Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(26): e2111506119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737835

RESUMO

Macroautophagy promotes cellular homeostasis by delivering cytoplasmic constituents to lysosomes for degradation [Mizushima, Nat. Cell Biol. 20, 521-527 (2018)]. However, while most studies have focused on the mechanisms of protein degradation during this process, we report here that macroautophagy also depends on glycan degradation via the glycosidase, α-l-fucosidase 1 (FUCA1), which removes fucose from glycans. We show that cells lacking FUCA1 accumulate lysosomal glycans, which is associated with impaired autophagic flux. Moreover, in a mouse model of fucosidosis-a disease characterized by inactivating mutations in FUCA1 [Stepien et al., Genes (Basel) 11, E1383 (2020)]-glycan and autophagosome/autolysosome accumulation accompanies tissue destruction. Mechanistically, using lectin capture and mass spectrometry, we identified several lysosomal enzymes with altered fucosylation in FUCA1-null cells. Moreover, we show that the activity of some of these enzymes in the absence of FUCA1 can no longer be induced upon autophagy stimulation, causing retardation of autophagic flux, which involves impaired autophagosome-lysosome fusion. These findings therefore show that dysregulated glycan degradation leads to defective autophagy, which is likely a contributing factor in the etiology of fucosidosis.


Assuntos
Fucosidose , Macroautofagia , Polissacarídeos , Animais , Fucosidose/genética , Fucosidose/metabolismo , Lisossomos/metabolismo , Macroautofagia/fisiologia , Camundongos , Polissacarídeos/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 338, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771321

RESUMO

Fucosyl-oligosaccharides (FUS) provide many health benefits to breastfed infants, but they are almost completely absent from bovine milk, which is the basis of infant formula. Therefore, there is a growing interest in the development of enzymatic transfucosylation strategies for the production of FUS. In this work, the α-L-fucosidases Fuc2358 and Fuc5372, previously isolated from the intestinal bacterial metagenome of breastfed infants, were used to synthesize fucosyllactose (FL) by transfucosylation reactions using p-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as donor and lactose as acceptor. Fuc2358 efficiently synthesized the major fucosylated human milk oligosaccharide (HMO) 2'-fucosyllactose (2'FL) with a 35% yield. Fuc2358 also produced the non-HMO FL isomer 3'-fucosyllactose (3'FL) and traces of non-reducing 1-fucosyllactose (1FL). Fuc5372 showed a lower transfucosylation activity compared to Fuc2358, producing several FL isomers, including 2'FL, 3'FL, and 1FL, with a higher proportion of 3'FL. Site-directed mutagenesis using rational design was performed to increase FUS yields in both α-L-fucosidases, based on structural models and sequence identity analysis. Mutants Fuc2358-F184H, Fuc2358-K286R, and Fuc5372-R230K showed a significantly higher ratio between 2'FL yields and hydrolyzed pNP-Fuc than their respective wild-type enzymes after 4 h of transfucosylation. The results with the Fuc2358-F184W and Fuc5372-W151F mutants showed that the residues F184 of Fuc2358 and W151 of Fuc5372 could have an effect on transfucosylation regioselectivity. Interestingly, phenylalanine increases the selectivity for α-1,2 linkages and tryptophan for α-1,3 linkages. These results give insight into the functionality of the active site amino acids in the transfucosylation activity of the GH29 α-L-fucosidases Fuc2358 and Fuc5372. KEY POINTS: Two α-L-fucosidases from infant gut bacterial microbiomes can fucosylate glycans Transfucosylation efficacy improved by tailored point-mutations in the active site F184 of Fuc2358 and W151 of Fuc5372 seem to steer transglycosylation regioselectivity.


Assuntos
Microbioma Gastrointestinal , Metagenoma , Leite Humano , Trissacarídeos , alfa-L-Fucosidase , Humanos , Lactente , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Fucose/metabolismo , Lactose/metabolismo , Leite Humano/química , Mutagênese Sítio-Dirigida , Oligossacarídeos/metabolismo , Trissacarídeos/metabolismo
3.
J Sci Food Agric ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932571

RESUMO

BACKGROUND: α-l-Fucose confers unique functions for fucose-containing biomolecules such as human milk oligosaccharides. α-l-Fucosidases can serve as desirable tools in the application of fucosylated saccharides. Discovering novel α-l-fucosidases and elucidating their enzyme properties are always worthy tasks. RESULTS: A GH95 family α-l-fucosidase named Afc95A_Wf was cloned from the genome of the marine bacterium Wenyingzhuangia fucanilytica and expressed in Escherichia coli. It exhibited maximum activity at 40 °C and pH 7.5. Afc95A_Wf defined a different substrate specificity among reported α-l-fucosidases, which was capable of hydrolyzing α-fucoside in CNP-fucose, Fucα1-2Galß1-4Glc and Galß1-4(Fucα1-3)Glc, and showed a preference for α1,2-fucosidic linkage. It adopted Asp residue in the amino acid sequence at position 391, which was distinct from the previously acknowledged residue of Asn. The predicted tertiary structure and site-directed mutagenesis revealed that Asp391 participates in the catalysis of Afc95A_Wf. The differences in the substrate specificity and catalytic site shed light on that Afc95A_Wf adopted a novel mechanism in catalysis. CONCLUSION: A GH95 family α-l-fucosidase (Afc95A_Wf) was cloned and expressed. It showed a cleavage preference for α1,2-fucosidic linkage to α1,3-fucosidic linkage. Afc95A_Wf demonstrated a different substrate specificity and a residue at an important catalytic site compared with known GH95 family proteins, which revealed the occurrence of diversity on catalytic mechanisms in the GH95 family. © 2024 Society of Chemical Industry.

4.
Glycobiology ; 33(5): 396-410, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37014745

RESUMO

Glycoside hydrolase family 29 (GH29) encompasses α-L-fucosidases, i.e. enzymes that catalyze the hydrolytic release of fucose from fucosylated glycans, including N- and O-linked glycans on proteins, and these α-L-fucosidases clearly play important roles in biology. GH29 enzymes work via a retaining exo-action mechanism, and some can catalyze transfucosylation. There is no formal subfamily division of GH29 α-L-fucosidases, but they are nonetheless divided into two subfamilies: GH29A having a range of substrate specificities and GH29B having narrower substrate specificity. However, the sequence traits that determine the substrate specificity and transglycosylation ability of GH29 enzymes are not well characterized. Here, we present a new functional map of family GH29 members based on peptide-motif clustering via CUPP (conserved unique peptide patterns) and compare the substrate specificity and transglycosylation activity of 21 representative α-L-fucosidases across the 53 CUPP groups identified. The 21 enzymes exhibited different enzymatic rates on 8 test substrates, CNP-Fuc, 2'FL, 3FL, Lewisa, Lewisx, Fuc-α1,6-GlcNAc, Fuc-α1,3-GlcNAc, and Fuc-α1,4-GlcNAc. Certain CUPP groups clearly harbored a particular type of enzymes, e.g. the majority of the enzymes having activity on Lewisa or Lewisx categorized in the same CUPP clusters. In general, CUPP was useful for resolving GH29 into functional diversity subgroups when considering hydrolytic activity. In contrast, the transglycosylation capacity of GH29 α-L-fucosidases was distributed across a range of CUPP groups. Transglycosylation thus appears to be a common trait among these enzymes and not readily predicted from sequence comparison.


Assuntos
Polissacarídeos , alfa-L-Fucosidase , alfa-L-Fucosidase/metabolismo , Especificidade por Substrato , Fucose/química
5.
Appl Microbiol Biotechnol ; 107(11): 3579-3591, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37115252

RESUMO

2'-Fucosyllactose (2'-FL) is known for its ability to provide various health benefits to infants, such as gut maturation, pathogen resistance, improved immunity, and nervous system development. However, the production of 2'-FL using α-L-fucosidases is hindered by the lack of low-cost natural fucosyl donors and high-efficiency α-L-fucosidases. In this work, a recombinant xyloglucanase from Rhizomucor miehei (RmXEG12A) was applied to produce xyloglucan-oligosaccharide (XyG-oligos) from apple pomace. Then, an α-L-fucosidase gene (PbFucB) was screened from the genomic DNA of Pedobacter sp. CAU209 and expressed in Escherichia coli. The capability of purified PbFucB to catalyze XyG-oligos and lactose to synthesize 2'-FL was further evaluated. The deduced amino acid sequence of PbFucB shared the highest identity (38.4%) with that of other reported α-L-fucosidases. PbFucB showed the highest activity at pH 5.5 and 35 °C. It catalyzed the hydrolysis of 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc, 20.3 U mg-1), 2'-FL (8.06 U mg-1), and XyG-oligos (0.43 U mg-1). Furthermore, PbFucB demonstrated a high enzymatic conversion rate in 2'-FL synthesis with pNP-Fuc or apple pomace-derived XyG-oligos as donors and lactose as acceptor. Under the optimized conditions, PbFucB converted 50% of pNP-Fuc or 31% of the L-fucosyl residue in XyG-oligos into 2'-FL. This work elucidated an α-L-fucosidase that mediates the fucosylation of lactose and provided an efficient enzymatic strategy to synthesize 2'-FL either from artificial pNP-Fuc or natural apple pomace-derived XyG-oligos. KEY POINTS: • Xyloglucan-oligosaccharide (XyG-oligos) was produced from apple pomace by a xyloglucanase from Rhizomucor miehei. • An α-L-fucosidase (PbFucB) from Pedobacter sp. CAU209 shared the highest identity (38.4%) with reported α-L-fucosidases. •PbFucB synthesized 2'-FL using apple pomace-derived XyG-oligos and lactose with a conversion ratio of 31%.


Assuntos
Malus , Pedobacter , Lactente , Humanos , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Malus/metabolismo , Lactose/metabolismo , Oligossacarídeos/metabolismo
6.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37511315

RESUMO

2'-fucosyllactose (2'FL) is an important nutrient in human milk that stimulates beneficial microbiota and prevents infection. α-L-fucosidase is a promising component for 2'FL synthesis. In this study, a soil-oriented α-L-fucosidase-producing strain from Enterococcus gallinarum ZS1 was isolated. Escherichia coli was employed as a host for cloning and expressing the α-L-fucosidase gene (entfuc). The EntFuc was predicted as a member of the GH29 family with a molecular mass of 58 kDa. The optimal pH and temperature for the activity of EntFuc were pH 7.0 and 30 °C, respectively. The enzyme exhibited a strictly specific activity for 4-Nitrophenyl-α-L-fucopyranoside (pNP-Fuc) and had a negligible effect on hydrolyzing 2'FL. EntFuc could catalyze the synthesis of 2'FL via transfucosylation action from pNP-Fuc and lactose. The yield of 2'FL reached 35% under optimal conditions. This study indicated that EntFuc with a high conversion rate is a promising enzyme source for the biosynthesis of 2'FL.


Assuntos
Oligossacarídeos , alfa-L-Fucosidase , Humanos , alfa-L-Fucosidase/genética , Trissacarídeos , Leite Humano/química , Escherichia coli
7.
Glycobiology ; 32(6): 529-539, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35137077

RESUMO

$\text{L} $ -Fucose is the most widely distributed $\text{L} $-hexose in marine and terrestrial environments and presents a variety of functional roles. $\text{L} $-Fucose is the major monosaccharide in the polysaccharide fucoidan from cell walls of brown algae and is found in human milk oligosaccharides (HMOs) and the Lewis blood group system, where it is important in cell signaling and immune response stimulation. Removal of fucose from these biomolecules is catalyzed by fucosidases belonging to different carbohydrate-active enzyme (CAZy) families. Fucosidases of glycoside hydrolase family 29 (GH29) release α-$\text{L} $-fucose from non-reducing ends of glycans and display activities targeting different substrate compositions and linkage types. While several GH29 fucosidases from terrestrial environments have been characterized, much less is known about marine members of GH29 and their substrate specificities, as only four marine GH29 enzymes were previously characterized. Here, five GH29 fucosidases originating from an uncultured fucoidan-degrading marine bacterium (Paraglaciecola sp.) were cloned and produced recombinantly in Escherichia coli. All five enzymes (Fp231, Fp239, Fp240, Fp251 and Fp284) hydrolyzed the synthetic substrate CNP-α-$\text{L} $-fucose. Assayed against up to 17 fucose-containing oligosaccharides, Fp239 showed activity against the Lewis Y antigen, 2'- and 3-fucosyllactose, while Fp284 degraded 2'-fucosyllactose and Fuc(α1,6)GlcNAc. Furthermore, Fp231 displayed strict specificity against Fuc(α1,4)GlcNAc, a previously unreported specificity in GH29. Fp231 is a monomeric enzyme with pH and temperature optima at pH 5.6-6.0 and 25°C, hydrolyzing Fuc(α1,4)GlcNAc with kcat = 1.3 s-1 and Km = 660 µM. Altogether, the findings extend our knowledge about GH29 family members from the marine environment, which are so far largely unexplored.


Assuntos
Glicosídeo Hidrolases , alfa-L-Fucosidase , Escherichia coli/metabolismo , Fucose/metabolismo , Glicosídeo Hidrolases/química , Humanos , Leite Humano/química , Oligossacarídeos/metabolismo , Especificidade por Substrato , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética
8.
Appl Environ Microbiol ; 88(2): e0143721, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34731055

RESUMO

Human milk oligosaccharides (HMOs), which are natural bifidogenic prebiotics, were recently commercialized to fortify formula milk. However, HMO assimilation phenotypes of bifidobacteria vary by species and strain, which has not been fully linked to strain genotype. We have recently shown that specialized uptake systems, particularly for the internalization of major HMOs (fucosyllactose [FL]), are associated with the formation of a Bifidobacterium-rich gut microbial community. Phylogenetic analysis revealed that FL transporters have diversified into two clades harboring four clusters within the Bifidobacterium genus, but the underpinning functional diversity associated with this divergence remains underexplored. In this study, we examined the HMO consumption phenotypes of two bifidobacterial species, Bifidobacterium catenulatum subsp. kashiwanohense and Bifidobacterium pseudocatenulatum, both of which possess FL-binding proteins that belong to phylogenetic clusters with unknown specificities. Growth assays, heterologous gene expression experiments, and HMO consumption analyses showed that the FL transporter type from B. catenulatum subsp. kashiwanohense JCM 15439T conferred a novel HMO uptake pattern that includes complex fucosylated HMOs (lacto-N-fucopentaose II and lacto-N-difucohexaose I/II). Further genomic landscape analyses of FL transporter-positive bifidobacterial strains revealed that the H-antigen- or Lewis antigen-specific fucosidase gene(s) and FL transporter specificities were largely aligned. These results suggest that bifidobacteria have acquired FL transporters along with the corresponding gene sets necessary to utilize the imported HMOs. Our results provide insight into the species- and strain-dependent adaptation strategies of bifidobacteria in HMO-rich environments. IMPORTANCE The gut of breastfed infants is generally dominated by health-promoting bifidobacteria. Human milk oligosaccharides (HMOs) from breast milk selectively promote the growth of specific taxa such as bifidobacteria, thus forming an HMO-mediated host-microbe symbiosis. While the coevolution of humans and bifidobacteria has been proposed, the underpinning adaptive strategies employed by bifidobacteria require further research. Here, we analyzed the divergence of the critical fucosyllactose (FL) HMO transporter within Bifidobacterium. We have shown that the diversification of the solute-binding proteins of the FL transporter led to uptake specificities of fucosylated sugars ranging from simple trisaccharides to complex hexasaccharides. This transporter and the congruent acquisition of the necessary intracellular enzymes allow bifidobacteria to consume different types of HMOs in a predictable and strain-dependent manner. These findings explain the adaptation and proliferation of bifidobacteria in the competitive and HMO-rich infant gut environment and enable accurate specificity annotation of transporters from metagenomic data.


Assuntos
Bifidobacterium , Leite Humano , Bifidobacterium/metabolismo , Humanos , Lactente , Metagenoma , Metagenômica , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Filogenia
9.
Appl Environ Microbiol ; 88(2): e0170721, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34757822

RESUMO

Human milk enriches members of the genus Bifidobacterium in the infant gut. One species, Bifidobacterium pseudocatenulatum, is found in the gastrointestinal tracts of adults and breastfed infants. In this study, B. pseudocatenulatum strains were isolated and characterized to identify genetic adaptations to the breastfed infant gut. During growth on pooled human milk oligosaccharides (HMOs), we observed two distinct groups of B. pseudocatenulatum, isolates that readily consumed HMOs and those that did not, a difference driven by variable catabolism of fucosylated HMOs. A conserved gene cluster for fucosylated HMO utilization was identified in several sequenced B. pseudocatenulatum strains. One isolate, B. pseudocatenulatum MP80, which uniquely possessed GH95 and GH29 α-fucosidases, consumed the majority of fucosylated HMOs tested. Furthermore, B. pseudocatenulatum SC585, which possesses only a single GH95 α-fucosidase, lacked the ability to consume the complete repertoire of linkages within the fucosylated HMO pool. Analysis of the purified GH29 and GH95 fucosidase activities directly on HMOs revealed complementing enzyme specificities with the GH95 enzyme preferring 1-2 fucosyl linkages and the GH29 enzyme favoring 1-3 and 1-4 linkages. The HMO-binding specificities of the family 1 solute-binding protein component linked to the fucosylated HMO gene cluster in both SC585 and MP80 are similar, suggesting differential transport of fucosylated HMO is not a driving factor in each strain's distinct HMO consumption pattern. Taken together, these data indicate the presence or absence of specific α-fucosidases directs the strain-specific fucosylated HMO utilization pattern among bifidobacteria and likely influences competitive behavior for HMO foraging in situ. IMPORTANCE Often isolated from the human gut, microbes from the bacterial family Bifidobacteriaceae commonly possess genes enabling carbohydrate utilization. Isolates from breastfed infants often grow on and possess genes for the catabolism of human milk oligosaccharides (HMOs), glycans found in human breast milk. However, catabolism of structurally diverse HMOs differs between bifidobacterial strains. This study identifies key gene differences between Bifidobacterium pseudocatenulatum isolates that may impact whether a microbe successfully colonizes an infant gut. In this case, the presence of complementary α-fucosidases may provide an advantage to microbes seeking residence in the infant gut. Such knowledge furthers our understanding of how diet drives bacterial colonization of the infant gut.


Assuntos
Bifidobacterium pseudocatenulatum , Leite Humano , Bifidobacterium pseudocatenulatum/metabolismo , Feminino , Humanos , Hidrolases/metabolismo , Lactente , Leite Humano/química , Oligossacarídeos/metabolismo , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
10.
Appl Microbiol Biotechnol ; 106(24): 8067-8077, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36370158

RESUMO

This study describes the molecular identification, biochemical characterization, and stabilization of three recombinant AlfA, AlfB, and AlfC fucosidases from Lacticaseibacillus rhamnosus INIA P603. Even though previous studies revealed the presence of fucosidase activity in L. rhamnosus extracts, the identification of the fucosidases, their physicochemical properties, and the substrate spectrum remained unknown. Although the presence of alfB is not common in strains of L. rhamnosus, fucosidases from L. rhamnosus INIA P603 were selected because this strain exhibited higher fucosidase activity in culture and the complete set of fucosidases. A high yield of purified recombinant AlfA, AlfB, and AlfC fucosidases was obtained (8, 12, and 18 mg, respectively). AlfA, AlfB, and AlfC showed their optimal activities at pH 5.0 and 4.0 at 60 °C, 40 °C, and 50 °C, respectively. Unlike 3-fucosyllactose, all three recombinant fucosidases were able to hydrolyze 2'-fucosyllactose (2'-FL), and their activities were improved through their immobilization on agarose supports. Nevertheless, immobilized AlfB exhibited the highest hydrolysis, releasing 39.6 µmol of fucose mg enzyme-1 min-1. Only the immobilized AlfB was able to synthetize 2'-FL. In conclusion, the enzymatic properties elucidated in this study support the potential ability of fucosidases from L. rhamnosus INIA P603 to hydrolyze fucosylated substrates as well as justifying interest for further research into AlfB for its application to catalyze the synthesis of fucosylated prebiotics. KEY POINTS: • Few strains of L. rhamnosus exhibited alfB on their chromosomes. • Fucosidases from L. rhamnosus INIA P603 were characterized and stabilized. • Although all the fucosidases hydrolyzed 2'-FL, only AlfB transfucosylated lactose.


Assuntos
Lacticaseibacillus rhamnosus , alfa-L-Fucosidase , alfa-L-Fucosidase/genética , Lacticaseibacillus
11.
Biosci Biotechnol Biochem ; 86(10): 1413-1416, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35867865

RESUMO

Deletion of α-1,3/4-fucosidase activity in Arabidopsis thaliana resulted in the accumulation of GN1-type free N-glycans with the Lewis a epitope (GN1-FNG). This suggests that the release of α-fucose residue(s) may trigger rapid degradation of the plant complex-type (PCT) GN1-FNG. The fact that PCT-GN1-FNG has rarely been detected to date is probably due to its easier degradation compared with PCT-GN2-FNG.


Assuntos
Arabidopsis , alfa-L-Fucosidase , Arabidopsis/genética , Arabidopsis/metabolismo , Epitopos , Fucose/química , Polissacarídeos/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
12.
BMC Pediatr ; 22(1): 403, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820891

RESUMO

BACKGROUND: Fucosidosis is one of the rare autosomal recessive lysosomal storage diseases (LSDs) attributed to FUCA1 variants causing the deficiency of α-L-fucosidase in vivo. Α-L-fucosidase deficiency will cause excessive accumulation of fucosylated glycoproteins and glycolipids, which eventually leads to dysfunction in all tissue systems and presents with multiple symptoms. Fucosidosis is a rare disease which is approximately 120 cases have been reported worldwide (Wang, L. et al., J Int Med Res 48, 1-6, 2020). The number of reported cases in China is no more than 10 (Zhang, X. et al., J Int Med Res 49:3000605211005975, 2021). CASE PRESENTATION: The patient was an 8-year-old Chinese boy who presented with postnatal motor retardation, intellectual disability, short stature, language development retardation, coarse facial features, hepatomegaly, and diffuse angiokeratoma of both palms. His genetic testing showed the presence of a homozygous pathogenic variant (c.671delC) in the FUCA1 gene. In addition, the enzymatic activity of α-L-fucosidase was low. Ultimately, the patient was diagnosed with fucosidosis. CONCLUSIONS: Fucosidosis is a rare lysosomal storage disease because of FUCA1 variants that cause the deficiency of α-L-fucosidase in vivo. An explicit diagnosis requires a combination of clinical manifestations, imaging examination, genetic testing and enzyme activity analysis. Early diagnosis plays an important role in fucosidosis.


Assuntos
Fucosidose , Povo Asiático , Criança , Fucosidose/diagnóstico , Fucosidose/genética , Homozigoto , Humanos , Masculino , Mutação , alfa-L-Fucosidase/genética
13.
Cell Microbiol ; 22(12): e13252, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32827216

RESUMO

The enteropathogenic bacterium, Campylobacter jejuni, was considered to be non-saccharolytic, but recently it emerged that l-fucose plays a central role in C. jejuni virulence. Half of C. jejuni clinical isolates possess an operon for l-fucose utilisation. In the intestinal tract, l-fucose is abundantly available in mucin O-linked glycan structures, but C. jejuni lacks a fucosidase enzyme essential to release the l-fucose. We set out to determine how C. jejuni can gain access to these intestinal l-fucosides. Growth of the fuc + C. jejuni strains, 129,108 and NCTC 11168, increased in the presence of l-fucose while fucose permease knockout strains did not benefit from additional l-fucose. With fucosidase assays and an activity-based probe, we confirmed that Bacteriodes fragilis, an abundant member of the intestinal microbiota, secretes active fucosidases. In the presence of mucins, C. jejuni was dependent on B. fragilis fucosidase activity for increased growth. Campylobacter jejuni invaded Caco-2 intestinal cells that express complex O-linked glycan structures that contain l-fucose. In infection experiments, C. jejuni was more invasive in the presence of B. fragilis and this increase is due to fucosidase activity. We conclude that C. jejuni fuc + strains are dependent on exogenous fucosidases for increased growth and invasion.


Assuntos
Bacteroides fragilis/enzimologia , Campylobacter jejuni/crescimento & desenvolvimento , Campylobacter jejuni/patogenicidade , Fucose/metabolismo , Mucinas/metabolismo , alfa-L-Fucosidase/metabolismo , Células CACO-2 , Campylobacter jejuni/genética , Humanos , Interações Microbianas/fisiologia , Virulência , alfa-L-Fucosidase/biossíntese
14.
Arch Microbiol ; 203(7): 4525-4538, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34148152

RESUMO

Cellulosimicrobium strain SE3T was isolated from the San Elijo coastal lagoon near San Diego. A whole genome-based phylogenetic comparison shows great heterogeneity within the Cellulosimicrobium genus. Based on average nucleotide identity, whole genome-based comparison, and the presence of a unique L-fucose metabolic pathway, strain SE3T was shown to belong to a novel species within the genus, together with five other strains. The name Cellulosimicrobium fucosivorans sp. nov. is proposed, with strain SE3T as the type strain. The strain encodes a unique alpha-L-fucosidase and the L-fucose metabolic pathway is homologous to the one recently described in Campylobacter jejuni. C. fucosivorans is able to grow on L-fucose, and interestingly, the biosynthesis of the yellow carotenoid is dependent on the presence of L-fucose in the media. The ability to metabolize fucose and the linked production of carotenoids are expected to provide C. fucosivorans with a competitive advantage in the sunny coastal lagoon area.


Assuntos
Actinobacteria , Carotenoides , Redes e Vias Metabólicas , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/metabolismo , California , Carotenoides/metabolismo , Ácidos Graxos/análise , Fucose/metabolismo , Redes e Vias Metabólicas/genética , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Especificidade da Espécie
15.
Protein Expr Purif ; 186: 105897, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33991676

RESUMO

Fucoidan oligosaccharides possesses diverse physicochemical and biological activities. Specific glycoside hydrolases are valuable tools for degrading polysaccharides to produce oligosaccharides. In this study, BcFucA, a novel fucosidase belonging to GH95 family from Bacillus cereus 2-8, was cloned into pET21a vector, expressed in E. coli BL21 (DE3) and characterized. The protein consists of 1136 amino acid residues encoded by 3411 bases and has a molecular weight of 125.35 kDa. The optimal temperature and pH of this enzyme are 50 °C and pH 4.0. In addition, this study showed that the unknown function domain (encoding Lys261-Thr681) defined as a linker is quite important for its activity. The obtained novel enzyme BcFucA will contribute to the effective degradation of fucoidan and future industrial applications.


Assuntos
Bacillus cereus , Escherichia coli/genética , Proteínas Recombinantes de Fusão , alfa-L-Fucosidase , Bacillus cereus/enzimologia , Bacillus cereus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Temperatura , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
16.
Extremophiles ; 25(3): 311-317, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33938983

RESUMO

Fucosylated oligosaccharides present in human milk perform various biological functions that benefit infants' health. These compounds can be also obtained by enzymatic synthesis. In this work, the effect of the immobilization of α-L-fucosidase from Thermotoga maritima on the synthesis of fucosylated oligosaccharides was studied, using lactose and 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as acceptor and donor substrates, respectively, and Eupergit® CM as an immobilization support. The enzyme was immobilized with 90% efficiency at pH 8 and ionic strength of 1.5 M. Immobilization decreased enzyme affinity for the donor substrate as shown by a 1.5-times higher KM value and a 22-times decrease of the kcat/KM ratio in comparison to the unbound enzyme. In contrast, no effect was observed on the synthesis/hydrolysis ratio (rs/rh) when α-L-fucosidase was immobilized. Also, the effect of initial concentration of substrates was studied. An increase of the acceptor concentration improved the yields of fucosylated oligosaccharides regardless enzyme immobilization. The synthesis yields of 38.9 and 40.6% were obtained using Eupergit® CM-bound or unbound enzyme, respectively, and 3.5 mM pNP-Fuc and 146 mM lactose. In conclusion, α-L-fucosidase from Thermotoga maritima was efficiently immobilized on Eupergit® CM support without affecting the synthesis of fucosylated oligosaccharides.


Assuntos
Thermotoga maritima , alfa-L-Fucosidase , Fucose , Oligossacarídeos , Especificidade por Substrato , Thermotoga , Thermotoga maritima/metabolismo , alfa-L-Fucosidase/metabolismo
17.
Bioorg Med Chem ; 42: 116243, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34126284

RESUMO

Core fucosylation is the attachment of an α-1,6-fucose moiety to the innermost N-acetyl glucosamine (GlcNAc) in N-glycans in mammalian systems. It plays a pivotal role in modulating the structural and biological functions of glycoproteins including therapeutic antibodies. Yet, few α-l-fucosidases appear to be capable of removing core fucose from intact glycoproteins. This paper describes a comparative study of the substrate specificity and relative activity of the human α-l-fucosidase (FucA1) and two bacterial α-l-fucosidases, the AlfC from Lactobacillus casei and the BfFuc from Bacteroides fragilis. This study was enabled by the synthesis of an array of structurally well-defined core-fucosylated substrates, including core-fucosylated N-glycopeptides and a few antibody glycoforms. It was found that AlfC and BfFuc could not remove core fucose from intact full-length N-glycopeptides or N-glycoproteins but could hydrolyze only the truncated Fucα1,6GlcNAc-peptide substrates. In contrast, the human α-l-fucosidase (FucA1) showed low activity on truncated Fucα1,6GlcNAc substrates but was able to remove core fucose from intact and full-length core-fucosylated N-glycopeptides and N-glycoproteins. In addition, it was found that FucA1 was the only α-l-fucosidase that showed low but apparent activity to remove core fucose from intact IgG antibodies. The ability of FucA1 to defucosylate intact monoclonal antibodies reveals an opportunity to evolve the human α-l-fucosidase for direct enzymatic defucosylation of therapeutic antibodies to improve their antibody-dependent cellular cytotoxicity.


Assuntos
Fucose/metabolismo , Glicopeptídeos/metabolismo , Glicoproteínas/metabolismo , alfa-L-Fucosidase/metabolismo , Bacteroides fragilis/enzimologia , Configuração de Carboidratos , Fucose/química , Glicopeptídeos/química , Glicoproteínas/química , Humanos , Lacticaseibacillus casei/enzimologia , Modelos Moleculares , Especificidade por Substrato , alfa-L-Fucosidase/química
18.
J Proteome Res ; 19(4): 1824-1846, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32108472

RESUMO

Lactobacillus casei group bacteria improve cheese ripening and may interact with host intestinal cells as probiotics, where surface proteins play a key role. Three complementary methods [trypsin shaving (TS), LiCl-sucrose (LS) extraction, and extracellular culture fluid precipitation] were used to analyze cell surface proteins of Lactobacillus paracasei GCRL163 by label-free quantitative proteomics after culture to the mid-exponential phase in bioreactors at pH 6.5 and temperatures of 30-45 °C. A total of 416 proteins, including 300 with transmembrane, cell wall anchoring, and secretory motifs and 116 cytoplasmic proteins, were quantified as surface proteins. Although LS caused significantly greater cell lysis as growth temperature increased, higher numbers of extracytoplasmic proteins were exclusively obtained by LS treatment. Together with the increased positive surface charge of cells cultured at supra-optimal temperatures, proteins including cell wall hydrolases Msp1/p75 and Msp2/p40, α-fucosidase AlfB, SecA, and a PspC-domain putative adhesin were upregulated in surface or secreted protein fractions, suggesting that cell adhesion may be altered. Prolonged heat stress (PHS) increased binding of L. paracasei GCRL163 to human colorectal adenocarcinoma HT-29 cells, relative to acid-stressed cells. This study demonstrates that PHS influences cell adhesion and relative abundance of proteins located on the surface, which may impact probiotic functionality, and the detected novel surface proteins likely linked to the cell cycle and envelope stress.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Lacticaseibacillus paracasei , Probióticos , Neoplasias Colorretais/genética , Células HT29 , Resposta ao Choque Térmico , Humanos , Proteínas de Membrana/genética
19.
Glycobiology ; 30(9): 735-745, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32149359

RESUMO

The deoxy sugar l-fucose is frequently found as a glycan constituent on and outside living cells, and in mammals it is involved in a wide range of biological processes including leukocyte trafficking, histo-blood group antigenicity and antibody effector functions. The manipulation of fucose levels in those biomedically important systems may provide novel insights and therapeutic leads. However, despite the large established sequence diversity of natural fucosidases, so far, very few enzymes have been characterized. We explored the diversity of the α-l-fucosidase-containing CAZY family GH29 by bio-informatic analysis, and by the recombinant production and exploration for fucosidase activity of a subset of 82 protein sequences that represent the family's large sequence diversity. After establishing that most of the corresponding proteins can be readily expressed in E. coli, more than half of the obtained recombinant proteins (57% of the entire subset) showed activity towards the simple chromogenic fucosylated substrate 4-nitrophenyl α-l-fucopyranoside. Thirty-seven of these active GH29 enzymes (and the GH29 subtaxa that they represent) had not been characterized before. With such a sequence diversity-based collection available, it can easily be used to screen for fucosidase activity towards biomedically relevant fucosylated glycoproteins. As an example, the subset was used to screen GH29 members for activity towards the naturally occurring sialyl-Lewis x-type epitope on glycoproteins, and several such enzymes were identified. Together, the results provide a significant increase in the diversity of characterized GH29 enzymes, and the recombinant enzymes constitute a resource for the further functional exploration of this enzyme family.


Assuntos
alfa-L-Fucosidase/metabolismo , Humanos , Polissacarídeos/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , alfa-L-Fucosidase/química , alfa-L-Fucosidase/isolamento & purificação
20.
Cancer Sci ; 111(7): 2284-2296, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32314457

RESUMO

α-l-Fucosidase 1 (FUCA1), a lysosomal enzyme that catalyses the hydrolytic cleavage of the terminal fucose residue, has been reported to be involved in tumorigenesis. However, the clinical significance and biological roles of FUCA1 in glioma remain largely unknown. We analyzed FUCA1 expression according to data in Oncomine, The Cancer Genome Atlas, and Chinese Glioma Genome Atlas databases and further verified FUCA1 expression with immunohistochemistry and real-time PCR analysis in glioma tissues. The results showed that FUCA1 overexpression was significantly associated with high-grade glioma as well as high mortality rates in the survival analysis. Data analyzed in cBioPortal showed that alterations in FUCA1 (1.4%) were correlated with worse survival in glioblastoma multiforme patients. Functional experiments showed that downregulation of FUCA1 suppressed glioma growth in vitro and in vivo. Conversely, overexpression of FUCA1 had the opposite effects on glioma. Mechanistically, transient inhibition of FUCA1 promoted the formation of large acidic vacuoles, as revealed by staining with acridine orange, increased the ratio of LC3-B/LC3-A, and modified the expression of Beclin-1 and Atg12, which are autophagic markers. Upregulation of FUCA1 attenuated starvation-induced autophagy in glioma. In addition, lower levels of tumor-infiltrating macrophages, including CD68+ (-30%), F4/80+ (-50%), and CD11c+ macrophages (-50%), were identified in FUCA1-downregulated glioma tissues, and CCL2/CCL5 neutralizing Abs blocked this effect. These results show that FUCA1 could serve as a potential therapeutic target for the treatment of patients with glioma by enhancing autophagy and inhibiting macrophage infiltration.


Assuntos
Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Macrófagos/metabolismo , alfa-L-Fucosidase/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Glioma/imunologia , Glioma/metabolismo , Glioma/patologia , Humanos , Imuno-Histoquímica , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Mutação , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , alfa-L-Fucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA