Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(46): e202400755, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38860741

RESUMO

Historically, cerium has been attractive for pharmaceutical and industrial applications. The cerium atom has the unique ability to cycle between two chemical states (Ce(III) and Ce(IV)) and drastically adjust its electronic configuration: [Xe] 4f15d16s2 in response to a chemical reaction. Understanding how electrons drive chemical reactions is an important topic. The most direct way of probing the chemical and electronic structure of materials is by X-ray absorption spectroscopy (XAS) or X-ray absorption near-edge structure (XANES) in high energy resolution fluorescence detection (HERFD) mode. Such measurements at the Ce L3 edge have the advantage of a high penetration depth, enabling in-situ reaction studies in a time-resolved manner and investigation of material production or material performance under specific conditions. But how much do we understand Ce L3 XANES? This article provides an overview of the information that can be extracted from experimental Ce L3 XAS/XANES/HERFD data. A collection of XANES data recorded on various cerium systems in HERFD mode is presented here together with detailed discussions on data analysis and the current status of spectral interpretation, including electronic structure calculations.

2.
Chemistry ; 30(4): e202301846, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37721802

RESUMO

The tremendous importance of dirhodium paddlewheel complexes for asymmetric catalysis is largely the result of an empirical optimization of the chiral ligand sphere about the bimetallic core. It was only recently that a H(C)Rh triple resonance 103 Rh NMR experiment provided the long-awaited opportunity to examine - with previously inconceivable accuracy - how variation of the ligands impacts on the electronic structure of such catalysts. The recorded effects are dramatic: formal replacement of only one out of eight O-atoms surrounding the metal centers in a dirhodium tetracarboxylate by an N-atom results in a shielding of the corresponding Rh-site of no less than 1000 ppm. The current paper provides the theoretical framework that allows this and related experimental observations made with a set of 19 representative rhodium complexes to be interpreted. In line with symmetry considerations, it is shown that the shielding tensor responds only to the donor ability of the equatorial ligands along the perpendicular principal axis. Axial ligands, in contrast, have no direct effect on shielding but may come into play via the electronic c i s ${cis}$ -effect that they exert onto the neighboring equatorial sites. On top of these fundamental interactions, charge redistribution within the core as well as the electronic t r a n s ${trans}$ -effect of ligands of different donor strengths is reflected in the recorded 103 Rh NMR shifts.

3.
Molecules ; 29(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39274931

RESUMO

We present a computational investigation on the structural arrangements and energetic stabilities of small-size protonated argon clusters, Ar nH +. Using high-level ab initio electronic structure computations, we determined that the linear symmetric triatomic ArH +Ar ion serves as the molecular core for all larger clusters studied. Through harmonic normal-mode analysis for clusters containing up to seven argon atoms, we observed that the proton-shared vibration shifts to lower frequencies, consistent with measurements in gas-phase IRPD and solid Ar-matrix isolation experiments. We explored the sum-of-potentials approach by employing kernel-based machine-learning potential models trained on CCSD(T)-F12 data. These models included expansions of up to two-body, three-body, and four-body terms to represent the underlying interactions as the number of Ar atoms increases. Our results indicate that the four-body contributions are crucial for accurately describing the potential surfaces in clusters with n> 3. Using these potential models and an evolutionary programming method, we analyzed the structural stability of clusters with up to 24 Ar atoms. The most energetically favored Ar nH + structures were identified for magic size clusters at n = 7, 13, and 19, corresponding to the formation of Ar-pentagon rings perpendicular to the ArH +Ar core ion axis. The sequential formation of such regular shell structures is compared to ion yield data from high-resolution mass spectrometry measurements. Our results demonstrate the effectiveness of the developed sum-of-potentials model in describing trends in the nature of bonding during the single proton microsolvation by Ar atoms, encouraging further quantum nuclear studies.

4.
J Comput Chem ; 44(3): 367-380, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35699152

RESUMO

Low-energy spectra of single-molecule magnets (SMMs) are often described by Heisenberg Hamiltonians. Within this formalism, exchange interactions between magnetic centers determine the ground-state multiplicity and energy separation between the ground and excited states. In this contribution, we extract exchange coupling constants (J) for a set of iron (III) binuclear and tetranuclear complexes from all-electron calculations using non-collinear spin-flip time-dependent density functional theory (NC-SF-TDDFT). For 12 binuclear complexes with J-values ranging from -6 to -132 cm-1 , our benchmark calculations using the short-range hybrid ωPBEh functional and 6-31G(d,p) basis set agree well with the experimentally derived values (mean absolute error of 4.7 cm-1 ). For the tetranuclear SMMs, the computed J constants are within 6 cm-1 from the experimentally derived values. We explore the range of applicability of the Heisenberg model by analyzing bonding patterns in these Fe(III) complexes using natural orbitals (NO), their occupations, and the number of effectively unpaired electrons. The results illustrate the efficiency of the spin-flip protocol for computing the exchange couplings and the utility of the NO analysis in assessing the validity of effective spin Hamiltonians.

5.
Chemphyschem ; 24(23): e202300570, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37723124

RESUMO

A water molecule confined inside the C70 fullerene was quantum-mechanically described using a computational approach within the MCTDH framework. Such procedure involves the development of a full-dimensional coupled hamiltonian, with an exact kinetic energy operator, including all rotational, translational and vibrational degrees of freedom of the endofullerene system. In turn, through an effective pairwise potential model, the ground and rotationally excited states of the encapsulated H2 O inside the C70 cage were calculated, and traced back to the isotropic case of the H2 O@C60 endofullerene in order to understand the nature and physical origin of the symmetry breaking observed experimentally in the latter system. Moreover, the computational scheme used here allows to study the quantization of the translational movement of the encapsulated water molecule inside the C70 fullerene, and to investigate the confinement effects in the vibrational energy levels of the H2 O@C70 system.

6.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771050

RESUMO

The history of electronic structure calculations on the endohedral complexes of fullerenes is reviewed. First, the long road to the isolation of new allotropes of carbon that commenced with the seminal organic syntheses involving simple inorganic substrates is discussed. Next, the focus is switched to author's involvement with fullerene research that has led to the in silico discovery of endohedral complexes. The predictions of these pioneering theoretical studies are juxtaposed against the data afforded by subsequent experimental developments. The successes and failures of the old and modern quantum-chemical calculations on endohedral complexes are summarized and their remaining deficiencies requiring further attention are identified.

7.
Molecules ; 28(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067621

RESUMO

In the realm of solid water hydrostructures, helium atoms have a tendency to occupy the interstitial spaces formed within the crystal lattice of ice structures. The primary objective of this study is to examine the stability of various ice crystals when influenced by the presence of He atoms. Presenting a first attempt at a detailed computational description of the whole energy components (guest-water, water-water, guest-guest) in the complete crystal unit cells contributes to enhancing the knowledge available about these relatively unexplored helium-water systems, which could potentially benefit future experiments. For this purpose, two different ice structures were considered: the previously established He@ice II system, and the predicted (but currently nonexistent) He@ice XVII system. One of the main features of these He-filled structures is the stability conferred by the weak van der Waals dispersion forces that occur between the host lattice and the guest atoms, in addition to the hydrogen bonds established among the water molecules. Hence, it is crucial to accurately describe these interactions. Therefore, the first part of this research is devoted examining the performance and accuracy of various semi-local and non-local DFT/DFT-D functionals, in comparison with previous experimental and/or high-level computational data. Once the best-performing DFT functional has been identified, the stability of these empty and He-filled structures, including different number of He atoms within the lattices, is analysed in terms of their structural (lattice deformation), mechanical (pressure compression effects) and energetic properties (binding and saturation energies). In this manner, the potential formation of these structures under zero temperature and pressure conditions can be evaluated, while their maximum storage capacity is also determined. The obtained results reveal that, despite the weak underlying interactions, the He encapsulation has a rather notable effect on both lattice parameters and energetics, and therefore, the guest-host interactions are far from being negligible. Besides, both ice crystals are predicted to remain stable when filled with He atoms, with ice XVII exhibiting a higher capacity for accommodating a larger number of guest atoms within its interstitial spaces.

8.
Molecules ; 28(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36838557

RESUMO

Gd@C82OxHy endohedral complexes for advanced biomedical applications (computer tomography, cancer treatment, etc.) were synthesized using high-frequency arc plasma discharge through a mixture of graphite and Gd2O3 oxide. The Gd@C82 endohedral complex was isolated by high-efficiency liquid chromatography and consequently oxidized with the formation of a family of Gd endohedral fullerenols with gross formula Gd@C82O8(OH)20. Fourier-transformed infrared (FTIR) spectroscopy was used to study the structure and spectroscopic properties of the complexes in combination with the DFTB3 electronic structure calculations and infrared spectra simulations. It was shown that the main IR spectral features are formed by a fullerenole C82 cage that allows one to consider the force constants at the DFTB3 level of theory without consideration of gadolinium endohedral ions inside the carbon cage. Based on the comparison of experimental FTIR and theoretical DFTB3 IR spectra, it was found that oxidation of the C82 cage causes the formation of Gd@C82O28H20, with a breakdown of the integrity of the parent C82 cage with the formation of pores between neighboring carbonyl and carboxyl groups. The Gd@C82O6(OOH)2(OH)18 endohedral complex with epoxy, carbonyl and carboxyl groups was considered the most reliable fullerenole structural model.


Assuntos
Fulerenos , Análise Espectral , Fulerenos/química , Carbono , Isomerismo
9.
Angew Chem Int Ed Engl ; 62(39): e202307218, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37438320

RESUMO

The purely chemical synthesis of fluorine is a spectacular reaction which for more than a century had been believed to be impossible. In 1986, it was finally experimentally achieved, but since then this important reaction has not been further studied and its detailed mechanism had been a mystery. The known thermal stability of MnF4 casts serious doubts on the originally proposed hypothesis that MnF4 is thermodynamically unstable and decomposes spontaneously to a lower manganese fluoride and F2 . This apparent discrepancy has now been resolved experimentally and by electronic structure calculations. It is shown that the reductive elimination of F2 requires a large excess of SbF5 and occurs in the last reaction step when in the intermediate [SbF6 ][MnF2 ][Sb2 F11 ] the addition of one more SbF5 molecule to the [SbF6 ]- anion generates a second tridentate [Sb2 F11 ]- anion. The two tridentate [Sb2 F11 ]- anions then provide six fluorine bridges to the Mn atom thereby facilitating the reductive elimination of the two fluorine ligands as F2 .

10.
Chemistry ; 28(5): e202103142, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34897851

RESUMO

An investigation of pulsed-laser-ablated Zn, Cd and Hg metal atom reactions with HCN under excess argon during co-deposition with laser-ablated Hg atoms from a dental amalgam target also provided Hg emissions capable of photoionization of the CN photo-dissociation product. A new band at 1933.4 cm-1 in the region of the CN and CN+ gas-phase fundamental absorptions that appeared upon annealing the matrix to 20 K after sample deposition, and disappeared upon UV photolysis is assigned to (Ar)n CN+ , our key finding. It is not possible to determine the n coefficient exactly, but structure calculations suggest that one, two, three or four argon atoms can solvate the CN+ cation in an argon matrix with C-N absorptions calculated (B3LYP) to be between 2317.2 and 2319.8 cm-1 . Similar bands were observed in solid krypton at 1920.5, in solid xenon at 1935.4 and in solid neon at 1947.8 cm-1 . H13 CN reagent gave an 1892.3 absorption with shift instead, and a 12/13 isotopic frequency ratio-nearly the same as found for 13 CN+ itself in the gas phase and in the argon matrix. The CN+ molecular ion serves as a useful infrared probe to examine Ng clusters. The following ion reactions are believed to occur here: the first step upon sample deposition is assisted by a focused pulsed YAG laser, and the second step occurs on sample annealing: (Ar)2 + +CN→Ar+CN+ →(Ar)n CN+ .

11.
Sci Technol Adv Mater ; 23(1): 140-160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185390

RESUMO

Since the first report on truly two-dimensional (2D) magnetic materials in 2017, a wide variety of merging 2D magnetic materials with unusual physical characteristics have been discovered and thus provide an effective platform for exploring the associated novel 2D spintronic devices, which have been made significant progress in both theoretical and experimental studies. Herein, we make a comprehensive review on the recent scientific endeavors and advances on the various engineering strategies on 2D ferromagnets, such as strain-, doping-, structural- and electric field-engineering, toward practical spintronic applications, including spin tunneling junctions, spin field-effect transistors and spin logic gate, etc. In the last, we discuss on current challenges and future opportunities in this field, which may provide useful guidelines for scientists who are exploring the fundamental physical properties and practical spintronic devices of low-dimensional magnets.

12.
Molecules ; 27(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268757

RESUMO

Dissolved ions in aqueous media are ubiquitous in many physicochemical processes, with a direct impact on research fields, such as chemistry, climate, biology, and industry. Ions play a crucial role in the structure of the surrounding network of water molecules as they can either weaken or strengthen it. Gaining a thorough understanding of the underlying forces from small clusters to bulk solutions is still challenging, which motivates further investigations. Through a systematic analysis of the interaction energies obtained from high-level electronic structure methodologies, we assessed various dispersion-corrected density functional approaches, as well as ab initio-based data-driven potential models for halide ion-water clusters. We introduced an active learning scheme to automate the generation of optimally weighted datasets, required for the development of efficient bottom-up anion-water models. Using an evolutionary programming procedure, we determined optimized and reference configurations for such polarizable and first-principles-based representation of the potentials, and we analyzed their structural characteristics and energetics in comparison with estimates from DF-MP2 and DFT+D quantum chemistry computations. Moreover, we presented new benchmark datasets, considering both equilibrium and non-equilibrium configurations of higher-order species with an increasing number of water molecules up to 54 for each F, Cl, Br, and I anions, and we proposed a validation protocol to cross-check methods and approaches. In this way, we aim to improve the predictive ability of future molecular computer simulations for determining the ongoing conflicting distribution of different ions in aqueous environments, as well as the transition from nanoscale clusters to macroscopic condensed phases.

13.
Chemphyschem ; 22(2): 204-220, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33351234

RESUMO

Cadmium atoms from laser ablation react with cyanogen, NC=CN, in excess argon during co-deposition at 4 K, and even more on UV irradiation of the cold samples. Final annealing to 35 K increases bands at 2187.3 and 2089.2 cm-1 at the expense of weaker bands at 2194.6 and 2092.2 cm-1 through addition of another cadmium atom. Reaction products were identified by comparison with B3LYP and CCSD(T) computed frequencies and energies, through frequency differences between Zn and Cd products, and by cyanogen isotopic substitution. The CN radical, ZnNC, and CdNC were observed on sample deposition. Hg arc ultraviolet (UV) irradiation activates the insertion of Cd and Zn to form the NCCdCN, CNCdNC, NCZnCN and CNZnNC molecules. Next annealing increased the dimetal products NCCdCdCN, CNCdCdNC, NCZnZnCN, and CNZnZnNC at the expense of their single metal analogs. Laser ablated mercury amalgam also produced NCHgCN, NCHg-HgCN, CNHgNC and CNHg-HgNC. The Group12 metals form both cyanide and isocyanide products, and the argon matrix also traps the higher energy but much more intensely absorbing isocyanides. In the isocyanide case bond polarity results in very intense infrared absorptions. Group 12 metals produce shorter M-M bonds in the dimetal cyanides NCM-MCN and isocyanides CNM-MNC than in the M-M itself, and their computed M-M bond lengths compare favorably with those measured for dimetal complexes stabilized by large ring containing molecular ligands.

14.
Chemphyschem ; 22(4): 359-369, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33368985

RESUMO

The formation of specific clathrate hydrates and their transformation at given thermodynamic conditions depends on the interactions between the guest molecule/s and the host water lattice. Understanding their structural stability is essential to control structure-property relations involved in different technological applications. Thus, the energetic aspects relative to CO2 @sI clathrate hydrate are investigated through the computation of the underlying interactions, dominated by hydrogen bonds and van der Waals forces, from first-principles electronic structure approaches. The stability of the CO2 @sI clathrate is evaluated by combining bottom-up and top-down approaches. Guest-free and CO2 guest-filled aperiodic cages, up to the gradually CO2 occupation of the entire sI periodic unit cells were considered. Saturation, cohesive and binding energies for the systems are determined by employing a variety of density functionals and their performance is assessed. The dispersion corrections on the non-covalent interactions are found to be important in the stabilization of the CO2 @sI energies, with the encapsulation of the CO2 into guest-free/empty cage/lattice being always an energetically favorable process for most of the functionals studied. The PW86PBE functional with XDM or D3(BJ) dispersion corrections predicts a lattice constant in accord to the experimental values available, and simultaneously provides a reliable description for the guest-host interactions in the periodic CO2 @sI crystal, as well as the energetics of its progressive single cage occupancy process. It has been found that the preferential orientation of the single CO2 in the large sI crystal cages has a stabilizing effect on the hydrate, concluding that the CO2 @sI structure is favored either by considering the individual building block cages or the complete sI unit cell crystal. Such benchmark and methodology cross-check studies benefit new data-driven model research by providing high-quality training information, with new insights that indicate the underlying factors governing their structure-driven stability, and triggering further investigations for controlling the stabilization of these promising long-term CO2 storage materials.

15.
Nanotechnology ; 32(29)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33836511

RESUMO

The quantum confinement effect resulting from size reduction drastically alters the electronic structure and optical properties of optoelectronic materials. Quantum confinement in nanomaterials can be efficiently controlled by morphology variation combined characteristics of nanomaterials, such as their size, shape, and spatial organization. In this study, considering indium arsenide (InAs) in tetrahedral semiconductors as an example, we demonstrated the controllable morphology evolution of InAs nanostructures by tuning the growth conditions. We used the atomistic pseudopotential method to investigate the morphology-dependent electronic and optical properties of InAs nanostructures: tapered and uniform nanostructures, including the absorption spectra, single-particle energy levels, distribution and overlap integral of band-edge states, and exciton binding energies. Compared with uniform nanomaterials, a weaker quantum confinement effect was observed in the tapered nanomaterials, because of which tapered InAs nanostructures have a smaller bandgap, larger separation of photoinduced carriers, and smaller exciton binding energy. The absorption spectra of InAs nanostructures also exhibit strong morphology dependence. Our results indicate that morphology engineering can be exploited as a potential approach for modulating the electronic and optoelectronic properties of nanomaterials.

16.
Proc Natl Acad Sci U S A ; 115(31): 7890-7895, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30018065

RESUMO

The lack of a mechanistic framework for chemical reactions forming inorganic extended solids presents a challenge to accelerated materials discovery. We demonstrate here a combined computational and experimental methodology to tackle this problem, in which in situ X-ray diffraction measurements monitor solid-state reactions and deduce reaction pathways, while theoretical computations rationalize reaction energetics. The method has been applied to the La2CuO4-x S x (0 ≤ x ≤ 4) quaternary system, following an earlier prediction that enhanced superconductivity could be found in these new lanthanum copper(II) oxysulfide compounds. In situ diffraction measurements show that reactants containing Cu(II) and S(2-) ions undergo redox reactions, leaving their ions in oxidation states that are incompatible with forming the desired new compounds. Computations of the reaction energies confirm that the observed synthetic pathways are indeed favored over those that would hypothetically form the suggested compounds. The consistency between computation and experiment in the La2CuO4-x S x system suggests a role for predictive theory: to identify and to explicate new synthetic routes for forming predicted compounds.

17.
Sci Technol Adv Mater ; 22(1): 113-123, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33628121

RESUMO

Development of high-performance permanent magnets relies on both the main-phase compound with superior intrinsic magnetic properties and the microstructure effect for the prevention of magnetization reversal. In this article, the microstructure effect is discussed by focusing on the interface between the main phase and an intergranular phase and on the intergranular phase itself. First, surfaces of main-phase grains are considered, where a general trend in the surface termination and its origin are discussed. Next, microstructure interfaces in SmFe12-based magnets are discussed, where magnetic decoupling between SmFe12 grains is found for the SmCu subphase. Finally, general insights into finite-temperature magnetism are discussed with emphasis on the feedback effect from magnetism-dependent phonons on magnetism, which is followed by explanations on atomic arrangements and magnetism of intergranular phases in Nd-Fe-B magnets. Both amorphous and candidate crystalline structures of Nd-Fe alloys are considered. The addition of Cu and Ga to Nd-Fe alloys is demonstrated to be effective in decreasing the Curie temperature of the intergranular phase.

18.
J Comput Chem ; 41(29): 2485-2503, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32864783

RESUMO

The quantum theory of atoms in molecules (QTAIM) provides a theoretical foundation to determine the properties of functional groups through additive atomic contributions. Many studies have used QTAIM in their analyses with a variety of electronic structure methods, but it is unknown if the properties measured using one model chemistry, the combination of the electronic structure method and basis set, can be compared to those measured by another. Here, we evaluate the sensitivity of QTAIM functional group and bond critical point properties using six functionals and seven basis sets. High-level B2PLYPD3-BJ/aug-cc-pV5Z reference values are provided for 116 functional groups and the property sensitivity with respect to these values are evaluated based on absolute deviations and by assessing linear relationships. Functional group properties, including charges, dipoles, quadrupoles and volumes, were found to be mostly insensitive to choice of computational model chemistry. However, due to structural and topological inconsistencies, the 6-31G(d) basis set is not recommended for use. Bond critical point properties varied with choice of model chemistry, but models incorporating hybrid functionals and triple-ζ basis sets provided values suitable for use in regression studies.

19.
J Comput Chem ; 41(3): 184-193, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31646667

RESUMO

Electronic structure calculations representing the molecular orbitals (MOs) with contracted planewave basis functions (CPWBFs) have been reported recently. CPWBFs are Fourier-series representations of atom-centered basis functions. The mathematical features of CPWBFs permit the construction of matrix-vector products, FC o , involving the application of the Fock matrix, F, to the set of occupied MOs, C o , without the explicit evaluation of F. This approach offers a theoretical speed-up of M/n over F-based methods, where M and n are the number of basis functions and occupied MOs, respectively. The present study reports methodological advances that permit FC o -based optimization of wavefunction formed from CPWBFs. In particular, a technique is reported for optimizing wavefunctions by combining pseudodiagonalization techniques based on an exact representation of FC o , approximate information regarding the virtual orbital energies, and direct inversion of the iterative subspace optimization schemes to guide the wavefunction to a converged solution. This method is found to speed-up wavefunction optimizations by factors of up to ~6 - 8 over F-based optimization methods while providing identical results. Further, the computational cost of this technique is relatively insensitive to basis set size, thus providing further benefits in calculations using large CPWBF basis sets. The results of density functional theory calculations show that this method permits the use of hybrid exchange-correlation (XC) functionals with a small increase in effort over analogous calculations using generalized gradient approximation XC functionals. © 2019 Wiley Periodicals, Inc.

20.
Small ; 16(32): e2002296, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32614477

RESUMO

The temperature-dependent tip-induced-motion of a Ga adatom on a GaAs (110) surface is experimentally demonstrated using scanning tunneling microscopy (STM). The surface adsorption energy profile obtained by first-principle electronic structure calculations reveals that the origin of the Ga motion observed at 78 K is attributable to the tip-induced Ga adatom hopping between the most stable potential minima among the three local minima, whereas that observed at 4.2 K is attributable to the tip-induced hopping and sliding motions through the next stable minima as well as the most stable minima. Furthermore, it is shown that a slight progressive modification of the adatom motion observed only at 4.2 K resulting from repeated STM line scans is consistent with the overall picture taking account of the heating of the adatom owing to the tip current.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA