Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 47(6): 903-917, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630261

RESUMO

In the present study, the potential of Pseudomonas citronellolis 620C strain was evaluated, for the first time, to generate electricity in a standard, double chamber microbial fuel cell (MFC), with oily wastewater (OW) being the fuel at 43.625 mg/L initial chemical oxygen demand (COD). Both electrochemical and physicochemical results suggested that this P. citronellolis strain utilized efficiently the OW substrate and generated electricity in the MFC setup reaching 0.05 mW/m2 maximum power. COD removal was remarkable reaching 83.6 ± 0.1%, while qualitative and quantitative gas chromatography/mass spectrometry (GC/MS) analysis of the OW total petroleum and polycyclic aromatic hydrocarbons, and fatty acids revealed high degradation capacity. It was also determined that P. citronellolis 620C produced pyocyanin as electron shuttle in the anodic MFC chamber. To the authors' best knowledge, this is the first study showing (phenazine-based) pyocyanin production from a species other than P. aeruginosa and, also, the first time that P. citronellolis 620C has been shown to produce electricity in a MFC. The production of pyocyanin, in combination with the formation of biofilm in the MFC anode, as observed with scanning electron microscopy (SEM) analysis, makes this P. citronellolis strain an attractive and promising candidate for wider MFC applications.


Assuntos
Fontes de Energia Bioelétrica , Pseudomonas , Piocianina , Águas Residuárias , Fontes de Energia Bioelétrica/microbiologia , Piocianina/biossíntese , Piocianina/metabolismo , Águas Residuárias/microbiologia , Pseudomonas/metabolismo , Eletricidade
2.
J Environ Manage ; 366: 121753, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981265

RESUMO

Globally, nutrient pollution is a serious and challenging concern. Wastewater treatment plants (WWTPs) are designed to prevent the discharge of contaminants resulting from anthropogenic sources to the receiving water bodies. In this study, seasonal nutrient pollution load, and biological nutrient removal efficiency of an anoxic aerobic unit based WWTP were investigated. Seasonal assessment revealed that the average total nitrogen removal efficiency and total phosphorus removal efficiency of the WWTP do not meet the discharge standard of 10 mg/L and 1 mg/L, respectively. Furthermore, the WWTP does not utilize the energy contained in the wastewater. In this regard, dual chamber MFC (D-MFC) has emerged as a promising solution that can not only treat wastewater but can also convert chemical energy present in the wastewater into electrical energy. However, higher N O3- (57 ± 4 mg/L) and P-P O43- (6 ± 0.52 mg/L) concentration in cathodic effluent is a major drawback in D-MFC. Therefore, to solve this issue, D-MFC was transformed into a microbial nutrient recovery cell (MNRC) which demonstrated a final N H4+-N and P-P O43- concentration of nearly 1 mg/L with N H4+-N and P-P O43- recovery up to 74 % and 69 %, respectively in the recovery chamber. Besides, MNRC attained a maximum power density of 307 mW/m3 and a current density of 1614 mA/m3, thus indicating MNRC is an eco-friendly, energy-neutral, and promising technology for electricity generation and recovering nutrients.


Assuntos
Nitrogênio , Nutrientes , Fósforo , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
3.
J Environ Manage ; 367: 121966, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068783

RESUMO

In this study, Co3O4@MoS2 is prepared as anodic catalytic material for microbial fuel cells (MFCs). As the mass fraction of MoS2 is 20%, the best performance of Co3O4@MoS2 composite catalytic material is achieved, and the addition of MoS2 enhances both the electrical conductivity and catalytic performance of the composite catalyst. Through the structural characterization of Co3O4@MoS2 composite catalytic material, nanorod-like Co3O4 and lamellar MoS2 interweaved and stacked each other, and the agglomeration of Co3O4 is weakened. Among the four groups of single-chamber MFCs constructed, the Co3O4@MoS2-MFC shows the best power production performance with a maximum stable output voltage of to 539 mV and a maximum power density of up to 2221 mW/m2. Additionally, the ammonia nitrogen removal rate of the MFCs loaded with catalysts is enhanced by about 10% compared with the blank carbon cloth MFC. Overall, the findings suggest that Co3O4@MoS2 composite catalysts can significantly improve the performance of MFCs, making them more effective for both energy production and wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica , Molibdênio , Molibdênio/química , Catálise , Dissulfetos/química , Cobalto/química , Óxidos/química , Eletrodos
4.
Small ; 19(46): e2303716, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37475506

RESUMO

Harvesting electrical energy from water and moisture has emerged as a novel ecofriendly energy conversion technology. Herein, a multifunctional asymmetric polyaniline/carbon nanotubes/poly(vinyl alcohol) (APCP) that can produce electric energy from both saline water and moisture and generate fresh water simultaneously is developed. The constructed APCP possesses a negatively charged porous structure that allows continuous generation of protons and ion diffusion through the material, and a hydrophilicity-hydrophobic interface which results in a constant potential difference and sustainable output. A single APCP can maintain stable output for over 130 h and preserve a high voltage of 0.61 V, current of 81 µA, and power density of 82.4 µW cm-3 with 0.15 cm3 unit size in the water-induced electricity generation process. When harvesting moisture energy, the APCP creates dry-wet asymmetries and triggers the spontaneous development of electrical double layer with a current density of 1.25 mA cm-3 , sufficient to power small electronics. A device consisting of four APCP can generate stable electricity of 3.35 V and produce clean water with an evaporation rate of 2.06 kg m-2  h-1 simultaneously. This work provides insights into the fabrication of multifunctional fabrics for multisource energy harvesting and simultaneous solar steam generation.

5.
Biotechnol Bioeng ; 120(8): 2242-2252, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337921

RESUMO

The power performance of the bio-electrochemical fuel cells (BEFCs) depends mainly on the energy harvesting ability of the anode material. The anode materials with low bandgap energy and high electrochemical stability are highly desirable in the BEFCs. To address this issue, a novel anode is designed using indium tin oxide (ITO) modified by chromium oxide quantum dots (CQDs). The CQDs were synthesized using facile and advanced pulsed laser ablation in liquid (PLAL) technique. The combination of ITO and CQDs improved the optical properties of the photoanode by exhibiting a broad range of absorption in the visible to UV region. A systematic study has been performed to optimize the amount of CQDs and green Algae (Alg) film grown using the drop casting method. Chlorophyll (a, b, and total) content of algal cultures (with different concentrations) were optimized to investigate the power generation performance of each cell. The BEFC cell (ITO/Alg10/Cr3//Carbon) with optimized amounts of Alg and CQDs demonstrated enhanced photocurrent generation of 120 mA cm-2 at a photo-generated potential of 24.6 V m-2 . The same device exhibited a maximum power density of 7 W m-2 under continuous light illumination. The device also maintained 98% of its initial performance after 30 repeated cycles of light on-off measurements.


Assuntos
Clorófitas , Pontos Quânticos , Pontos Quânticos/química , Eletricidade , Carbono
6.
Int Microbiol ; 26(4): 741-756, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36680697

RESUMO

Photosynthetic microbial fuel cell (PMFC) is a novel technology, which employs organic pollutants and organisms to produce electrons and biomass and capture CO2 by bio-reactions. In this study, a new PMFC was developed based on Synechococcus sp. as a biocathode, and dairy wastewater was used in the anode chamber. Different experiments including batch feed mode, semi-continuous feed mode, Synechococcus feedstock to the anode chamber, Synechococcus-Chlorella mixed system, the feedstock of treated wastewater to the cathode chamber, and use of extra nutrients in the anodic chamber were performed to investigate the behavior of the PMFC system. The results indicated that the PMFC with a semi-continuous feed mode is more effective than a batch mode for electricity generation and pollutant removal. Herein, maximum power density, chemical oxygen demand removal, and Coulombic efficiency were 6.95 mW/m2 (450 Ω internal resistance), 62.94, and 43.16%, respectively, through mixing Synechococcus sp. and Chlorella algae in the batch-fed mode. The maximum nitrate and orthophosphate removal rates were 98.83 and 68.5%, respectively, wherein treated wastewater in the anode was added to the cathode. No significant difference in Synechococcus growth rate was found between the cathodic chamber of PMFC and the control cultivation cell. The heating value of the biocathode biomass at maximum Synechococcus growth rate (adding glucose into the anode chamber) was 0.2235 MJ/Kg, indicating the cell's high ability for carbon dioxide recovery. This study investigated not only simultaneous bioelectricity production and dairy wastewater in a new PMFC using Synechococcus sp. but also studied several operational parameters and presented useful information about their effect on PMFC performance.


Assuntos
Fontes de Energia Bioelétrica , Chlorella , Synechococcus , Purificação da Água , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Eletricidade , Purificação da Água/métodos
7.
Nanotechnology ; 35(9)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38029451

RESUMO

An electrical application of green synthesized silver nanoparticles (Ag NPs) by developing a unique bio-electrochemical cell (BEC) has been addressed in the report. Here, garlic extract (GE) has been used as a reducing agent to synthesize Ag NPs, and as a bio-electrolyte solution of BEC. Ag NPs successfully formed into face-centered cubic structures with average crystallite and particle sizes of 8.49 nm and 20.85 nm, respectively, according to characterization techniques such as the UV-vis spectrophotometer, XRD, FTIR, and FESEM. A broad absorption peak at 410 nm in the UV-visible spectra indicated that GE played a vital role as a reducing agent in the transformation of Ag+ions to Ag NPs. After that four types of BEC were developed by varying the concentration of GE, CuSO4. 5H2O, and Ag NPs electrolyte solution. The open circuit voltage and short circuit current of all cells were examined with the time duration. Moreover, different external loads (1 Ω, 2 Ω, 5 Ω, and 6 Ω) were used to investigate the load voltage and load current of BEC. The results demonstrated that the use of Ag NPs on BEC played a significant role in increasing the electrical performance of BEC. The use of GE-mediated Ag NPs integrated the power, capacity, voltage efficiency, and energy efficiency of BEC by decreasing the internal resistance and voltage regulation. These noteworthy results can take a frontier forward to the development of nanotechnology for renewable and low-cost power production applications.


Assuntos
Alho , Nanopartículas Metálicas , Prata/química , Alho/metabolismo , Nanopartículas Metálicas/química , Substâncias Redutoras , Antioxidantes/química , Eletrólitos , Extratos Vegetais/química
8.
Environ Res ; 236(Pt 1): 116702, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37490976

RESUMO

Environmental pollution and energy crisis have recently become one of the major global concerns. Insincere discharge of massive amount of organic and inorganic wastes into the aqueous bodies causes serious impact on our environment. However, these organic substances are significant sources of carbon and energy that could be sustainably utilized rather than being discarded. Photocatalytic fuel cell (PFC) is a smart and novel energy conversion device that has the ability to achieve dual benefits: degrading the organic contaminants and simultaneously generating electricity, thereby helping in environmental remediation. This article presents a detailed study of the recent advancements in the development of PFC systems and focuses on the fundamental working principles of PFCs. The degradation of various common organic and inorganic contaminants including dyes and antibiotics with simultaneous power generation and hydrogen evolution has been outlined. The impact of various operational factors on the PFC activity has also been briefly discussed. Moreover, it provides an overview of the design guidelines of the different PFC systems that has been developed recently. It also includes a mention of the materials employed for the construction of the photo electrodes and highlights the major limitations and relevant research scopes that are anticipated to be of interest in the days to come. The review is intended to serve as a handy resource for researchers and budding scientists opting to work in this area of PFC devices.


Assuntos
Poluentes Ambientais , Eletricidade , Águas Residuárias , Carbono , Poluição Ambiental
9.
Nano Lett ; 22(8): 3266-3274, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35416042

RESUMO

As a novel energy harvesting method, generating electricity from the interaction of liquid-solid interface has attracted growing interest. Although several functional materials have been carried out to improve the performance of the flow-induced hydrovoltaic generators, there are few reports on influencing the droplet flow behavior to excavate its electricity generation by governing the device structure. Here, the output performance of the graphene microfluidic channel (GMC) structure is ∼13 times higher than that of the flat-open space graphene morphology. The strong slip flow and high surface charge density near the graphene-droplet interface originate from the GMC structure, which produces an effective liquid-solid interaction and rapid relative movement of the droplet. Additionally, based on the GMC structure a self-powered pressure sensor is designed. The droplet motion is regulated by external forces to generate specific voltages, which provide a new approach for the development of wearable self-powered electronics.


Assuntos
Grafite , Fontes de Energia Elétrica , Eletricidade , Eletrônica , Microfluídica
10.
J Environ Manage ; 342: 118299, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37269721

RESUMO

Swine wastewater, characterized by high organic and nutrient content, poses significant environmental challenges. This study aims to compare the effectiveness of two treatment technologies, namely Vertical Flow Constructed Wetland-Microbial Fuel Cell (VFCW-MFC) and Vertical Flow Constructed Wetland (VFCW), in terms of pollutant removal, electricity generation, and microorganism community dynamics. The results showed that the average removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen, total nitrogen (TN), total phosphorus (TP) and sulfadiazine antibiotics (SDZ) by VFCW-MFC were as high as 94.15%, 95.01%, 42.24%, 97.16% and 82.88%, respectively, which were all higher than that by VFCW. Both VFCW-MFC and VFCW have good tolerance to SDZ. In addition, VFCW-MFC has excellent electrical performance, with output voltage, power density, coulombic efficiency and net energy recovery up to 443.59 mV, 51.2 mW/m3, 52.91% and 2.04 W/(g·s), respectively, during stable operation. Moreover, the microbial community diversity of VFCW-MFC was more abundant, and the species abundance distribution in cathode region was more rich and even than in anode region. At phylum level, the dominant microorganisms in VFCW-MFC included Proteobacteria, Bacteroidota, Firmicutes and Actinobacteriota, which showed good degradation effect on SDZ. Proteobacteria and Firmicutes are also involved in electricity production. Chloroflexi, Proteobacteria and Bacteroidota play a major role in nitrogen reduction.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Ambientais , Animais , Suínos , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Áreas Alagadas , Eletricidade , Eletrodos , Nitrogênio/metabolismo
11.
Molecules ; 28(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687026

RESUMO

A wastewater treatment system has been established based on sulfate-reducing and sulfide-oxidizing processes for treating organic wastewater containing high sulfate/sulfide. The influence of COD/SO42- ratio and hydraulic retention time (HRT) on removal efficiencies of sulfate, COD, sulfide and electricity generation was investigated. The continuous operation of the treatment system was carried out for 63 days with the optimum COD/SO42- ratio and HRT. The result showed that the COD and sulfate removal efficiencies were stable, reaching 94.8 ± 0.6 and 93.0 ± 1.3% during the operation. A power density level of 18.0 ± 1.6 mW/m2 was obtained with a sulfide removal efficiency of 93.0 ± 1.2%. However, the sulfide removal efficiency and power density decreased gradually after 45 days. The results from scanning electron microscopy (SEM) with an energy dispersive X-ray (EDX) show that sulfur accumulated on the anode, which could explain the decline in sulfide oxidation and electricity generation. This study provides a promising treatment system to scale up for its actual applications in this type of wastewater.

12.
J Environ Sci (China) ; 130: 212-222, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37032037

RESUMO

Methane has been demonstrated to be a feasible substrate for electricity generation in microbial fuel cells (MFCs) and denitrifying anaerobic methane oxidation (DAMO). However, these two processes were evaluated separately in previous studies and it has remained unknown whether methane is able to simultaneously drive these processes. Here we investigated the co-occurrence and performance of these two processes in the anodic chamber of MFCs. The results showed that methane successfully fueled both electrogenesis and denitrification. Importantly, the maximum nitrate removal rate was significantly enhanced from (1.4 ± 0.8) to (18.4 ± 1.2) mg N/(L·day) by an electrogenic process. In the presence of DAMO, the MFCs achieved a maximum voltage of 610 mV and a maximum power density of 143 ± 12 mW/m2. Electrochemical analyses demonstrated that some redox substances (e.g. riboflavin) were likely involved in electrogenesis and also in the denitrification process. High-throughput sequencing indicated that the methanogen Methanobacterium, a close relative of Methanobacterium espanolae, catalyzed methane oxidation and cooperated with both exoelectrogens and denitrifiers (e.g., Azoarcus). This work provides an effective strategy for improving DAMO in methane-powered MFCs, and suggests that methanogens and denitrifiers may jointly be able to provide an alternative to archaeal DAMO for methane-dependent denitrification.


Assuntos
Fontes de Energia Bioelétrica , Euryarchaeota , Metano , Desnitrificação , Reatores Biológicos/microbiologia , Anaerobiose , Eletricidade , Oxirredução
13.
Angew Chem Int Ed Engl ; 62(19): e202300390, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36912576

RESUMO

The traditional technologies for industrial and agricultural effluent treatment are often energy-intensive. Herein, we suggest an electrochemical redox strategy for spontaneous and simultaneous decontamination of wastewater and generation of both fuels and electricity at low cost. Using hydrazine and nitrate effluents as a demonstration, we propose a hydrazine-nitrate flow battery (HNFB) that can efficiently purify the wastewater and meanwhile generate both ammonia fuel and electricity with the assistance of our developed bimetallic RuCo precatalyst. Specifically, the battery delivers a peak power density of 12 mW cm-2 and continuously operates for 20 h with an ammonia yield rate of ca. 0.38 mmol h-1 cm-2 under 100 mA cm-2 . The generated electricity can further drive a hydrazine electrolyzer to produce hydrogen fuel. Our work provides an alternative pathway to purify wastewater and generate high value-added fuels at low cost.

14.
Environ Sci Technol ; 56(4): 2562-2571, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35112834

RESUMO

NO3- is an undesirable environmental pollutant that causes eutrophication in aquatic ecosystems, and its pollution is difficult to eliminate because it is easily converted into NH4+ instead of N2. Additionally, it is a high-energy substance. Herein, we propose a novel denitrification fuel cell to realize the chemical energy recovery of NO3- and simultaneous conversion of total nitrogen (TN) into N2 based on the outstanding ability of NH4+ generation on a three-dimensional copper nanowire (CNW)-modified copper foam (CF) cathode (CNW@CF). The basic steps are as follows: direct and highly selective reduction of NO3- to NH4+ rather than to N2 on the CNW@CF cathode, on which negative NO3- ions can be easily adsorbed due to their double-electron layer structure and active hydrogen ([H]) can be generated due to a large number of catalytic active sites exposed on CNWs. Then, NH4+ is selectively oxidized to N2 by the strong oxidation of chlorine free radicals (Cl•), which originate from the reaction of chlorine ions (Cl-) by photogenerated holes (h+) and hydroxyl radicals (OH•) under irradiation. Then, the electrons from the oxidation on the photoanode is transferred to the cathode to form a closed loop for external power generation. Owing to the continuous redox loop, NO3- completely reduces to N2, and the released chemical energy is converted into electrical energy. The results indicate that 99.9% of NO3- can be removed in 90 min, and the highest yield of electrical power density reaches 0.973 mW cm-2, of which the nitrate reduction rates on the CNW@CF cathode is 79 and 71 times higher than those on the Pt and CF cathodes, respectively. This study presents a novel and robust energy recycling concept for treating nitrate-rich wastewater.


Assuntos
Nanofios , Nitratos , Cloro , Cobre , Desnitrificação , Ecossistema , Eletrodos , Nitratos/química , Nitrogênio/análise , Óxidos de Nitrogênio , Águas Residuárias
15.
Environ Res ; 205: 112467, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863983

RESUMO

Water pollution is a global issue that has drastically increased in recent years due to rapid industrial development. Different technologies have been designed for the removal of pollutants from wastewater. However, most of these techniques are expensive, generate new waste, and focus solely on metal removal instead of metal recovery. In this study, novel facultative exoelectrogenic strains designated Castellaniella sp. A5, Castellaniella sp. B3, and Castellaniella sp. A3 were isolated from a microbial fuel cell (MFC). These isolates were utilized as pure and mixed culture inoculums in a bioelectrochemical system (BES) to produce bioelectricity and treat simulated industrial wastewater. A single-chamber MFC inoculated with the mixed culture attained the highest electricity generation (i.e., 320 mW/m2 power density and 3.19 A/m2 current density), chemical oxygen demand removal efficiency (91.15 ± 0.05%), and coulombic efficiency (54.81 ± 4.18%). In addition, the BES containing biofilms of the mixed culture achieved the highest Cu, Cr, and Cd removal efficiencies of 99.89 ± 0.07%, 99.59 ± 0.53%, and 99.91 ± 0.04%, respectively. The Cr6+ and Cu2+ in the simulated industrial wastewater were recovered via microbial electrochemical reduction as Cr3+ and Cu0, respectively. However, Cd2+ precipitated as Cd (OH)2 or CdCO3 on the surface of the cathodes. These results suggest that a mixed culture inoculum of Castellaniella sp. A5, Castellaniella sp. B3, and Castellaniella sp. A3 has great potential as a biocatalyst in BES for heavy metals recovery from industrial wastewater.


Assuntos
Fontes de Energia Bioelétrica , Metais Pesados , Eletricidade , Eletrodos , Águas Residuárias
16.
Environ Res ; 210: 112963, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35217013

RESUMO

Microbial fuel cell (MFC) is a bio-electrochemical system that utilizes the activity of electrogenic bacteria to generate electricity. When wastewater is used as feed in MFC, its organic constituents are hydrolyzed and oxidized by the bacteria. Hence, this technology is a source of clean electricity while simultaneously treating wastewater. Over the years much research has been done to improve its efficiency as well as to reduce the cost of implementation and functioning. However, scalability and commercialization of this technology still faces several challenges. This mini review discusses the use of ceramics in MFCs using wastewater feed as a method of overcoming the current technological challenges. Ceramics can be used as separators, chassis or electrode, conferring facile chemical and structural stability. The material is low-cost, environment-friendly and easily available. Studies reporting stacked configurations have been mentioned, and those that have reported field studies and technology oriented practical applications. Critical analysis of the scalability of the use of ceramics for the dual purpose of electricity generation as well as wastewater treatment has been done in this review. Future research directives towards potential sustainable commercialization have also been mentioned. C-MFC is a promising technology and the primary aim of this review is to help enhance the knowledge base for the optimization of use of ceramics in MFC to achieve large-scale clean electricity generation and sewage treatment.


Assuntos
Fontes de Energia Bioelétrica , Bactérias , Fontes de Energia Bioelétrica/microbiologia , Cerâmica , Eletricidade , Eletrodos , Águas Residuárias
17.
Environ Res ; 206: 112605, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34958780

RESUMO

Tetracycline hydrochloride (TCH) is a typical antibiotic pollutant with high toxicity and persistence. The degradation of TCH and the generation of the associated electron mediator in a dual chamber microbial fuel cells (MFCs) were studied. The results of liquid chromatography revealed that TCH could be effectively removed (>93%) in MFCs mode. The maximum COD removal was 88.14 ± 1.47% in MFCs while it was 69.57 ± 1.36% in open circuit MFCs. According to cyclic voltammetry, the presence of the relevant redox peaks clearly suggested that the intermediates from TCH degradation could act as endogenous electron mediator. The highest power density of 120.02 ± 2.76 mW/m2 and the lowest internal resistance of 18.68 Ω were achieved in MFC with 2 mg/L of TCH. Microbial community analysis illustrated that Bacteroides, Comamonas, Clostridium_sensu_stricto, Desulfovibrio and Geobacter were enriched and played a dominant role in TCH degradation and power generation. Electrochemical active bacteria had certain tolerance to TCH and the inhibiting threshold value of TCH was below 5 mg/L. This study provided a new thinking that low concentration of TCH could produce electron mediators to improve the performance of MFC system.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Elétrons , Tetraciclina
18.
Bioprocess Biosyst Eng ; 45(5): 877-890, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35166901

RESUMO

Low electricity generation efficiency is one of the key issues that must be addressed for the practical application of microbial fuel cells (MFCs). Modification of microbial electrode materials is an effective method to enhance electron transfer. In this study, magnetite (Fe3O4) nanoparticles synthesized by co-precipitation were added to anode chambers in different doses to explore its effect on the performance of MFCs. The maximum power density of the MFCs doped with 4.5 g/L Fe3O4 (391.11 ± 9.4 mW/m2) was significantly increased compared to that of the undoped MFCs (255.15 ± 24.8 mW/m2). The COD removal efficiency of the MFCs increased from 85.8 ± 2.8% to 95.0 ± 2.1%. Electrochemical impedance spectroscopy and cyclic voltammetry tests revealed that the addition of Fe3O4 nanoparticles enhanced the biocatalytic activity of the anode. High-throughput sequencing results indicated that 4.5 g/L Fe3O4 modified anodes enriched the exoelectrogen Geobacter (31.5%), while control MFCs had less Geobacter (17.4%). Magnetite is widely distributed worldwide, which provides an inexpensive means to improve the electrochemical performance of MFCs.


Assuntos
Fontes de Energia Bioelétrica , Nanopartículas , Eletricidade , Eletrodos , Óxido Ferroso-Férrico
19.
J Environ Manage ; 314: 115062, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35436710

RESUMO

The packed anode bioelectrochemical system (Pa-BES) developed in this study is a type of BES that introduces waste gas into a cathode and then into an anode, thereby providing the cathode with sufficient oxygen and reducing the amount of oxygen to the anode to promote the output of electricity. When the empty-bed residence time was 45 s and the liquid flowrate was 35 mL/s, the system achieved optimal performance. Under these conditions, removal efficiency, mineralization efficiency, voltage output, and power density were 93.86%, 93.37%, 296.3 mV, and 321.12 mW/m3, respectively. The acetone in the waste gas was almost completely converted into carbon dioxide, indicating that Pa-BES can effectively remove acetone and has the potential to be used in practical situations. A cyclic voltammetry analysis revealed that the packings exhibited clear redox peaks, indicating that the Pa-BES has outstanding biodegradation and power generation abilities. Through microbial community dynamics, numerous organics degraders, electrochemically active bacteria, nitrifying and denitrifying bacteria were found, and the spatial distribution of these microbes were identified. Among them, Xanthobacter, Bryobacter, Mycobacteriums and Terrimonawas were able to decompose acetone or other organic substances, with Xanthobacter dominating. Bacterium_OLB10 and Ferruginibacter are the electrochemically active bacteria in Pa-BES, while Ferruginibacter is the most abundant in the main anode, which is responsible for electron collection and transfer.


Assuntos
Fontes de Energia Bioelétrica , Acetona , Eletricidade , Eletrodos , Gases , Oxigênio
20.
J Environ Manage ; 316: 115060, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35588672

RESUMO

To combat climate change, reducing carbon emissions from coal consumption in the power sector can be an effective strategy. We developed a price-exogenous mixed integer linear optimization model satisfying both traditional timber demand in Georgia and its neighboring states (Alabama, Florida, North Carolina, South Carolina, and Tennessee) and additional bioenergy demand to replace coal in the power plants of Georgia for 50 years, maximizing social welfare. We used Forest Inventory & Analysis unit level yield of five forest types (planted softwood, natural softwood, upland hardwood, bottomland hardwood, and mixed forest), timber demand, and price information, and developed three scenarios. In the Baseline scenario, traditional annual timber demand (152 million tons of wood) was satisfied with no coal replacement. In Scenario 1, 100% coal (7.34 million tons annually) was replaced using pulpwood only, along with traditional demand. In Scenario 2, also with traditional demand, 100% coal was replaced using pulpwood and logging residues. It would require approximately 336 and 98 thousand acres of additional annual timberland harvested in Scenario 1 and Scenario 2, respectively, compared to Baseline (1280 thousand acres). During 50 years, a total of 9.3, 10.2, and 9.6 billion tons of timber was produced in Baseline, Scenario 1, and Scenario 2, respectively. About one-third of all torrefaction plants would be located in the central region of Georgia. The net change in stand carbon was positive in all three scenarios-the highest in Baseline (1330 million tons C), followed by Scenario 2 (1261 million tons C), and the lowest in Scenario 1 (872 million tons C). About 240 million tons of carbon was avoided by using biomass instead of coal in Scenario 1 and Scenario 2. In Baseline, with continued emission from coal usage in the power plant for 50 years (285 million tons C), net carbon benefit was 1046 million tons C. Replacing 100% of coal with both pulpwood and logging residues provided a net benefit of 1501 million tons C, about 43% higher compared to baseline.


Assuntos
Carbono , Carvão Mineral , Biomassa , Florestas , Georgia , Centrais Elétricas , Programação Linear , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA