Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunol Rev ; 313(1): 25-45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382387

RESUMO

The factor H (FH) protein family is emerging as a complex network of proteins controlling the fate of the complement alternative pathway (AP) and dictating susceptibility to a wide range of diseases including infectious, inflammatory, autoimmune, and degenerative diseases and cancer. Composed, in man, of seven highly related proteins, FH, factor H-like 1, and 5 factor H-related proteins, some of the FH family proteins are devoted to down-regulating the AP, while others exert an opposite function by promoting AP activation. Recent findings have provided insights into the molecular mechanisms defining their biological roles and their pathogenicity, illustrating the relevance that the balance between the regulators and the activators within this protein family has in defining the outcome of complement activation on cell surfaces. In this review we will discuss the emerging roles of the factor H protein family, their impact in the complement cascade, and their involvement in the pathogenesis of complement-mediated diseases associated with the AP dysregulation.


Assuntos
Fator H do Complemento , Proteínas do Sistema Complemento , Humanos , Ativação do Complemento , Fator H do Complemento/metabolismo , Via Alternativa do Complemento , Proteínas do Sistema Complemento/metabolismo
2.
J Biol Chem ; 300(5): 107254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569934

RESUMO

Nesprins comprise a family of multi-isomeric scaffolding proteins, forming the linker of nucleoskeleton-and-cytoskeleton complex with lamin A/C, emerin and SUN1/2 at the nuclear envelope. Mutations in nesprin-1/-2 are associated with Emery-Dreifuss muscular dystrophy (EDMD) with conduction defects and dilated cardiomyopathy (DCM). We have previously observed sarcomeric staining of nesprin-1/-2 in cardiac and skeletal muscle, but nesprin function in this compartment remains unknown. In this study, we show that specific nesprin-2 isoforms are highly expressed in cardiac muscle and localize to the Z-disc and I band of the sarcomere. Expression of GFP-tagged nesprin-2 giant spectrin repeats 52 to 53, localized to the sarcomere of neonatal rat cardiomyocytes. Yeast two-hybrid screening of a cardiac muscle cDNA library identified telethonin and four-and-half LIM domain (FHL)-2 as potential nesprin-2 binding partners. GST pull-down and immunoprecipitation confirmed the individual interactions between nesprin-2/telethonin and nesprin-2/FHL-2, and showed that nesprin-2 and telethonin binding was dependent on telethonin phosphorylation status. Importantly, the interactions between these binding partners were impaired by mutations in nesprin-2, telethonin, and FHL-2 identified in EDMD with DCM and hypertrophic cardiomyopathy patients. These data suggest that nesprin-2 is a novel sarcomeric scaffold protein that may potentially participate in the maintenance and/or regulation of sarcomeric organization and function.


Assuntos
Conectina , Proteínas com Domínio LIM , Proteínas Musculares , Miócitos Cardíacos , Proteínas do Tecido Nervoso , Proteínas Nucleares , Sarcômeros , Animais , Humanos , Camundongos , Ratos , Conectina/metabolismo , Conectina/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Homeodomínio LIM , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Sarcômeros/metabolismo , Fatores de Transcrição
3.
Cell Mol Life Sci ; 81(1): 244, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814462

RESUMO

Four-and-a-half LIM domains protein 2 (FHL2) is an adaptor protein that may interact with hypoxia inducible factor 1α (HIF-1α) or ß-catenin, two pivotal protective signaling in acute kidney injury (AKI). However, little is known about the regulation and function of FHL2 during AKI. We found that FHL2 was induced in renal tubular cells in patients with acute tubular necrosis and mice model of ischemia-reperfusion injury (IRI). In cultured renal proximal tubular cells (PTCs), hypoxia induced FHL2 expression and promoted the binding of HIF-1 to FHL2 promoter. Compared with control littermates, mice with PTC-specific deletion of FHL2 gene displayed worse renal function, more severe morphologic lesion, more tubular cell death and less cell proliferation, accompanying by downregulation of AQP1 and Na, K-ATPase after IRI. Consistently, loss of FHL2 in PTCs restricted activation of HIF-1 and ß-catenin signaling simultaneously, leading to attenuation of glycolysis, upregulation of apoptosis-related proteins and downregulation of proliferation-related proteins during IRI. In vitro, knockdown of FHL2 suppressed hypoxia-induced activation of HIF-1α and ß-catenin signaling pathways. Overexpression of FHL2 induced physical interactions between FHL2 and HIF-1α, ß-catenin, GSK-3ß or p300, and the combination of these interactions favored the stabilization and nuclear translocation of HIF-1α and ß-catenin, enhancing their mediated gene transcription. Collectively, these findings identify FHL2 as a direct downstream target gene of HIF-1 signaling and demonstrate that FHL2 could play a critical role in protecting against ischemic AKI by promoting the activation of HIF-1 and ß-catenin signaling through the interactions with its multiple protein partners.


Assuntos
Injúria Renal Aguda , Túbulos Renais Proximais , Proteínas com Homeodomínio LIM , Proteínas Musculares , Traumatismo por Reperfusão , Fatores de Transcrição , beta Catenina , Animais , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/genética , Camundongos , beta Catenina/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Masculino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Transdução de Sinais , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Proliferação de Células , Apoptose
4.
BMC Genomics ; 25(1): 850, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261767

RESUMO

BACKGROUND: Adipose tissue affects not only the meat quality of domestic animals, but also human health. Adipocyte differentiation is regulated by a series of regulatory genes and cyclins. Four and half-LIM protein (FHL2) is positively correlated with the hypertrophy of adipocytes and can cause symptoms such as obesity and diabetes. RESULT: In the transcriptome sequencing analysis of intramuscular adipocytes after three days of differentiation, the differentially expressed gene FHL2 was found. To further explore the biological significance of the differentially expressed gene FHL2, which was downregulated in the mature adipocytes. We revealed the function of FHL2 in adipogenesis through the acquisition and loss of function of FHL2. The results showed that the overexpression of FHL2 significantly increased the expression of adipogenic genes (PPARγ, C/EBPß) and the differentiation of intramuscular and subcutaneous adipocytes. However, silencing FHL2 significantly inhibited adipocyte differentiation. The overexpression of FHL2 increased the number of adipocytes stained with crystal violet and increased the mRNA expression of proliferation marker genes such as CCNE, PCNA, CCND and CDK2. In addition, it significantly increased the rate of EdU positive cells. In terms of apoptosis, overexpression of FHL2 significantly inhibited the expression of P53 and BAX in both intramuscular and subcutaneous adipocytes, which are involved in cell apoptosis. However, overexpression of FHL2 promoted the expression of BCL, but was rescued by the silencing of FHL2. CONCLUSIONS: In summary, FHL2 may be a positive regulator of intramuscular and subcutaneous adipocyte differentiation and proliferation, and acts as a negative regulator of intramuscular and subcutaneous adipocyte apoptosis. These findings provide a theoretical basis for the subsequent elucidation of FHL2 in adipocytes.


Assuntos
Adipócitos , Adipogenia , Cabras , Proteínas com Homeodomínio LIM , Proteínas Musculares , Animais , Cabras/genética , Adipócitos/metabolismo , Adipócitos/citologia , Adipogenia/genética , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Apoptose/genética , Diferenciação Celular/genética , Proliferação de Células , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Gordura Subcutânea/metabolismo , Gordura Subcutânea/citologia , Perfilação da Expressão Gênica
5.
Int J Cancer ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39244734

RESUMO

Cancer-associated fibroblasts (CAFs) contribute to the progression of lung cancer. Four and a half LIM domain protein-2 (FHL2) is a component of focal adhesion structures. We analyzed the function of FHL2 expressed by CAFs in lung adenocarcinoma. Expression of FHL2 in fibroblast subtypes was investigated using database of single-cell RNA-sequencing of lung cancer tissue. The role of FHL2 in the proliferation and migration of CAFs was assessed. The effects of FHL2 knockout on the migration and invasion of human lung adenocarcinoma cells and tube formation of endothelial cells induced by CAF-conditioned medium (CM) were evaluated. The effect of FHL2 knockout in CAFs on metastasis was determined using a murine orthotopic lung cancer model. The prognostic significance of stromal FHL2 was assessed by immunohistochemistry in human adenocarcinoma specimens. FHL2 is highly expressed in myofibroblasts in cancer tissue. TGF-ß1 upregulated FHL2 expression in CAFs and FHL2 knockdown attenuated CAF proliferation. FHL2 knockout reduced CAF induced migration of A110L and H23 human lung adenocarcinoma cell lines, and the induction of tube formation of endothelial cells. FHL2 knockout reduced CAF-induced metastasis of lung adenocarcinomas in an orthotopic model in vivo. The concentration of Osteopontin (OPN) in CM from CAF was downregulated by FHL2 knockout. siRNA silencing and antibody blocking of OPN reduced the pro-migratory effect of CM from CAF on lung cancer cells. In resected lung adenocarcinoma specimens, positive stromal FHL2 expression was significantly associated with higher microvascular density and worse prognosis. In conclusion, FHL2 expression by CAFs enhances the progression of lung adenocarcinoma by promoting angiogenesis and metastasis.

6.
Funct Integr Genomics ; 24(1): 25, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324167

RESUMO

Chemotherapy resistance is the main reason for the poor prognosis of ovarian cancer (OC). FHL1 is an important tumour regulator, but its relationship with the prognosis, drug resistance, and tumour microenvironment of OC is unknown. Immunohistochemistry was used to determine FHL1 expression in OC. Kaplan‒Meier plotter was used for survival analysis. The value of gene expression in predicting drug resistance was estimated using the area under the curve (AUC). Bivariate correlation was used to determine the coexpression of two genes. Functional cluster and pathway enrichment were used to uncover hidden signalling pathways. The relationship between gene levels and the tumour microenvironment was visualised through the ggstatsplot and pheatmap packages. The mRNA and protein levels of FHL1 were downregulated in 426 and 100 OC tissues, respectively. Low FHL1 expression was correlated with good progression-free survival (PFS), postprogression survival, and overall survival (OS) in 1815 OC patients, and was further confirmed to be associated with good OS by immunohistochemistry in 152 OC tissues. Furthermore, FHL1 was downregulated in drug-sensitive tissues, while its high expression predicted drug resistance (AUC > 0.65). Mechanistically, FHL1 was coexpressed with FLNC, CAV1, PPP1R12B, and FLNA at the mRNA and protein levels in 558 and 174 OC tissues, respectively, and their expression was downregulated in OC. Additionally, very strong coexpression of FHL1 with the four genes was identified in at least 23 different tumours. Low expression of the four genes was associated with good PFS, and the combination of FHL1 with the four genes provided better prognostic power. Meanwhile, the expression of all five genes was strongly and positively associated with the abundance of macrophages. Low FHL1 expression acts as a favourable factor in OC, probably via positive coexpression with FLNC, CAV1, PPP1R12B, and FLNA.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Macrófagos , RNA Mensageiro , Resistência a Medicamentos , Microambiente Tumoral , Proteínas Musculares , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM
7.
Biochem Biophys Res Commun ; 694: 149468, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38183876

RESUMO

Heart diseases are a major cause of morbidity and mortality worldwide. Understanding the molecular mechanisms underlying these diseases is essential for the development of effective diagnostic and therapeutic strategies. The FHL family consists of five members: FHL1, FHL2, FHL3, FHL4, and FHL5/Act. These members exhibit different expression patterns in various tissues including the heart. FHL family proteins are implicated in cardiac remodeling, regulation of metabolic enzymes, and cardiac biomechanical stress perception. A large number of studies have explored the link between FHL family proteins and cardiac disease, skeletal muscle disease, and ovarian metabolism, but a comprehensive and in-depth understanding of the specific molecular mechanisms targeting FHL on cardiac disease is lacking. The aim of this review is to explore the structure and function of FHL family members, to comprehensively elucidate the mechanisms by which they regulate the heart, and to explore in depth the changes in FHL family members observed in different cardiac disorders, as well as the effects of mutations in FHL proteins on heart health.


Assuntos
Cardiopatias , Doenças Musculares , Humanos , Proteínas Musculares/metabolismo , Doenças Musculares/genética , Cardiopatias/genética , Mutação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética
8.
Mol Carcinog ; 63(7): 1334-1348, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38629424

RESUMO

Gastrointestinal stromal tumors (GISTs) are predominately induced by KIT mutants. In this study, we found that four and a half LIM domains 2 (FHL2) was highly expressed in GISTs and KIT signaling dramatically increased FHL2 transcription while FHL2 inhibited KIT transcription. In addition, our results showed that FHL2 associated with KIT and increased the ubiquitination of both wild-type KIT and primary KIT mutants in GISTs, leading to decreased expression and activation of KIT although primary KIT mutants were less inhibited by FHL2 than wild-type KIT. In the animal experiments, loss of FHL2 expression in mice carrying germline KIT/V558A mutation which can develop GISTs resulted in increased tumor growth, but increased sensitivity of GISTs to imatinib treatment which is used as the first-line targeted therapy of GISTs, suggesting that FHL2 plays a role in the response of GISTs to KIT inhibitor. Unlike wild-type KIT and primary KIT mutants, we further found that FHL2 didn't alter the expression and activation of drug-resistant secondary KIT mutants. Taken together, our results indicated that FHL2 acts as the negative feedback of KIT signaling in GISTs while primary KIT mutants are less sensitive and secondary KIT mutants are resistant to the inhibition of FHL2.


Assuntos
Tumores do Estroma Gastrointestinal , Proteínas com Homeodomínio LIM , Proteínas Musculares , Proteínas Proto-Oncogênicas c-kit , Transdução de Sinais , Fatores de Transcrição , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Tumores do Estroma Gastrointestinal/metabolismo , Animais , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mutação , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Mesilato de Imatinib/farmacologia , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Linhagem Celular Tumoral , Ubiquitinação
9.
Artigo em Inglês | MEDLINE | ID: mdl-38833674

RESUMO

OBJECTIVES: To determine prevalence and clinical associations of anti-FHL1 autoantibodies in patients with idiopathic inflammatory myopathies (IIM), and to evaluate autoantibody levels over time. METHODS: Sera at the time of diagnosis from patients with IIM (n = 449), autoimmune disease controls (DC, n = 130), neuromuscular diseases (NMD, n = 16) and healthy controls (HC, n = 100) were analyzed for anti-FHL1 autoantibodies by Enzyme-Linked ImmunoSorbent Assay (ELISA). Patients with IIM FHL1+ and FHL1- were included in a longitudinal analysis. Serum levels were correlated to disease activity. RESULTS: Autoantibodies to FHL1 were more frequent in patients with IIM (122/449, 27%) compared with DC (Autoimmune DC and NMD, 13/146, 9%, p< 0.001) and HC (3/100,3%, p< 0.001). Anti-FHL1 levels were higher in IIM [median (IQR)=0.62 (0.15-1.04)] in comparison with DC [0.22 (0.08-0.58)], HC [0.35 (0.23-0.47)] and NMD [0.48 (0.36-0.80)] p< 0.001. Anti-FHL1+ patients with IIM were younger at time of diagnosis compared with the anti-FHL1- group (p= 0.05) and were seronegative for other autoantibodies in 25%.In the first follow-up anti-FHL1+ sample 20/33 (60%) positive at baseline had turned negative for anti-FHL1 autoantibodies. Anti-FHL1 autoantibodies rarely appeared after initiating treatment. Anti-FHL1 autoantibody levels correlated with CK (r = 0.62, p= 0.01), disease activity measure MYOACT (n = 14, p= 0.004) and inversely with manual muscle test-8 (r=-0.59, p= 0.02) at baseline. CONCLUSIONS: Anti-FHL1 autoantibodies were present in 27% of patients with IIM, of these 25% were negative for other autoantibodies. Other autoimmune diseases had lower frequencies and levels. Anti-FHL1 levels often decreased with immunosuppressive treatment, correlated with disease activity measures at diagnosis and rarely appeared after start of treatment.

10.
Reprod Biomed Online ; 48(1): 103342, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37945432

RESUMO

RESEARCH QUESTION: Is four and a half LIM domain 2 (FHL2) involved in trophoblast migration, invasion and epithelial-mesenchymal transition (EMT) in recurrent miscarriage? DESIGN: Villus tissue was collected from 24 patients who had experienced recurrent miscarriage and 24 healthy controls. FHL2 mRNA and protein expression in villus specimens were observed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Small interfering RNA and overexpression plasmid were used to change the FHL2 expression. JAR and HTR8/SVneo cell lines were used to conduct scratch-wound assay and transwell assay to detect trophoblast migration and invasion of FHL2. Downstream molecule expression of mRNA and protein and EMT markers were verified by qRT-PCR and Western blot. RESULTS: Significantly lower FHL2 mRNA (P = 0.019) and protein (P = 0.0014) expression was found in trophoblasts from the recurrent miscarriage group compared with healthy controls. FHL2 knockdown repressed migration (P = 0.0046), invasion (P < 0.001) and EMT, as shown by significant differences in mRNA and protein expression of the EMT markers N-cadherin, E-cadherin, Vimentin and Snail (all P < 0.05) of extravillus trophoblasts. FHL2 overexpression enhanced migration (P = 0.025), invasion (P < 0.001) and EMT of extravillus trophoblasts (all EMT markers P < 0.05). The positive upstream factor FHL2 in the extracellular signal-related kinase pathway induced JunD expression, thereby promoting trophoblast migration and invasion via matrix metalloproteinase 2. CONCLUSIONS: FHL2 is involved in a regulatory pathway of trophoblast migration, invasion and EMT during early pregnancy, and may have a role in recurrent miscarriage pathogenesis, which can serve as a possible target for novel therapeutic development.


Assuntos
Aborto Habitual , Metaloproteinase 2 da Matriz , Gravidez , Feminino , Humanos , Regulação para Baixo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Trofoblastos/patologia , Transição Epitelial-Mesenquimal/genética , Aborto Habitual/patologia , RNA Mensageiro/metabolismo , Movimento Celular , Proliferação de Células , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fatores de Transcrição/genética , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-38664060

RESUMO

BACKGROUND AND HYPOTHESIS: Arterial medial calcification (AMC) is a common complication in individuals with chronic kidney disease (CKD), which can lead to cardiovascular morbidity and mortality. The progression of AMC is controlled by a key transcription factor called runt-related transcription factor 2 (RUNX2), which induces vascular smooth muscle cells (VSMCs) transdifferentiation into a osteogenic phenotype. However, RUNX2 has not been targeted for therapy due to its essential role in bone development. The objective of our study was to discover a RUNX2 coactivator that is highly expressed in arterial VSMCs as a potential therapy for AMC. METHODS: We employed transcriptomic analysis of human data and an animal reporter system to pinpoint FHL2 as a potential target. Subsequently, we investigated the mRNA and protein expression patterns of FHL2 in the aortas of both human and animal subjects with CKD. To examine the role of FHL2 in the RUNX2 transcription machinery, we conducted coimmunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) experiments. Next, we manipulated FHL2 expression in cultured VSMCs to examine its impact on high phosphate-induced transdifferentiation. Finally, we employed FHL2 null mice to confirm the role of FHL2 in the development of AMC in vivo. RESULTS: Among all the potential RUNX2 cofactor, FHL2 displays selective expression within the cardiovascular system. In the context of CKD subjects, FHL2 undergoes upregulation and translocation from the cytosol to the nucleus of arterial VSMCs. Once in the nucleus, FHL2 interacts structurally and functionally with RUNX2, acting as a coactivator of RUNX2. Notably, the inhibition of FHL2 expression averts transdifferentiation of VSMCs into an osteogenic phenotype and mitigates aortic calcification in uremic animals, without causing any detrimental effects on the skeletal system. CONCLUSION: These observations provide evidence that FHL2 is a promising target for treating arterial calcification in patients with CKD.

12.
Exp Cell Res ; 423(2): 113470, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641135

RESUMO

OBJECTIVE: This study aimed to investigate the inhibiting effects of FHL2 and Arbutin on cell fibrosis and their possible mechanisms. METHODS: The mRNA expression of FHL2 in pulmonary fibrosis tissues was analyzed by bioinformatics. TGF⁃ß1 induced fibrosis of mouse lung fibroblast (Mlg) and mouse primary pulmonary fibroblast (PPF) in rat's lung fibroblasts. FHL2 siRNA was transfected into Mlg and mouse PPF cells to inhibit FHL2. FHL2, α-smooth muscle actin (α-SMA), collagen 1 (Col I), and Fibronectin (Fn) were detected by qRT-PCR. Western blot expression levels of Smad3, p-Smad3, Smad2, and p-Smad2 proteins in cells. High-throughput drug screening for FHL2 inhibitors and the inhibitory effect of Arbutin on pulmonary fibrosis were validated in cellular and animal models of pulmonary fibrosis. RESULTS: The mRNA expression of FHL2 in lung fiber tissue was increased. Meanwhile, the decrease of FHL2 expression significantly inhibited the cellular fibrosis morphological changes of rat's lung fibroblasts (Mlgs) and primary lung fibroblasts (PPFs). The expression levels of α⁃SMA, Col I, and Fn were decreased. High-throughput screening showed that Arbutin targeted FHL2. Arbutin alleviated bleomycin (BLM)-induced pulmonary fibrosis in rats by inhibiting FHL2 and then the TGF-ß1/Smad signaling pathway. CONCLUSION: Inhibition of FHL2 can effectively reduce the fibrosis process induced by TGF⁃ß1 and bleomycin, and then inhibit the fibrosis.


Assuntos
Fibrose Pulmonar , Animais , Camundongos , Ratos , Arbutina/efeitos adversos , Arbutina/metabolismo , Bleomicina/farmacologia , Fibroblastos/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Pulmão/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
13.
Pathol Int ; 74(9): 520-529, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39119938

RESUMO

Although there are clear morphologic criteria for the diagnosis of papillary thyroid carcinoma (PTC), when the morphology is untypical or overlaps, accurate diagnostic indicators are necessary. Since few studies investigated the role of down-regulated genes in PTC, this article aims to further explore the molecular markers associated with PTC. We conducted bioinformatics analysis of gene microarrays of PTC and normal adjacent tissues. Besides, quantitative real-time quantitative polymerase chain reaction array and immunohistochemical staining were used to investigate the expression of the major down-regulated genes. The results indicated that several important down-regulated genes, including TLE1, BCL2, FHL1, GHR, KIT, and PPARGC1A were involved in the process of PTC. Compared to normal adjacent tissues, the mRNA expression of the major genes was down-regulated in PTC (p<0.05). Immunohistochemically, FHL1 shows negative or low expression in PTC tissues (p<0.05). BCL2 did not show a significant difference between PTC and normal thyroid tissues (p > 0.05). TLE1, KIT, PPARGC1A and GHR showed negative expression in both tumor and normal tissues. These results suggested that FHL1 could serve as a novel tumor marker for precise diagnosis of PTC.


Assuntos
Biomarcadores Tumorais , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Proteínas Musculares , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Câncer Papilífero da Tireoide/diagnóstico , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Masculino , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Pessoa de Meia-Idade , Adulto , Idoso , Regulação Neoplásica da Expressão Gênica , Imuno-Histoquímica , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/patologia , Carcinoma Papilar/metabolismo
14.
Cell Mol Life Sci ; 80(1): 27, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602641

RESUMO

The proportions of the various muscle fiber types are important in the regulation of skeletal muscle metabolism, as well as animal meat production. Four-and-a-half LIM domain protein 3 (FHL3) is highly expressed in fast glycolytic muscle fibers and differentially regulates the expression of myosin heavy chain (MyHC) isoforms at the cellular level. Whether FHL3 regulates the transformation of muscle fiber types in vivo and the regulatory mechanism is unclear. In this study, muscle-specific FHL3 transgenic mice were generated by random integration, and lentivirus-mediated gene knockdown or overexpression in muscles of mice or pigs was conducted. Functional analysis showed that overexpression of FHL3 in muscles significantly increased the proportion of fast-twitch myofibers and muscle mass but decreased muscle succinate dehydrogenase (SDH) activity and whole-body oxygen consumption. Lentivirus-mediated FHL3 knockdown in muscles significantly decreased muscle mass and the proportion of fast-twitch myofibers. Mechanistically, FHL3 directly interacted with the Yin yang 1 (YY1) DNA-binding domain, repressed the binding of YY1 to the fast glycolytic MyHC2b gene regulatory region, and thereby promoted MyHC2b expression. FHL3 also competed with EZH2 to bind the repression domain of YY1 and reduced H3K27me3 enrichment in the MyHC2b regulatory region. Moreover, FHL3 overexpression reduced glucose tolerance by affecting muscle glycolytic metabolism, and its mRNA expression in muscle was positively associated with hemoglobin A1c (HbA1c) in patients with type 2 diabetes. Therefore, FHL3 is a novel potential target gene for the treatment of muscle metabolism-related diseases and improvement of animal meat production.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Suínos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Glicólise/genética , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo
15.
Biochem Genet ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512583

RESUMO

Radiotherapy resistance is a major cause of treatment failure and leads to poor prognosis in nasopharyngeal carcinoma (NPC). Evidences indicate that microRNA (miRNAs) are closely associated with radiotherapy for NPC. In this study, we found that the expression level of miR-92b-3p was significantly higher in radiotherapy-sensitive NPC patients than in radiotherapy-resistant patients. High expression of miR-92b-3p was associated with good prognosis in patients with NPC, and high expression of FHL2 was associated with poor prognosis in patients with NPC. It was predicted that miR-92b-3p could directly target and bind FHL2. Overexpression of miR-92b-3p significantly inhibited FHL2 expression at the mRNA as well as protein levels, while inhibition of miR-92b-3p expression significantly upregulated FHL2 expression. Overexpression of miR-92b-3p significantly reduced proliferation and colony formation in NPC cells. Inhibition of miR-92b-3p attenuated the sensitivity of nasopharyngeal carcinoma to radiotherapy, while simultaneous inhibition of miR-92b-3p and FHL2 increased the sensitivity of NPC to radiotherapy. Our findings highlighted that miR-92b-3p is closely associated with radiotherapy sensitivity and prognosis in NPC patients and may improve the sensitivity of NPC to radiotherapy by targeting FHL2.

16.
J Foot Ankle Surg ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245433

RESUMO

Obesity poses a growing concern, with global predictions estimating over half the population to be overweight or obese by 2030 (1). While prior research has extensively explored the impact of obesity on hip and knee surgeries, a notable gap persists in understanding weight changes following foot and ankle procedures. This retrospective study focuses on the relationship between Body Mass Index (BMI) and Achilles debridement with flexor hallucis longus (FHL) transfer. Despite prevailing research on the adverse effects of obesity on orthopedic outcomes, few studies examine the reciprocal influence of surgeries on weight. A retrospective analysis of 136 patients undergoing primary Achilles debridement with FHL transfer was conducted. Data encompassing BMI, demographic information, and medical comorbidities were extracted from electronic medical records (EMRs). A clinically meaningful BMI change was considered as a 5 % variation. Inferential statistics in the form of analysis of variance, t-test, and linear regression were employed for data analysis. Among the 136 patients in the study, no statistically significant BMI changes were noted up to two years after surgery (p = 0.9967). While obesity remains a significant factor in foot and ankle surgery complications, our study suggests that Achilles debridement with FHL transfer does not induce significant weight changes. Further research exploring factors influencing weight changes and varying outcomes across demographics is warranted. LEVEL OF EVIDENCE: III.

17.
Rheumatology (Oxford) ; 62(SI2): SI226-SI234, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35961028

RESUMO

OBJECTIVES: Four-and-a-half LIM domains 1 (FHL1) is a muscle-specific protein. Autoantibodies against FHL1 were recently discovered in adults with idiopathic inflammatory myopathies (IIMs) and were found to be associated with clinical features and outcomes indicative of increased disease severity. Anti-FHL1 autoantibodies have not been described in children. Here, the prevalence and clinical features associated with anti-FHL1 autoantibodies were examined in a large North American cohort of juvenile patients with IIM. METHODS: Sera from 338 juvenile IIM patients and 91 juvenile healthy controls were screened for anti-FHL1 autoantibodies by ELISA. Clinical characteristics and HLA alleles of those with and without anti-FHL1 autoantibodies were compared among those with juvenile IIM. RESULTS: Anti-FHL1 autoantibodies were present in 10.9% of juvenile IIM patients and 1.1% of controls. The frequency of anti-FHL1 autoantibodies among clinical and serologic subgroups did not differ. A higher percentage of Asian patients had anti-FHL1 autoantibodies (11% vs 0.7%; P = 0.002). Myositis-associated autoantibodies (MAAs) [odds ratio (OR) 2.09 (CI 1.03, 4.32)], anti-Ro52 autoantibodies specifically [OR 4.17 (CI 1.83, 9.37)] and V-sign rash [OR 2.59 (CI 1.22, 5.40)] were associated with anti-FHL1 autoantibodies. There were no differences in other features or markers of disease severity. No HLA associations with anti-FHL1 autoantibodies in Caucasian myositis patients were identified. CONCLUSION: Anti-FHL1 autoantibodies are present in ∼11% of juvenile IIM patients and commonly co-occur with MAAs, including anti-Ro52 autoantibodies. In contrast to adult IIM, anti-FHL1 autoantibodies in juvenile myositis are associated with V-sign rash but not with other distinctive clinical features or worse outcomes.


Assuntos
Dermatomiosite , Exantema , Miosite , Adulto , Criança , Humanos , Autoanticorpos , Proteínas Musculares , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM
18.
Aging Male ; 26(1): 2235005, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37452735

RESUMO

BACKGROUND: China is one of the countries with the fastest growing prevalence of diabetes mellitus (DM) in the world. This study intended to investigate the association of single nucleotide polymorphisms (SNPs) of FHL5 and LPA with DM risk in the Chinese population. METHODS: This case-control study involved 1,420 Chinese individuals (710 DM patients and 710 controls). Four candidate loci (rs2252816/rs9373985 in FHL5 and rs3124784/rs7765781 in LPA) were successfully screened. The association of SNPs with DM risk was assessed by logistic regression analysis. Differences in clinical characteristics among subjects with different genotypes were analyzed by one-way analysis of variance. RESULTS: Overall analysis indicated that rs3124784 was associated with an increased risk of DM. Stratification analysis showed that rs3124784 significantly increased DM risk in different subgroups (male, non-smoking, non-drinking, and BMI > 24), while rs7765781 increased DM risk only in participants with BMI ≤ 24. Rs2252816 was associated with the course of DM. We also found that rs2252816 GG genotype and rs9373985 GG genotype were linked to the increased cystatin c in DM patients. CONCLUSION: The genetic polymorphisms of LPA may be associated with DM risk in the Chinese population, which will provide useful information for the prevention and diagnosis of DM.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Humanos , Masculino , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único , Genótipo , China/epidemiologia , Fatores de Transcrição/genética , Proteínas com Domínio LIM/genética
19.
Exp Cell Res ; 415(1): 113107, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35306026

RESUMO

The coiled-coil domain-containing protein 43 (CCDC43) is essential to promote gastric cancer (GC) proliferation and invasion, while four and a half LIM domains 1 (FHL1) involves GC cells apoptosis. We attempted to address inter-relationship between CCDC43 and FHL1 in modulating GC cells growth and apoptosis. Levels of protein expression were assessed by western blot, immunofluorescence. Using EdU, plate colony formation, Matrigel invasion and animal models, we evaluated the function in vitro and in vivo. Apoptosis was evaluated by flow cytometry and Hoechst 33258 staining. Reciprocal co-immunoprecipitation (co-IP) analyses indicated that CCDC43 physically interacted with FHL1. The expression of CCDC43 was negatively correlated with FHL1. Moreover, up-regulation of CCDC43 resulted in FHL1 level decline, and the reverse is also true. CCDC43 expressed jointly with FHL1 group significantly decreases the ability of the growth, metastasis and invasion of GC cells compared with that of the CCDC43 group. Furthermore, siRNA-mediated repression of CCDC43 results in dissociation from FHL1 and causes suppression of GC cell proliferation and metastasis. CCDC43 repression mediates the stability of FHL1 protein. In addition, CCDC43 interacts with FHL1. Knockdown of CCDC43 plus FHL1 overexpression inhibits proliferation and migration and induces apoptosis of GC cells in vitro and vivo.


Assuntos
Neoplasias Gástricas , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas/patologia , Regulação para Cima
20.
Knee Surg Sports Traumatol Arthrosc ; 31(1): 94-101, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36251046

RESUMO

PURPOSE: Achilles tendon ruptures (ATR) result in loss of strength and function of the gastrosoleus-Achilles tendon complex, probably because of gradual tendon elongation and calf muscle atrophy, even after surgical repair. Flexor hallucis longus (FHL) augmentation not only reinforces the repair and provides new blood supply to the tendon, but also protects the repair, internally splinting the repaired Achilles tendon, maintaining optimal tension. We prospectively compared the clinical outcomes of patients with acute ATR, managed with either percutaneous repair only or percutaneous repair and FHL augmentation. METHODS: Patients with acute ATR undergoing operative management were divided into two groups. Thirty patients underwent percutaneous repair under local anesthesia, and 32 patients underwent percutaneous repair augmented by FHL tendon, harvested through a 3 cm longitudinal posteromedial incision, and transferred to the calcaneus, under epidural anesthesia. All patients were treated by a single surgeon between 2015 and 2019 and were followed prospectively for 24 months. RESULTS: The percutaneous only group was younger than the augmented one (35.4 ± 8.0 vs 40.4 ± 6.6 years, p = 0.01). In the augmented group, 25 patients stayed overnight and only 5 were day cases, whereas in the percutaneous only group 4 patients stayed overnight and 28 of them were day cases (p < 0.001). The duration of the procedure was significantly longer in the augmented group (38.9 ± 5.2 vs 13.2 ± 2.2 min, p < 0.001). At 24 months after repair, the Achilles tendon resting angle (ATRA) was better in the augmented group (-0.5 ± 1.7 vs -4.0 ± 2.7, p < 0.001), as was Achilles tendon rupture score (ATRS) (91.7 ± 2.2 vs 89.9 ± 2.4, p = 0.004). Calf circumference of the injured and the non-injured leg did not differ between the groups, as did the time interval to single toe raise and the time interval to walking in tiptoes. Although plantarflexion strength of the operated leg was significantly weaker than the non-operated leg in both groups, the difference in isometric strength of the operated leg between the groups was not significant at 24 months (435 ± 37.9 vs 436 ± 39.7 N, n.s.). CONCLUSION: Percutaneous repair and FHL tendon augmentation may have a place in the management of acute Achilles tendon ruptures, reducing tendon elongation and improving functional outcome. LEVEL OF EVIDENCE: Level II.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Humanos , Tendão do Calcâneo/cirurgia , Transferência Tendinosa/métodos , Ruptura/cirurgia , Traumatismos dos Tendões/cirurgia , Dedos do Pé , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA