Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 146: 105543, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081574

RESUMO

Multiple in vitro eye irritation methods have been developed and adopted as OECD health effects test guidelines. However, for predicting the ocular irritation/damage potential of agrochemical formulations there is an applicability domain knowledge gap for most of the methods. To overcome this gap, a retrospective evaluation of 192 agrochemical formulations with in vivo (OECD TG 405) and in vitro (OECD TG 437, 438, and/or 492) data was conducted to determine if the in vitro methods could accurately assign United Nations Globally Harmonized System for Classification and Labelling of Chemicals (GHS) eye irritation hazard classifications. In addition, for each formulation the eye irritation classification was derived from the classification of the contained hazardous ingredients and their respective concentration in the product using the GHS concentration threshold (CT) approach. The results herein suggest that the three in vitro methods and the GHS CT approach were highly predictive of formulations that would not require GHS classification for eye irritation. Given most agrochemical formulations fall into this category, methods that accurately identify non-classified agrochemical formulations could significantly reduce the use of animals for this endpoint.


Assuntos
Agroquímicos , Irritantes , Animais , Agroquímicos/toxicidade , Agroquímicos/química , Estudos Retrospectivos , Alternativas aos Testes com Animais , Olho
2.
Altern Lab Anim ; 52(3): 149-154, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606566

RESUMO

In the cosmetics sector, many products such as shampoos have a probability of accidental ocular exposure during their routine use. One very specific safety parameter is the residence time of the substance on the corneal surface, as prolonged exposure may cause injury. In this study, we developed a system that simulates corneal exposure to blinking and tear flow, for comparing the corneal clearance times of viscous detergent formulations. The Ex Vivo Eye Irritation Test (EVEIT), which uses corneal explants from discarded rabbit eyes from an abattoir, was used as the basis for the new system. To simulate blinking, we developed a silicone wiping membrane to regularly move across the corneal surface, under conditions of constant addition and aspiration of fluid, to mimic tear flow. Six shampoo formulations were tested and were shown to differ widely in their corneal clearance time. Three groups could be identified according to the observed clearance times (fast, intermediate and slow); the reference shampoo had the shortest clearance time of all tested formulations. With this new system, it is now possible to investigate an important physicochemical parameter, i.e. corneal clearance time, for the consideration of ocular safety during the development of novel cosmetic formulations.


Assuntos
Piscadela , Córnea , Animais , Coelhos , Córnea/efeitos dos fármacos , Piscadela/efeitos dos fármacos , Alternativas aos Testes com Animais/métodos , Preparações para Cabelo , Lágrimas/efeitos dos fármacos
3.
Cutan Ocul Toxicol ; 43(1): 58-68, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37905558

RESUMO

Many sectors have seen complete replacement of the in vivo rabbit eye test with reproducible and relevant in vitro and ex vivo methods to assess the eye corrosion/irritation potential of chemicals. However, the in vivo rabbit eye test remains the standard test used for agrochemical formulations in some countries. Therefore, two defined approaches (DAs) for assessing conventional agrochemical formulations were developed, using the EpiOcularTM Eye Irritation Test (EIT) [Organisation for Economic Co-operation and Development (OECD) test guideline (TG) 492] and the Bovine Corneal Opacity and Permeability (OECD TG 437; BCOP) test with histopathology. Presented here are the results from testing 29 agrochemical formulations, which were evaluated against the United States Environmental Protection Agency's (EPA) pesticide classification system, and assessed using orthogonal validation, rather than direct concordance analysis with the historical in vivo rabbit eye data. Scientific confidence was established by evaluating the methods and testing results using an established framework that considers fitness for purpose, human biological relevance, technical characterisation, data integrity and transparency, and independent review. The in vitro and ex vivo methods used in the DAs were demonstrated to be as or more fit for purpose, reliable and relevant than the in vivo rabbit eye test. Overall, there is high scientific confidence in the use of these DAs for assessing the eye corrosion/irritation potential of agrochemical formulations.


Assuntos
Opacidade da Córnea , Epitélio Corneano , Humanos , Animais , Bovinos , Coelhos , Olho , Epitélio Corneano/patologia , Agroquímicos/toxicidade , Irritantes/toxicidade , Opacidade da Córnea/induzido quimicamente , Opacidade da Córnea/patologia , Permeabilidade , Alternativas aos Testes com Animais
4.
Cutan Ocul Toxicol ; : 1-9, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38810268

RESUMO

OBJECTIVE: Prototype cosmetic formulations containing short-chain acids and alcohols intended to be applied in the proximity of the eyes are sometimes evaluated for ocular irritation potential using the validated Bovine Corneal Opacity and Permeability Assay (OECD TG 437). We evaluated the eye irritation potential of nine experimental cosmetic formulations designed and prepared by Avon Global Reserach and Development to differ only in the concentrations of Ethanol, Glycolic Acid and Salicylic Acid. METHODS: We analysed the data generated using the BCOP assay. The opacity and permeability values obtained following the exposure of bovine corneas to experimental cosmetic formulations were combined into a single In Vitro Irritancy Score used to rank eye irritation potential. Histopathological examination of treated corneas was used to provide additional information about the depth and degree of the injury and to support the prediction of eye irritation potential of each experimental cosmetic formulation. RESULTS: The In Vitro Irritancy Scores and histopathological analysis showed that experimental formulations containing only Ethanol, Glycolic Acid, or Salicylic Acid alone had, at most, a mild ocular irritation potential. The experimental formulations containing both Ethanol and Glycolic Acid had a mild ocular irritation potential, while the experimental formulations containing both Ethanol and Salicylic Acid had a moderate ocular irritation potential. Severe ocular irritation potential was induced by an experimental formulation containing a combination of Glycolic Acid and Salicylic Acid and it was further accentuated by the addition of Ethanol to the formulation. Our data indicate a possible synergistic effect on eye irritation potential of Ethanol, Glycolic Acid and Salicylic Acid in at least some experimental cosmetic formulations. Further, our results provide insight on an apparent concentration-dependent ocular irritation potential effect of combinations of Glycolic Acid, Salicylic Acid and Ethanol in at least one experimental cosmetic formulation. CONCLUSIONS: The results presented herein emphasise the need to consider in vitro testing of prototype cosmetic formulations containing combinations of Ethanol, Glycolic Acid and Salicylic Acid rather than relying on any predicted additive effect on ocular irritation based solely on previously generated results of similar formulations containing Ethanol, Glycolic Acid or Salicylic Acid alone. Further work is required to understand the significance of these observations and to elucidate the mechanisms responsible for the apparent synergistic effects of Glycolic Acid, Salicylic Acid and Ethanol and eye irritation potential suggested by our results.

5.
AAPS PharmSciTech ; 25(5): 92, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684590

RESUMO

PURPOSE: Dry eye syndrome (DES), arising from various etiologic factors, leads to tear film instability and ocular surface damage. Given its anti-inflammatory effects, cyclosporine A (CsA) has been widely used as a short-term treatment option for DES. However, poor bioavailability and solubility of CsA in aqueous phase make the development of a cyclosporine A-based eye drop for ocular topical application a huge challenge. METHODS: In this study, a novel strategy for preparing cyclosporine A-loaded silk fibroin nanoemulsion gel (CsA NBGs) was proposed to address these barriers. Additionally, the rheological properties, ocular irritation potential, tear elimination kinetics, and pharmacodynamics based on a rabbit dry eye model were investigated for the prepared CsA NBGs. Furthermore, the transcorneal mechanism across the ocular barrier was also investigated. RESULTS: The pharmacodynamics and pharmacokinetics of CsA NBGs exhibited superior performance compared to cyclosporine eye drops, leading to a significant enhancement in the bioavailability of CsA NBGs. Furthermore, our investigation into the transcorneal mechanism of CsA NBGs revealed their ability to be absorbed by corneal epithelial cells via the paracellular pathway. CONCLUSION: The CsA NBG formulation exhibits promising potential for intraocular drug delivery, enabling safe, effective, and controlled administration of hydrophobic drugs into the eye. Moreover, it enhances drug retention within the ocular tissues and improves systemic bioavailability, thereby demonstrating significant clinical translational prospects.


Assuntos
Disponibilidade Biológica , Ciclosporina , Síndromes do Olho Seco , Fibroínas , Géis , Soluções Oftálmicas , Coelhos , Animais , Fibroínas/química , Ciclosporina/administração & dosagem , Ciclosporina/farmacocinética , Ciclosporina/química , Síndromes do Olho Seco/tratamento farmacológico , Soluções Oftálmicas/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Administração Oftálmica , Solubilidade , Masculino , Emulsões/química , Córnea/metabolismo , Córnea/efeitos dos fármacos , Modelos Animais de Doenças
6.
Regul Toxicol Pharmacol ; 137: 105307, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455707

RESUMO

Seven selected parabens (4 allowed, 3 banned in cosmetics) were tested in order to confirm and expand historical data on their toxicological properties and safety. The aim was to apply novel in vitro methods, which have been sufficiently technically and scientifically validated for the purposes of toxicological testing of chemicals. The study included several toxicological endpoints such as skin/eye irritation, skin sensitization, endocrine disruption and genotoxicity. The battery of selected methods comprised regulatory accepted EpiDerm™ skin model (OECD TG 439); EpiOcular™ corneal model (OECD TG 492) and scientifically valid test method HET-CAM (DB-ALM Protocol No. 47); in chemico test DPRA (OECD TG 442C); in vitro test LuSens (OECD TG 442D) and in vitro test h-CLAT (OECD TG 442E); Ames MPF™ (Xenometrix) and XenoScreen YES/YAS (Xenometrix). Overall, none of the 4 allowed parabens exhibited skin/eye irritation or genotoxicity. However, all allowed parabens in cosmetics were predicted as samples with potentially sensitizing properties in the LuSens and h-CLAT test methods, but not confirmed by DPRA. Endocrine disruption was recorded only at high concentrations, whereas methyl paraben and ethyl paraben exhibited the lowest activity. This study confirmed the safety of use of the allowed parabens in the highest recommended concentrations in cosmetics or pharmaceuticals.


Assuntos
Alternativas aos Testes com Animais , Cosméticos , Animais , Alternativas aos Testes com Animais/métodos , Parabenos/toxicidade , Técnicas In Vitro , Pele , Cosméticos/toxicidade
7.
Regul Toxicol Pharmacol ; 141: 105406, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37160199

RESUMO

Here we investigate the suitability of in vitro models to assess the skin and eye irritation potential of six microbial strains. Acute skin irritation was tested according to the unmodified and modified OECD test guideline (OECD TG) 439, while acute eye irritation was examined using the OECD TG 491 and 492. The OECD TG 439 guideline, modified to introduce 8-10 µg/mL of streptomycin during the recovery phase and use of test items containing 100% microbial product instead of finished formulae, was found to be suitable for skin irritation evaluation. On the other hand, the OECD TG 491 procedure was the most appropriate for evaluating eye irritation. None of the six microbial strains, namely, Lactiplantibacillus plantarum (IMI 507026, IMI 507027, IMI 507028), Lacticaseibacillus rhamnosus (IMI 507023), and Pediococcus pentosaceus (IMI 507024, IMI 507025), tested in this study caused skin or eye irritation under the study condition.


Assuntos
Lactobacillales , Dermatopatias , Animais , Irritantes/toxicidade , Alternativas aos Testes com Animais , Pele , Testes de Irritação da Pele
8.
Altern Lab Anim ; 51(3): 204-209, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37184299

RESUMO

An in silico method has been developed that permits the binary differentiation between pure liquids causing serious eye damage or eye irritation, and pure liquids with no need for such classification, according to the UN GHS system. The method is based on the finding that the Hansen Solubility Parameters (HSP) of a liquid are collectively important predictors for eye irritation. Thus, by applying a two-tier approach in which in silico-predicted pKa values (firstly) and a trained model based solely on in silico-predicted HSP data (secondly) were used, we have developed, and validated, a fully in silico approach for predicting the outcome of a Draize test (in terms of UN GHS Cat. 1/Cat. 2A/Cat. 2B or UN GHS No Cat.) with high validation set performance (sensitivity = 0.846, specificity = 0.818, balanced accuracy = 0.832) using SMILES only. The method is applicable to pure non-ionic liquids with molecular weight below 500 g/mol, fewer than six hydrogen bond donors (e.g. nitrogen-hydrogen or oxygen-hydrogen bonds) and fewer than eleven hydrogen bond acceptors (e.g. nitrogen or oxygen atoms). Due to its fully in silico characteristics, this method can be applied to pure liquids that are still at the desktop design stage and not yet in production.


Assuntos
Olho , Testes de Toxicidade , Animais , Solubilidade , Irritantes/toxicidade , Alternativas aos Testes com Animais
9.
Regul Toxicol Pharmacol ; 129: 105126, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35065094

RESUMO

Asterarcys quadricellulare (AQ) is a microalgal species with potential applications in improving the quality of animal feed, and safety studies on this species are lacking. Therefore, this study presents safety data on an industrially cultivated strain of AQ tested using the following Organisation for Economic Co-operation and Development (OECD) guidelines: acute skin irritation in rabbits; skin sensitisation in guinea pigs; acute eye irritation in rabbits; acute oral fixed-dose procedure in rats; and bacterial reverse mutation using the B.N. Ames technique. Results showed that AQ is non-irritant and non-sensitising to skin. AQ caused transient conjunctival lacrimation and redness; however, the scores for these clinical signs translated into low ocular irritation indices and classification of AQ as non-irritant to the eyes. An acute oral dose of AQ (2000 mg/kg) did not cause mortality, change in body weight gain, or any general, functional, and neurobehavioral clinical signs. In five strains of Salmonella typhimurium bacteria, treatment with AQ did not cause biologically or statistically significant changes in the number of revertant colonies, indicating that AQ does not cause mutagenic toxicity. This study demonstrates the safety of a heterotrophically-produced strain of AQ and supports its use as a safe and non-toxic feed ingredient.


Assuntos
Ração Animal/microbiologia , Criação de Animais Domésticos , Clorofíceas , Microalgas , Animais , Relação Dose-Resposta a Droga , Olho/efeitos dos fármacos , Cobaias , Testes de Mutagenicidade , Coelhos , Ratos , Pele/efeitos dos fármacos
10.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012421

RESUMO

Animal research undoubtedly provides scientists with virtually unlimited data but inflicts pain and suffering on animals. Currently, legislators and scientists alike are promoting alternative in vitro approaches allowing for an accurate evaluation of processes occurring in the body without animal sacrifice. Historically, one of the most infamous animal tests is the Draize test, mainly performed on rabbits. Even though this test was considered the gold standard for around 50 years, the Draize test fails to mimic human response mainly due to human and rabbit eye physiological differences. Therefore, many alternative assays were developed to evaluate ocular toxicity and drug effectiveness accurately. Here we review recent achievements in tissue engineering of in vitro 2D, 2.5D, 3D, organoid and organ-on-chip ocular models, as well as in vivo and ex vivo models in terms of their advantages and limitations.


Assuntos
Alternativas aos Testes com Animais , Olho , Animais , Bioensaio , Humanos , Coelhos
11.
Molecules ; 27(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35408724

RESUMO

This study investigates the development of topically applied non-invasive chitosan-nanoparticles (CSNPs) for ocular delivery of tedizolid phosphate (TZP) for the treatment of MRSA-related ocular and orbital infections. An ionic-gelation method was used to prepare TZP-encapsulated CSNPs using tripolyphosphate-sodium (TPP) as cross-linker. Particle characterization was performed by the DLS technique (Zeta-Sizer), structural morphology was observed by SEM. The drug encapsulation and loading were determined by the indirect method. In-vitro release was conducted through dialysis bags in simulated tear fluid (pH 7) with 0.25% Tween-80. Physicochemical characterizations were performed for ocular suitability of CSNPS. An antimicrobial assay was conducted on different strains of Gram-positive bacteria. Eye-irritation from CSNPs was checked in rabbits. Transcorneal flux and apparent permeability of TZP from CSNPs was estimated through excised rabbit cornea. Ionic interaction between the anionic and cationic functional groups of TPP and CS, respectively, resulted in the formation of CSNPs at varying weight ratios of CS/TPP with magnetic stirring (700 rpm) for 4 h. The CS/TPP weight ratio of 3.11:1 with 10 mg of TZP resulted in optimal-sized CSNPs (129.13 nm) with high encapsulation (82%) and better drug loading (7%). Release profiles indicated 82% of the drug was released from the TZP aqueous suspension (TZP-AqS) within 1 h, while it took 12 h from F2 to release 78% of the drug. Sustained release of TZP from F2 was confirmed by applying different release kinetics models. Linearity in the profile (suggested by Higuchi's model) indicated the sustained release property CSNPs. F2 has shown significantly increased (p < 0.05) antibacterial activity against some Gram-positive strains including one MRSA strain (SA-6538). F2 exhibited a 2.4-fold increased transcorneal flux and apparent permeation of TZP as compared to TZP-AqS, indicating the better corneal retention. No sign or symptoms of discomfort in the rabbits' eyes were noted during the irritation test with F2 and blank CSNPs, indicating the non-irritant property of the TZP-CSNPs. Thus, the TZP-loaded CSNPs have strong potential for topical use in the treatment of ocular MRSA infections and related inflammatory conditions.


Assuntos
Quitosana , Nanopartículas , Animais , Quitosana/química , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Organofosfatos , Oxazóis , Tamanho da Partícula , Coelhos , Diálise Renal
12.
Cutan Ocul Toxicol ; 41(3): 264-270, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36037101

RESUMO

Purpose: Of the several selenized yeasts authorised for use as feed additives in the EU, Saccharomyces cerevisiae CNCM I-3060 inactivated' (Sel-Plex®), was the first to be approved for use, in 2006. The additive has a concentration of selenium between 2000 and 2400 mg/kg and a selenomethionine content greater than 63%. Previous toxicological and safety studies have shown Sel-Plex® to be safe for use for target animal species, consumers, users and the environment. A new formulation of Sel-Plex® was recently developed however, with a minimum selenium content of 3000 mg/kg. The increase in selenium in this product, Sel-Plex® 3000, presented the need to assess the risk for workers and users and to establish if there would be any eye and/or skin irritancy and skin sensitisation effects associated with the product. The purpose of this paper is to present the methodology and results of the user safety skin and eye studies performed on Sel-Plex® 3000.Materials & Methods: In vitro skin and eye models were used to assess skin and eye irritancy, while skin sensitisation was examined using an in vivo method. The acute eye irritation was evaluated using a Reconstructed human Cornea-like Epithelium (RhCE) model, which followed the OECD guideline 492. The skin irritation was assessed based on its ability to induce cell death in a commercial reconstructed human epidermis (RhE) model (EPISKIN™) according to the OECD Guideline No. 439. The skin sensitising potential was evaluated in the Guinea pig in line with OECD Guideline 406, and measured the extent and degree of skin reaction to a challenge exposure following previous topical exposure of a substance on the skin.Results: The skin and eye irritation test results showed that Sel-Plex® 3000 was a non-irritant in both cases. The skin sensitisation study showed that the additive did not generate a sensitisation response in the guinea pig and should not be considered a skin sensitiser.Conclusion: These results indicate that Sel-Plex® 3000 is safe to use for workers in an industrial setting when handling the product and the studies may be further used to support regulatory compliance in respective markets.


Assuntos
Selênio , Dermatopatias , Animais , Epiderme , Cobaias , Humanos , Irritantes , Saccharomyces cerevisiae , Selênio/farmacologia
13.
Toxicol Mech Methods ; 32(9): 662-677, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35546737

RESUMO

Pyrroloquinoline quinone (PQQ), a potent coenzyme antioxidant naturally occurring in foods, has been demonstrated to protect brain cells by enhancing the expression of nerve growth factors (NGF) and NGF receptors, and suppressing the fibril formation and aggression of amyloid ß. We developed mnemoPQQ®, a novel PQQ disodium salt and assessed its safety in GLP compliant toxicity studies. Acute toxicity studies of mnemoPQQ® in Wistar rats revealed that its LD50 was 1825- and 1410 mg/kg body weight (bw) in male and female rats, respectively, whereas its acute dermal LD50 was >2000 mg/kg bw. mnemoPQQ® was found to be nonirritant to the skin of rabbit in an acute dermal irritation/corrosion study, and classified mnemoPQQ® as a nonirritant to the eye of rabbit in an acute eye irritation/corrosion study. Ames bacterial reverse mutation assay and in vitro Mammalian cell gene mutation test exhibited its non-mutagenic potential. In mammalian in vivo erythrocyte micronucleus test, mnemoPQQ® was classified as non-clastogenic and non-mutagenic. A 90-day sub-chronic toxicity study, conducted at and up to the highest daily dose of 600 mg/kg body weight, revealed no evidence of systemic toxicity. All rats survived the treatment without any significant abnormal clinical signs and alterations in hematology, clinical chemistry, neurological evaluation, thyroid functions, reproductive hormone levels, sperm evaluations, vaginal cytology, endocrine functions, organ weight and gross and microscopic pathology findings. No observed adverse effect level (NOAEL) of mnemoPQQ® was found to be greater than 600 mg/kg body weight. These studies affirm that mnemoPQQ® has broad spectrum safety for human consumption.


Assuntos
Antioxidantes , Cofator PQQ , Peptídeos beta-Amiloides , Animais , Peso Corporal , Feminino , Hormônios , Masculino , Fator de Crescimento Neural , Cofator PQQ/toxicidade , Coelhos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Fator de Crescimento Neural , Sêmen
14.
J Toxicol Environ Health A ; 84(23): 960-972, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34328061

RESUMO

As an alternative to in vivo Draize rabbit eye irritation test, this study aimed to construct an in silico model to predict the complete United Nations (UN) Globally Harmonized System (GHS) for classification and labeling of chemicals for eye irritation category [eye damage (Category 1), irritating to eye (Category 2) and nonirritating (No category)] of liquid chemicals with Integrated approaches to testing and assessment (IATA)-like two-stage random forest approach. Liquid chemicals (n = 219) with 34 physicochemical descriptors and quality in vivo data were collected with no missing values. Seven machine learning algorithms (Naive Bayes, Logistic Regression, First Large Margin, Neural Net, Random Forest (RF), Gradient Boosted Tree, and Support Vector Machine) were examined for the ternary categorization of eye irritation potential at a single run through 10-fold cross-validation. RF, which performed best, was further improved by applying the 'Bottom-up approach' concept of IATA, namely, separating No category first, and discriminating Category 1 from 2, thereafter. The best performing training dataset achieved an overall accuracy of 73% and the correct prediction for Category 1, 2, and No category was 80%, 50%, and 77%, respectively for the test dataset. This prediction model was further validated with an external dataset of 28 chemicals, for which an overall accuracy of 71% was achieved.


Assuntos
Olho/efeitos dos fármacos , Irritantes/toxicidade , Testes de Toxicidade Aguda/métodos , Algoritmos , Alternativas aos Testes com Animais , Animais , Simulação por Computador , Bases de Dados Factuais , Irritantes/química , Irritantes/classificação , Aprendizado de Máquina , Coelhos , Reprodutibilidade dos Testes , Testes de Toxicidade Aguda/normas , Nações Unidas/normas
15.
Handb Exp Pharmacol ; 265: 3-27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33136188

RESUMO

In regulatory toxicology, in vivo studies are still prevailing, and human-derived in vitro models are mostly used in testing for local toxicity to the skin and the eyes. A single in vitro model may be limited to address one or few molecular or cellular events leading to adverse outcomes. Hence, in many instances their regulatory use involves the combination of several in vitro models to assess the hazard potential of test substance. A so-called defined approach combines different testing methods and a 'data interpretation procedure' to obtain a comprehensive overall assessment which is used for the regulatory hazard classification of the test substance.Validation is a prerequisite of regulatory acceptance of new testing methods: This chapter provides an overview of the method development from an experimental method to a test guideline via application of GIVIMP (good in vitro method practice), standardization, validation to the regulatory adoption as an OECD test guidelines. Quandaries associated with the validation towards reference data from in vivo animal studies with limited accuracy and limited human relevance are discussed, as well as uncertainty and limitations arising from restricted applicability and technical and biological variance of the in vitro methods.This chapter provides an overview of human-derived in vitro models currently adopted as OECD test guidelines: From the first skin corrosion tests utilizing reconstructed human epidermis models (RhE), to models to test for skin irritation, phototoxicity, eye irritation, and skin sensitization. The latter is using a battery of different methods and defined approaches which are still under discussion for their regulatory adoption. They will be a vanguard of future applications of human-derived models in regulatory toxicology. RhEs for testing of genotoxicity and of dermal penetration and absorption, have been developed, underwent validation studies and may soon be adopted for regulatory use; these are included in this chapter.


Assuntos
Alternativas aos Testes com Animais , Testes de Irritação da Pele , Animais , Humanos , Irritantes/farmacologia , Pele , Testes de Toxicidade
16.
Regul Toxicol Pharmacol ; 123: 104935, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33901590

RESUMO

Eye irritation is a key human health endpoint assessed by in vitro and in vivo methods. One of the commonly used scoring methods to quantify the eye irritation potential of chemicals is the Modified Maximum Average Score (MMAS). It is dependent on the eye irritation effects (e.g. corneal opacity) originally proposed by Draize and then partially adopted by the OECD TG 405. These scores are not always fully reported in regulatory dossiers and lead to several drawbacks, 1) the difficulty to translate MMAS into a classification within the existing EU CLP/UN GHS criteria, 2) the absence of corrosion (serious eye damage), and 3) the dependency on input parameters which are usually not required under the OECD TGs (e.g. eye surface area). This study determined if classification can be driven by a maximum of two observed effects thereby simplifying the scoring calculation. The Simplified Irritation Index (SIIEYE), based only on corneal opacity and conjunctival redness, was developed using validated studies representing multiple chemical groups. A correlation was observed between the MMAS and the SIIEYE allowing harmonisation of the classification for the existing data. This index proved to be useful in the development of in silico model.


Assuntos
Cáusticos/toxicidade , Olho/efeitos dos fármacos , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais , Animais , Opacidade da Córnea , Corrosão , Humanos , Irritantes
17.
Ecotoxicol Environ Saf ; 228: 112964, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34773844

RESUMO

Polypropylene (PP) is the second most highly produced plastic worldwide, and its microplastic forms are found in water and food matrices. However, the effects of PP microplastics on human health remain largely unknown. Here, we prepared 85.2 µm-sized weathered PP (w-PP) microplastics by sieving the microplastic particles after fragmentation and accelerated weathering processes. The prepared particles are irregular in shape and no chemical additives including phthalates and bisphenol A were not released in simulated body fluids. Then, the w-PP samples were gavaged to rats for acute and subacute toxicity testing in accordance to the Organization for Economic Co-operation and Development (OECD) test guidelines under good laboratory practice regulations. The highest dose for gavaging to rats was 25 mg/kg bw/day, which was the maximum feasible dose based on the dispersibility of microplastics. Both toxicity testings for w-PP microplastics showed no adverse effects and mutagenicity. Thus, the no observed adverse effect level (NOAEL) of w-PP microplastics is higher than 25 mg/kg bw/day. Furthermore, the w-PP microplastics did not show any skin or eye irritation potentials in the 3-dimensional reconstructed human skin or corneal culture model. The dose of 25 mg/kg of w-PP microplastics is roughly equal to 2.82 × 105 particles/kg, which suggests that human exposure to w-PP microplastics in a real-life situation may not have any adverse effects.

18.
Cutan Ocul Toxicol ; 40(2): 145-167, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33830843

RESUMO

There are multiple in vitro and ex vivo eye irritation and corrosion test methods that are available as internationally harmonized test guidelines for regulatory use. Despite their demonstrated usefulness to a broad range of substances through inter-laboratory validation studies, they have not been widely adopted for testing agrochemical formulations due to a lack of concordance with parallel results from the traditional regulatory test method for this endpoint, the rabbit eye test. The inherent variability of the rabbit test, differences in the anatomy of the rabbit and human eyes, and differences in modelling exposures in rabbit eyes relative to human eyes contribute to this lack of concordance. Ultimately, the regulatory purpose for these tests is protection of human health, and, thus, there is a need for a testing approach based on human biology. This paper reviews the available in vivo, in vitro and ex vivo test methods with respect to their relevance to human ocular anatomy, anticipated exposure scenarios, and the mechanisms of eye irritation/corrosion in humans. Each of the in vitro and ex vivo methods described is generally appropriate for identifying non-irritants. To discriminate among eye irritants, the human three-dimensional epithelial and full thickness corneal models provide the most detailed information about the severity of irritation. Consideration of the mechanisms of eye irritation, and the strengths and limitations of the in vivo, in vitro and ex vivo test methods, show that the in vitro/ex vivo methods are as or more reflective of human biology and less variable than the currently used rabbit approach. Suggestions are made for further optimizing the most promising methods to distinguish between severe (corrosive), moderate, mild and non-irritants and provide information about the reversibility of effects. Also considered is the utility of including additional information (e.g. physical chemical properties), consistent with the Organization for Economic Cooperation and Development's guidance document on an integrated approach to testing and assessment of potential eye irritation. Combining structural and functional information about a test substance with test results from human-relevant methods will ensure the best protection of humans following accidental eye exposure to agrochemicals.


Assuntos
Agroquímicos/toxicidade , Cáusticos/toxicidade , Olho/efeitos dos fármacos , Irritantes/toxicidade , Testes de Toxicidade/métodos , Animais , Traumatismos Oculares/induzido quimicamente , Humanos
19.
Pharm Dev Technol ; 26(7): 765-778, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34154503

RESUMO

In recent years, the hydrophobic active substances have led researchers to develop new formulations to enhance bioavailability and dissolution rate; brinzolamide, a lipophilic drug belongs to carbonic anhydrase inhibitors, which cause reduction of intraocular pressure in patients suffering from glaucoma. Currently, the marketed product of brinzolamide is in the form of ocular drops; nonetheless, the conventional drops provide decreased therapeutic efficacy owing to their low bioavailability and pulsed drug release. Thus, the development of novel ocular formulations such as topical microemulsions is of high importance. In this work, the preparation of new microemulsions containing brinzolamide (0.2, 0.5 and 1% w/w) and comprised from isopropyl myristate, tween 80 and span 20 and Cremophor EL was performed. The obtained microemulsions were further characterized for their physicochemical properties. In addition, Fourier Transformed-Infrared spectroscopy was used touate the compatibility of active ingredients and components. In vitro release studies along with kinetic modeling were performed using the dialysis membrane method in simulated tear fluid. Bioadhesion studies were performed using Texture analysis. Finally, in vitro ocular irritation based on EpiOcular™ Eye Irritation Test and cytocompatibility studies was performed to examine any possible harm on ocular cells and predict in vivo safety profile.


Assuntos
Olho/efeitos dos fármacos , Soluções Oftálmicas/administração & dosagem , Sulfonamidas/administração & dosagem , Tiazinas/administração & dosagem , Animais , Cromatografia Líquida de Alta Pressão , Emulsões/administração & dosagem , Emulsões/efeitos adversos , Emulsões/química , Fibroblastos/efeitos dos fármacos , Camundongos , Miristatos , Soluções Oftálmicas/efeitos adversos , Soluções Oftálmicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfonamidas/efeitos adversos , Sulfonamidas/química , Tiazinas/efeitos adversos , Tiazinas/química
20.
Drug Dev Res ; 81(6): 716-727, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32359095

RESUMO

Ocular allergy is one of the most common disorders of the eye surface. The conventional eye drops lack of therapeutic efficacy due to low ocular bioavailability and decreased drug residence time on eye surface. Hence, the present research work aimed to formulate, optimize, and evaluate the in situ gel for ophthalmic drug delivery. The prepared in situ gel formulations were evaluated for clarity, pH, gelling capacity, viscosity, osmolality, in vitro release study, and kinetic evaluation. ex vivo corneal permeation/penetration study using goat and in vivo studies on rabbits were also performed. Fourier-transformed infrared spectroscopy was also applied to study possible interactions between drug and polymers. The formulations found to be stable, nonirritant, and showed sustained release of the drug for a period of up to 24 hr with no ocular damage. The developed in situ gels loaded with tetrahydrozoline are alternative and promising ocular candidates for the treatment of allergic conjunctivitis.


Assuntos
Agonistas Adrenérgicos/administração & dosagem , Conjuntivite Alérgica/tratamento farmacológico , Imidazóis/administração & dosagem , Descongestionantes Nasais/administração & dosagem , Agonistas Adrenérgicos/química , Animais , Córnea/efeitos dos fármacos , Córnea/metabolismo , Liberação Controlada de Fármacos , Géis , Imidazóis/química , Descongestionantes Nasais/química , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA