, similar to observations in Trpv1-/- mice. Furthermore, chemogenetic activation in the ventral mPFC also alleviated depression via TRPV1. In our clinical validation, single nucleotide polymorphisms (SNPs) in TRPV1-related genes (PIK3C2A and PRKCA) were linked to interferon-induced depression. These findings underscore the potential of targeting TRPV1 as a therapeutic approach for obesity-related depression.

16.
Arch Microbiol ; 206(11): 429, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382591

RESUMO

Polyunsaturated fatty acids (PUFA) are vital molecules in the pharmaceutical, medical, and nutritional industries. Exploration of bacterial strains capable of producing significant amounts of PUFAs offers a promising avenue for biotechnological applications and industrial-scale production. However, an extensive screening of several samples from diverse sources is highly needed to identify a potential strain. The present study provides the results of the evaluation of 15 different screening methodologies (including changes in existing protocols in terms of reagent concentration, incubation temperature and time) for identifying PUFA-producing bacteria in comparison to the gold standard method (Gas chromatography-mass spectrometry), for the first time. The results determined the most effective techniques for each critical PUFA, leading to an optimized screening process that saves time and resources. The H2O2 plate assay using 0.5% or 1% H2O2 for 72 & 96 h of incubation at 15 °C consistently outperformed others for finding bacteria containing total nutritionally important long chain-PUFA (LC-PUFA), linoleic acid, and arachidonic acid. Whereas the 2,3,5-triphenyl tetrazolium chloride broth assay at 10-15 °C was the most effective and semiquantitative screening methodology for eicosapentaenoic acid (EPA) and alpha-linolenic acid-containing bacteria. Apart from the methodological perspectives, the study also revealed certain potential strains to be targeted in the ongoing research on PUFA-containing bacteria. Further, the manuscript forms the first report on the presence of docosahexaenoic acid (DHA) in Shewanella decolorationis, EPA in Psychrobacter maritimus and Micrococcus aloeverae, and both EPA and DHA in Arthrobacter rhombi. Altogether, the paper generates several thought-provoking insights on the methodological perspectives and identifies potential PUFA-containing bacteria with practical applications in future bacteria-based PUFA research.


Assuntos
Bactérias , Ácidos Graxos Insaturados , Ácidos Graxos Insaturados/metabolismo , Bactérias/metabolismo , Bactérias/isolamento & purificação , Peróxido de Hidrogênio/metabolismo , Cromatografia Gasosa-Espectrometria de Massas
17.
Neuroendocrinology ; 114(6): 553-576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38301617

RESUMO

INTRODUCTION: Alzheimer's disease (AD) alters neurocognitive and emotional function and causes dysregulation of multiple homeostatic processes. The leading AD framework pins amyloid beta plaques and tau tangles as primary drivers of dysfunction. However, many additional variables, including diet, stress, sex, age, and pain tolerance, interact in ways that are not fully understood to impact the onset and progression of AD pathophysiology. We asked: (1) does high-fat diet, compared to low-fat diet, exacerbate AD pathophysiology and behavioral decline? And, (2) can supplementation with eicosapentaenoic (EPA)-enriched fish oil prevent high-fat-diet-induced changes? METHODS: Male and female APPswePSdE9 mice, and their non-transgenic littermates, were randomly assigned to a diet condition (low-fat, high-fat, high-fat with EPA) and followed from 2 to 10 months of age. We assessed baseline corticosterone concentration during aging, pain tolerance, cognitive function, stress coping, and corticosterone response to a stressor. RESULTS: Transgenic mice were consistently more active than non-transgenic mice but did not perform worse on either cognitive task, even though we recently reported that these same transgenic mice exhibited metabolic changes and had increased amyloid beta. Mice fed high-fat diet had higher baseline and post-stressor corticosterone, but diet did not impact cognition or pain tolerance. Sex had the biggest influence, as female mice were consistently more active and had higher corticosterone than males. CONCLUSION: Overall, diet, genotype, and sex did not have consistent impacts on outcomes. We found little support for predicted interactions and correlations, suggesting diet impacts metabolic function and amyloid beta levels, but these outcomes do not translate to changes in behaviors measured here.


Assuntos
Corticosterona , Dieta Hiperlipídica , Ácido Eicosapentaenoico , Sistema Hipotálamo-Hipofisário , Camundongos Transgênicos , Sistema Hipófise-Suprarrenal , Animais , Masculino , Feminino , Dieta Hiperlipídica/efeitos adversos , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/administração & dosagem , Camundongos , Corticosterona/sangue , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
18.
Pharmacol Res ; 202: 107112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403256

RESUMO

Depression is a common disease that affects physical and mental health and imposes a considerable burden on afflicted individuals and their families worldwide. Depression is associated with a high rate of disability and suicide. It causes a severe decline in productivity and quality of life. Unfortunately, the pathophysiological mechanisms underlying depression have not been fully elucidated, and the risk of its treatment is still presented. Studies have shown that the expression of autophagic markers in the brain and peripheral inflammatory mediators are dysregulated in depression. Autophagy-related genes regulate the level of autophagy and change the inflammatory response in depression. Depression is related to several aspects of immunity. The regulation of the immune system and inflammation by autophagy may lead to the development or deterioration of mental disorders. This review highlights the role of autophagy and neuroinflammation in the pathophysiology of depression, sumaries the autophagy-targeting small moleculars, and discusses a novel therapeutic strategy based on anti-inflammatory mechanisms that target autophagy to treat the disease.


Assuntos
Doenças Neuroinflamatórias , Qualidade de Vida , Humanos , Autofagia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
19.
Artigo em Inglês | MEDLINE | ID: mdl-38363478

RESUMO

PURPOSE: Patients with hyperlipidemia treated with statins remain at a residual cardiovascular (CV) risk. Omega-3 polyunsaturated fatty acids hold the potential to mitigate the residual CV risk in statin-treated patients, with persistently elevated triglyceride (TG) levels. METHOD: We reviewed the current evidence on the use of icosapent ethyl (IPE), an omega-3 fatty acid yielding a pure form of eicosapentaenoic acid. RESULTS: REDUCE-IT reported a significant 25% reduction in CV events, including the need for coronary revascularization, the risk of fatal/nonfatal myocardial infarction, stroke, hospitalization for unstable angina, and CV death in patients on IPE, unseen with other omega-3 fatty acids treatments. IPE was effective in all patients regardless of baseline CV risk enhancers (TG levels, type-2 diabetes status, weight status, prior revascularization, or renal function). Adverse events (atrial fibrillation/flutter) related to IPE have occurred mostly in patients with prior atrial fibrillation. Yet, the net clinical benefit largely exceeded potential risks. The combination with other omega-3 polyunsaturated fatty acids, in particular DHA, eliminated the effect of EPA alone, as reported in the STRENGTH and OMEMI trials. Adding IPE to statin treatment seems to be cost-effective, especially in the context of secondary prevention of CVD, decreasing CV event frequency and subsequently the use of healthcare resources. CONCLUSION: Importantly, IPE has been endorsed by 20 international medical societies as a statin add-on treatment in patients with dyslipidemia and high CV risk. Robust medical evidence supports IPE as a pillar in the management of dyslipidemia.

20.
Exp Cell Res ; 424(1): 113491, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36708860

RESUMO

Astrocytes are highly energy-consuming glial cells critical for metabolic support to neurons. A growing body of evidence suggests that mitochondrial dysfunction in astrocytes is involved in age-related neurodegenerative disorders and that fish oil, rich in docosahexaenoic (DHA) and eicosapentaenoic (EPA) fatty acids, may alleviate cognition impairment in Parkinson's and Alzheimer's diseases. The present study examines the effect of DHA and EPA on mitochondrial membrane potential (MMP), apoptosis activation and ATP levels in astrocytes cultured in medium containing glucose or galactose, which limits oxidative phosphorylation (OXPHOS). MMP, expressed as the ratio of red to green JC-10 and MitoTracker fluorescence, increased in EPA-incubated cells in a dose dependent manner and was higher than in DHA-incubated astrocytes, also after uncoupling of OXPHOS by carbonyl cyanide 3-chlorophenylhydrazone (CCCP). In cells cultured in glucose and galactose medium mitochondrial hyperpolarization had no impact on intracellular ATP level. Furthermore, both EPA and DHA elevated mitochondrial cardiolipin content, however only EPA did so in a dose-dependent manner and reduced apoptosis which was analyzed by flow cytometry.


Assuntos
Cardiolipinas , Ácido Eicosapentaenoico , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Astrócitos , Galactose , Potencial da Membrana Mitocondrial , Trifosfato de Adenosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA