Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Phys ; 6(1): 344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665414

RESUMO

Traditional Joule dissipation omnipresent in today's electronic devices is well understood while the energy loss of the strongly interacting electron systems remains largely unexplored. Twisted bilayer graphene (tBLG) is a host to interaction-driven correlated insulating phases, when the relative rotation is close to the magic angle (1.08∘). We report on low-temperature (5K) nanomechanical energy dissipation of tBLG measured by pendulum atomic force microscopy (p-AFM). The ultrasensitive cantilever tip acting as an oscillating gate over the quantum device shows dissipation peaks attributed to different fractional fillings of the flat energy bands. Local detection allows to determine the twist angle and spatially resolved dissipation images showed the existence of hundred-nanometer domains of different doping. Application of magnetic fields provoked strong oscillations of the dissipation signal at 3/4 band filling, identified in analogy to Aharonov-Bohm oscillations, a wavefunction interference present between domains of different doping and a signature of orbital ferromagnetism.

2.
NPJ 2D Mater Appl ; 7(1): 2, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665487

RESUMO

The presence of metal atoms at the edges of graphene nanoribbons (GNRs) opens new possibilities toward tailoring their physical properties. We present here formation and high-resolution characterization of indium (In) chains on the edges of graphene-supported GNRs. The GNRs are formed when adsorbed hydrocarbon contamination crystallizes via laser heating into small ribbon-like patches of a second graphitic layer on a continuous graphene monolayer and onto which In is subsequently physical vapor deposited. Using aberration-corrected scanning transmission electron microscopy (STEM), we find that this leads to the preferential decoration of the edges of the overlying GNRs with multiple In atoms along their graphitic edges. Electron-beam irradiation during STEM induces migration of In atoms along the edges of the GNRs and triggers the formation of longer In atom chains during imaging. Density functional theory (DFT) calculations of GNRs similar to our experimentally observed structures indicate that both bare zigzag (ZZ) GNRs as well as In-terminated ZZ-GNRs have metallic character, whereas in contrast, In termination induces metallicity for otherwise semiconducting armchair (AC) GNRs. Our findings provide insights into the creation and properties of long linear metal atom chains at graphitic edges.

3.
Npj Flex Electron ; 6(1): 73, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990769

RESUMO

Due to the emergence of various new infectious (viral/bacteria) diseases, the remote surveillance of infected persons has become most important, especially if hospitals need to isolate infected patients to prevent the spreading of pathogens to health care personnel. Therefore, we develop a remote health monitoring system by integrating a stretchable asymmetric supercapacitor (SASC) as a portable power source with sensors that can monitor the human physical health condition in real-time and remotely. An abnormal body temperature and breathing rate could indicate a person's sickness/infection status. Here we integrated FePS3@graphene-based strain sensor and SASC into an all-in-one textile system and wrapped it around the abdomen to continuously monitor the breathing cycle of the person. The real body temperature was recorded by integrating the temperature sensor with the SASC. The proposed system recorded physiological parameters in real-time and when monitored remotely could be employed as a screening tool for monitoring pathogen infection status.

4.
Nat Electron ; 5(6): 356-366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783488

RESUMO

Electronic devices based on two-dimensional semiconductors suffer from limited electrical stability because charge carriers originating from the semiconductors interact with defects in the surrounding insulators. In field-effect transistors, the resulting trapped charges can lead to large hysteresis and device drifts, particularly when common amorphous gate oxides (such as silicon or hafnium dioxide) are used, hindering stable circuit operation. Here, we show that device stability in graphene-based field-effect transistors with amorphous gate oxides can be improved by Fermi-level tuning. We deliberately tune the Fermi level of the channel to maximize the energy distance between the charge carriers in the channel and the defect bands in the amorphous aluminium gate oxide. Charge trapping is highly sensitive to the energetic alignment of the Fermi level of the channel with the defect band in the insulator, and thus, our approach minimizes the amount of electrically active border traps without the need to reduce the total number of traps in the insulator.

5.
Light Sci Appl ; 9: 98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32549978

RESUMO

Owing to the tremendous demands for high-resolution pixel-scale thin lenses in displays, we developed a graphene-based ultrathin square subpixel lens (USSL) capable of electrically tuneable focusing (ETF) with a performance competitive with that of a typical mechanical refractive lens. The fringe field due to a voltage bias in the graphene proves that our ETF-USSL can focus light onto a single point regardless of the wavelength of the visible light-by controlling the carriers at the Dirac point using radially patterned graphene layers, the focal length of the planar structure can be adjusted without changing the curvature or position of the lens. A high focusing efficiency of over 60% at a visible wavelength of 405 nm was achieved with a lens thickness of <13 nm, and a change of 19.42% in the focal length with a 9% increase in transmission was exhibited under a driving voltage. This design is first presented as an ETF-USSL that can be controlled in pixel units of flat panel displays for visible light. It can be easily applied as an add-on to high resolution, slim displays and provides a new direction for the application of multifunctional autostereoscopic displays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA