Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 93(1): 529-564, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38669516

RESUMO

The complex carbohydrate structures decorating human proteins and lipids, also called glycans, are abundantly present at cell surfaces and in the secretome. Glycosylation is vital for biological processes including cell-cell recognition, immune responses, and signaling pathways. Therefore, the structural and functional characterization of the human glycome is gaining more and more interest in basic biochemistry research and in the context of developing new therapies, diagnostic tools, and biotechnology applications. For glycomics to reach its full potential in these fields, it is critical to appreciate the specific factors defining the function of the human glycome. Here, we review the glycosyltransferases (the writers) that form the glycome and the glycan-binding proteins (the readers) with an essential role in decoding glycan functions. While abundantly present throughout different cells and tissues, the function of specific glycosylation features is highly dependent on their context. In this review, we highlight the relevance of studying the glycome in the context of specific carrier proteins, cell types, and subcellular locations. With this, we hope to contribute to a richer understanding of the glycome and a more systematic approach to identifying the roles of glycosylation in human physiology.


Assuntos
Glicômica , Glicosiltransferases , Polissacarídeos , Humanos , Glicosilação , Polissacarídeos/metabolismo , Polissacarídeos/química , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/química , Glicômica/métodos , Glicoproteínas/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Animais , Processamento de Proteína Pós-Traducional
2.
EMBO J ; 42(2): e111869, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36245281

RESUMO

Mucus is made of enormous mucin glycoproteins that polymerize by disulfide crosslinking in the Golgi apparatus. QSOX1 is a catalyst of disulfide bond formation localized to the Golgi. Both QSOX1 and mucins are highly expressed in goblet cells of mucosal tissues, leading to the hypothesis that QSOX1 catalyzes disulfide-mediated mucin polymerization. We found that knockout mice lacking QSOX1 had impaired mucus barrier function due to production of defective mucus. However, an investigation on the molecular level revealed normal disulfide-mediated polymerization of mucins and related glycoproteins. Instead, we detected a drastic decrease in sialic acid in the gut mucus glycome of the QSOX1 knockout mice, leading to the discovery that QSOX1 forms regulatory disulfides in Golgi glycosyltransferases. Sialylation defects in the colon are known to cause colitis in humans. Here we show that QSOX1 redox control of sialylation is essential for maintaining mucosal function.


Assuntos
Glicosiltransferases , Complexo de Golgi , Mucosa Intestinal , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Animais , Camundongos , Colo/metabolismo , Dissulfetos/metabolismo , Glicoproteínas , Glicosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Mucinas/química , Mucinas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Mucosa Intestinal/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(21): e2402554121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748580

RESUMO

Cell surface glycans are major drivers of antigenic diversity in bacteria. The biochemistry and molecular biology underpinning their synthesis are important in understanding host-pathogen interactions and for vaccine development with emerging chemoenzymatic and glycoengineering approaches. Structural diversity in glycostructures arises from the action of glycosyltransferases (GTs) that use an immense catalog of activated sugar donors to build the repeating unit and modifying enzymes that add further heterogeneity. Classical Leloir GTs incorporate α- or ß-linked sugars by inverting or retaining mechanisms, depending on the nucleotide sugar donor. In contrast, the mechanism of known ribofuranosyltransferases is confined to ß-linkages, so the existence of α-linked ribofuranose in some glycans dictates an alternative strategy. Here, we use Citrobacter youngae O1 and O2 lipopolysaccharide O antigens as prototypes to describe a widespread, versatile pathway for incorporating side-chain α-linked pentofuranoses by extracytoplasmic postpolymerization glycosylation. The pathway requires a polyprenyl phosphoribose synthase to generate a lipid-linked donor, a MATE-family flippase to transport the donor to the periplasm, and a GT-C type GT (founding the GT136 family) that performs the final glycosylation reaction. The characterized system shares similarities, but also fundamental differences, with both cell wall arabinan biosynthesis in mycobacteria, and periplasmic glucosylation of O antigens first discovered in Salmonella and Shigella. The participation of auxiliary epimerases allows the diversification of incorporated pentofuranoses. The results offer insight into a broad concept in microbial glycobiology and provide prototype systems and bioinformatic guides that facilitate discovery of further examples from diverse species, some in currently unknown glycans.


Assuntos
Glicosiltransferases , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosilação , Citrobacter/metabolismo , Citrobacter/genética , Antígenos O/metabolismo , Antígenos O/química , Polissacarídeos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Polissacarídeos Bacterianos/metabolismo
4.
Mol Cell Proteomics ; 23(6): 100776, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670309

RESUMO

Alterations in the glycomic profile are a hallmark of cancer, including colorectal cancer (CRC). While, the glycosylation of glycoproteins and glycolipids has been widely studied for CRC cell lines and tissues, a comprehensive overview of CRC glycomics is still lacking due to the usage of different samples and analytical methods. In this study, we compared glycosylation features of N-, O-glycans, and glycosphingolipid glycans for a set of 22 CRC cell lines, all measured by porous graphitized carbon nano-liquid chromatography-tandem mass spectrometry. An overall, high abundance of (sialyl)Lewis antigens for colon-like cell lines was found, while undifferentiated cell lines showed high expression of H blood group antigens and α2-3/6 sialylation. Moreover, significant associations of glycosylation features were found between the three classes of glycans, such as (sialyl)Lewis and H blood group antigens. Integration of the datasets with transcriptomics data revealed positive correlations between (sialyl)Lewis antigens, the corresponding glycosyltransferase FUT3 and transcription factors CDX1, ETS, HNF1/4A, MECOM, and MYB. This indicates a possible role of these transcription factors in the upregulation of (sialyl)Lewis antigens, particularly on glycosphingolipid glycans, via FUT3/4 expression in colon-like cell lines. In conclusion, our study provides insights into the possible regulation of glycans in CRC and can serve as a guide for the development of diagnostic and therapeutic biomarkers.


Assuntos
Diferenciação Celular , Neoplasias Colorretais , Glicoesfingolipídeos , Polissacarídeos , Humanos , Glicoesfingolipídeos/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Polissacarídeos/metabolismo , Linhagem Celular Tumoral , Colo/metabolismo , Glicosilação , Antígenos do Grupo Sanguíneo de Lewis/metabolismo , Fucosiltransferases/metabolismo , Fucosiltransferases/genética , Glicômica/métodos , Regulação Neoplásica da Expressão Gênica
5.
Semin Cell Dev Biol ; 134: 112-124, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35307283

RESUMO

In brown algae, the extracellular matrix (ECM) and its constitutive polymers play crucial roles in specialized functions, including algal growth and development. In this review we offer an integrative view of ECM construction in brown algae. We briefly report the chemical composition of its main constituents, and how these are interlinked in a structural model. We examine the ECM assembly at the tissue and cell level, with consideration on its structure in vivo and on the putative subcellular sites for the synthesis of its main constituents. We further discuss the biosynthetic pathways of two major polysaccharides, alginates and sulfated fucans, and the progress made beyond the candidate genes with the biochemical validation of encoded proteins. Key enzymes involved in the elongation of the glycan chains are still unknown and predictions have been made at the gene level. Here, we offer a re-examination of some glycosyltransferases and sulfotransferases from published genomes. Overall, our analysis suggests novel investigations to be performed at both the cellular and biochemical levels. First, to depict the location of polysaccharide structures in tissues. Secondly, to identify putative actors in the ECM synthesis to be functionally studied in the future.


Assuntos
Phaeophyceae , Phaeophyceae/genética , Phaeophyceae/química , Phaeophyceae/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Genoma , Matriz Extracelular/metabolismo
6.
J Biol Chem ; 300(7): 107445, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844137

RESUMO

Fibrillin microfibrils play a critical role in the formation of elastic fibers, tissue/organ development, and cardiopulmonary function. These microfibrils not only provide structural support and flexibility to tissues, but they also regulate growth factor signaling through a plethora of microfibril-binding proteins in the extracellular space. Mutations in fibrillins are associated with human diseases affecting cardiovascular, pulmonary, skeletal, and ocular systems. Fibrillins consist of up to 47 epidermal growth factor-like repeats, of which more than half are modified by protein O-glucosyltransferase 2 (POGLUT2) and/or POGLUT3. Loss of these modifications reduces secretion of N-terminal fibrillin constructs overexpressed in vitro. Here, we investigated the role of POGLUT2 and POGLUT3 in vivo using a Poglut2/3 double knockout (DKO) mouse model. Blocking O-glucosylation caused neonatal death with skeletal, pulmonary, and eye defects reminiscent of fibrillin/elastin mutations. Proteomic analyses of DKO dermal fibroblast medium and extracellular matrix provided evidence that fibrillins were more sensitive to loss of O-glucose compared to other POGLUT2/3 substrates. This conclusion was supported by immunofluorescent analyses of late gestation DKO lungs where FBN levels were reduced and microfibrils appeared fragmented in the pulmonary arteries and veins, bronchioles, and developing saccules. Defects in fibrillin microfibrils likely contributed to impaired elastic fiber formation and histological changes observed in DKO lung blood vessels, bronchioles, and saccules. Collectively, these results highlight the importance of POGLUT2/3-mediated O-glucosylation in vivo and open the possibility that O-glucose modifications on fibrillin influence microfibril assembly and or protein interactions in the ECM environment.


Assuntos
Fibrilinas , Pulmão , Camundongos Knockout , Animais , Camundongos , Pulmão/metabolismo , Pulmão/patologia , Fibrilinas/metabolismo , Fibrilinas/genética , Animais Recém-Nascidos , Glicosilação , Fibrilina-1/metabolismo , Fibrilina-1/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/genética
7.
J Biol Chem ; 300(3): 105734, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336294

RESUMO

Numerous putative glycosyltransferases (GTs) have been identified using bioinformatic approaches. However, demonstrating the activity of these GTs remains a challenge. Here, we describe the development of a rapid in vitro GT-array screening platform for activity of GTs. GT-arrays are generated by cell-free in vitro protein synthesis and binding using microplates precoated with a N-terminal Halo- or a C-terminal GST-tagged GT-encoding plasmid DNA and a capture antibody. These arrays are then used for screening of transferase activities and the reactions are monitored by a luminescence GLO assay. The products formed by these reactions can be analyzed directly from the microplates by mass spectrometry. Using this platform, a total of 280 assays were performed to screen 22 putative fucosyltransferases (FUTs) from family GT37 (seven from Arabidopsis and 15 from rice) for activity toward five acceptors: non-fucosylated tamarind xyloglucan (TXyG), arabinotriose (Ara3), non-fucosylated rhamnogalacturonan I (RG-I), and RG-II from the mur1-1 Arabidopsis mutant, and the celery RG-II monomer lacking Arap and MeFuc of chain B and l-Gal of chain A. Our screen showed that AtFUT2, AtFUT5, and AtFUT10 have activity toward RG-I, while AtFUT8 was active on RG-II. Five rice OsFUTs have XyG-FUT activity and four rice OsFUTs have activity toward Ara3. None of the putative OsFUTs were active on the RG-I and RG-II. However, promiscuity toward acceptors was observed for several FUTs. These findings extend our knowledge of cell wall polysaccharide fucosylation in plants. We believe that in vitro GT-array platform provides a valuable tool for cell wall biochemistry and other research fields.


Assuntos
Ensaios Enzimáticos , Fucosiltransferases , Glicosiltransferases , Proteínas de Plantas , Apium/enzimologia , Apium/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/química , Parede Celular/enzimologia , Parede Celular/metabolismo , Ensaios Enzimáticos/instrumentação , Ensaios Enzimáticos/métodos , Fucosiltransferases/análise , Fucosiltransferases/classificação , Fucosiltransferases/metabolismo , Glicosiltransferases/análise , Glicosiltransferases/metabolismo , Espectrometria de Massas , Oryza/enzimologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo
8.
J Biol Chem ; : 107602, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059496

RESUMO

Glycosylation is a predominant strategy plants employ to fine-tune the properties of small molecule metabolites to affect their bioactivity, transport, and storage. It is also important in biotechnology and medicine as many glycosides are utilized in human health. Small molecule glycosylation is largely carried out by family 1 glycosyltransferases. Here, we report a structural and biochemical investigation of UGT95A1, a family 1 GT enzyme from Pilosella officinarum that exhibits a strong, unusual regiospecificity for the 3'-O position of flavonoid acceptor substrate luteolin. We obtained an apo crystal structure to help drive the analyses of a series of binding site mutants, revealing that while most residues are tolerant to mutations, key residues M145 and D464 are important for overall glycosylation activity. Interestingly, E347 is crucial for maintaining the strong preference for 3'-O glycosylation, while R462 can be mutated to increase regioselectivity. The structural determinants of regioselectivity were further confirmed in homologous enzymes. Our study also suggests that the enzyme contains large, highly dynamic, disordered regions. We showed that while most disordered regions of the protein have little to no implication in catalysis, the disordered regions conserved among investigated homologues are important to both the overall efficiency and regiospecificity of the enzyme. This report represents a comprehensive in-depth analysis of a family 1 GT enzyme with a unique substrate regiospecificity and may provide a basis for enzyme functional prediction and engineering.

9.
Genomics ; 116(2): 110798, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38266739

RESUMO

UDP-glycosyltransferases (UGTs) enzymes are pivotal in insecticide resistance by transforming hydrophobic substrates into more hydrophilic forms for efficient cell elimination. This study provides the first comprehensive investigation of Anopheles funestus UGT genes, their evolution, and their association with pyrethroid resistance. We employed a genome-wide association study using pooled sequencing (GWAS-PoolSeq) and transcriptomics on pyrethroid-resistant An. funestus, along with deep-targeted sequencing of UGTs in 80 mosquitoes Africa-wide. UGT310B2 was consistently overexpressed Africa-wide and significant gene-wise Fst differentiation was observed between resistant and susceptible populations: UGT301C2 and UGT302A3 in Malawi, and UGT306C2 in Uganda. Additionally, nonsynonymous mutations in UGT genes were identified. Gene-wise Tajima's D density curves provide insights into population structures within populations across these countries, supporting previous observations. These findings have important implications for current An. funestus control strategies facilitating the prediction of cross-resistance to other UGT-metabolised polar insecticides, thereby guiding more effective and targeted insecticide resistance management efforts.


Assuntos
Anopheles , Inseticidas , Piretrinas , Animais , Anopheles/genética , Glicosiltransferases/genética , Estudo de Associação Genômica Ampla , Inseticidas/farmacologia , Piretrinas/farmacologia , Mutação , Resistência a Inseticidas/genética
10.
J Biol Chem ; 299(3): 102931, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682498

RESUMO

The sugar moieties of many glycosylated small molecule natural products are essential for their biological activity. Glycosyltransferases (GTs) are enzymes responsible for installing these sugar moieties on a variety of biomolecules. Many GTs active on natural products are inherently substrate promiscuous and thus serve as useful tools in manipulating natural product glycosylation to generate new combinations of sugar units (glycones) and scaffold molecules (aglycones) in a process called glycodiversification. It is important to have an effective screening tool to detect the activity of promiscuous enzymes and their resulting glycoside products. Toward this aim, we developed a strategy for screening natural product GTs in a high-throughput fashion enabled by rapid isolation and detection of chromophoric or fluorescent glycosylated natural products. This involves a solvent extraction step to isolate the resulting polar glycoside product from the unreacted aglycone acceptor substrate and the detection of the formed glycoside by the innate absorbance or fluorescence of the aglycone moiety. Using our approach, we screened a collection of natural product GTs against a panel of precursors to therapeutically important molecules. Three GTs showed previously unreported promiscuity toward anthraquinones resulting in novel ε-rhodomycinone glycosides. Considering the pharmaceutical value of clinically used anthraquinone glycosides that are biosynthesized from an ε-rhodomycinone precursor, and the significance that the sugar moiety has on the biological activity of these drugs, our results are of particular importance toward the glycodiversification of therapeutics in this class. The GTs identified and the novel compounds they produce show promise toward new biocatalytic tools and therapeutics.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Glicosídeos , Glicosiltransferases , Antraquinonas/química , Produtos Biológicos/química , Glicosídeos/síntese química , Glicosídeos/isolamento & purificação , Glicosiltransferases/metabolismo , Açúcares , Ensaios de Triagem em Larga Escala , Descoberta de Drogas/métodos
11.
Plant J ; 114(4): 875-894, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36891885

RESUMO

Significant changes have occurred in plant cell wall composition during evolution and diversification of tracheophytes. As the sister lineage to seed plants, knowledge on the cell wall of ferns is key to track evolutionary changes across tracheophytes and to understand seed plant-specific evolutionary innovations. Fern cell wall composition is not fully understood, including limited knowledge of glycoproteins such as the fern arabinogalactan proteins (AGPs). Here, we characterize the AGPs from the leptosporangiate fern genera Azolla, Salvinia, and Ceratopteris. The carbohydrate moiety of seed plant AGPs consists of a galactan backbone including mainly 1,3- and 1,3,6-linked pyranosidic galactose, which is conserved across the investigated fern AGPs. Yet, unlike AGPs of angiosperms, those of ferns contained the unusual sugar 3-O-methylrhamnose. Besides terminal furanosidic arabinose, Ara (Araf), the main linkage type of Araf in the ferns was 1,2-linked Araf, whereas in seed plants 1,5-linked Araf is often dominating. Antibodies directed against carbohydrate epitopes of AGPs supported the structural differences between AGPs of ferns and seed plants. Comparison of AGP linkage types across the streptophyte lineage showed that angiosperms have rather conserved monosaccharide linkage types; by contrast bryophytes, ferns, and gymnosperms showed more variability. Phylogenetic analyses of glycosyltransferases involved in AGP biosynthesis and bioinformatic search for AGP protein backbones revealed a versatile genetic toolkit for AGP complexity in ferns. Our data reveal important differences across AGP diversity of which the functional significance is unknown. This diversity sheds light on the evolution of the hallmark feature of tracheophytes: their elaborate cell walls.


Assuntos
Gleiquênias , Gleiquênias/genética , Filogenia , Proteínas de Plantas/química , Glicoproteínas/metabolismo , Parede Celular/metabolismo
12.
Plant J ; 114(5): 1178-1201, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891828

RESUMO

From the perspectives of pathway evolution, discovery and engineering of plant specialized metabolism, the nature of the biosynthetic routes represents a critical aspect. Classical models depict biosynthesis typically from an end-point angle and as linear, for example, connecting central and specialized metabolism. As the number of functionally elucidated routes increased, the enzymatic foundation of complex plant chemistries became increasingly well understood. The perception of linear pathway models has been severely challenged. With a focus on plant terpenoid specialized metabolism, we review here illustrative examples supporting that plants have evolved complex networks driving chemical diversification. The completion of several diterpene, sesquiterpene and monoterpene routes shows complex formation of scaffolds and their subsequent functionalization. These networks show that branch points, including multiple sub-routes, mean that metabolic grids are the rule rather than the exception. This concept presents significant implications for biotechnological production.


Assuntos
Alquil e Aril Transferases , Diterpenos , Sesquiterpenos , Filogenia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Diterpenos/metabolismo , Plantas/genética , Plantas/metabolismo , Sesquiterpenos/metabolismo , Terpenos/metabolismo , Proteínas de Plantas/metabolismo
13.
Glycobiology ; 34(6)2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38590172

RESUMO

Human noroviruses, globally the main cause of viral gastroenteritis, show strain specific affinity for histo-blood group antigens (HBGA) and can successfully be propagated ex vivo in human intestinal enteroids (HIEs). HIEs established from jejunal stem cells of individuals with different ABO, Lewis and secretor geno- and phenotypes, show varying susceptibility to such infections. Using bottom-up glycoproteomic approaches we have defined and compared the N-linked glycans of glycoproteins of seven jejunal HIEs. Membrane proteins were extracted, trypsin digested, and glycopeptides enriched by hydrophilic interaction liquid chromatography and analyzed by nanoLC-MS/MS. The Byonic software was used for glycopeptide identification followed by hands-on verifications and interpretations. Glycan structures and attachment sites were identified from MS2 spectra obtained by higher-energy collision dissociation through analysis of diagnostic saccharide oxonium ions (B-ions), stepwise glycosidic fragmentation of the glycans (Y-ions), and peptide sequence ions (b- and y-ions). Altogether 694 unique glycopeptides from 93 glycoproteins were identified. The N-glycans encompassed pauci- and oligomannose, hybrid- and complex-type structures. Notably, polyfucosylated HBGA-containing glycopeptides of the four glycoproteins tetraspanin-8, carcinoembryonic antigen-related cell adhesion molecule 5, sucrose-isomaltase and aminopeptidase N were especially prominent and were characterized in detail and related to donor ABO, Lewis and secretor types of each HIE. Virtually no sialylated N-glycans were identified for these glycoproteins suggesting that terminal sialylation was infrequent compared to fucosylation and HBGA biosynthesis. This approach gives unique site-specific information on the structural complexity of N-linked glycans of glycoproteins of human HIEs and provides a platform for future studies on the role of host glycoproteins in gastrointestinal infectious diseases.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Caliciviridae , Fucose , Glicoproteínas , Antígenos de Histocompatibilidade , Jejuno , Organoides , Glicômica , Proteômica , Genótipo , Fenótipo , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Fucose/metabolismo , Glicosilação , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Humanos , Glicopeptídeos/química , Infecções por Caliciviridae/sangue , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/metabolismo , Organoides/metabolismo , Jejuno/metabolismo , Jejuno/virologia
14.
Planta ; 259(2): 50, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285114

RESUMO

MAIN CONCLUSION: The oxidosqualene cyclases (OSCs) generating triterpenoid skeletons in Cyclocarya paliurus were identified for the first time, and two uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyzing the glycosylation of flavonoids were characterized. Cyclocarya paliurus, a native rare dicotyledonous plant in China, contains an abundance of triterpenoid saponins and flavonoid glycosides that exhibit valuable pharmaceutical effects in preventing hypertension, hyperlipidemia, and diabetes. However, the molecular mechanism explaining the biosynthesis of triterpenoid saponin and flavonoid glycoside in C. paliurus remains unclear. In this study, the triterpene content in different tissues and the expression pattern of genes encoding the key enzymes associated with triterpenoid saponin and flavonoid glycoside biosynthesis were studied using transcriptome and metabolome analysis. The eight upstream oxidosqualene cyclases (OSCs) involved in triterpenoid saponin biosynthesis were functionally characterized, among them CpalOSC6 catalyzed 2,3;22,23-dioxidosqualene to form 3-epicabraleadiol; CpalOSC8 cyclized 2,3-oxidosqualene to generate dammarenediol-II; CpalOSC2 and CpalOSC3 produced ß-amyrin and CpalOSC4 produced cycloartenol, while CpalOSC2-CpalOSC5, CpalOSC7, and CpalOSC8 all produced lanosterol. However, no catalytic product was detected for CpalOSC1. Moreover, two downstream flavonoid uridine diphosphate (UDP)-glycosyltransferases (UGTs) (CpalUGT015 and CpalUGT100) that catalyze the last step of flavonoid glycoside biosynthesis were functionally elucidated. These results uncovered the key genes involved in the biosynthesis of triterpenoid saponins and flavonoid glycosides in C. paliurus that could be applied to produce flavonoid glycosides and key triterpenoid saponins in the future via a synthetic strategy.


Assuntos
Saponinas , Esqualeno/análogos & derivados , Triterpenos , Glicosídeos , Flavonoides , Saponinas/genética , Glicosiltransferases , Difosfato de Uridina
15.
New Phytol ; 243(3): 936-950, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38831647

RESUMO

Glycosyltransferases (GTs) are enzymes that transfer sugars to various targets. They play important roles in diverse biological processes, including photosynthesis, cell motility, exopolysaccharide biosynthesis, and lipid metabolism; however, their involvement in regulating carbon metabolism in Synechocystis sp. PCC 6803 has not been reported. We identified a novel GT protein, Slr1064, involved in carbon metabolism. The effect of slr1064 deletion on the growth of Synechocystis cells and functional mechanisms of Slr1064 on carbon metabolism were thoroughly investigated through physiological, biochemistry, proteomic, and metabolic analyses. We found that this GT, which is mainly distributed in the membrane compartment, is essential for the growth of Synechocystis under heterotrophic and mixotrophic conditions, but not under autotrophic conditions. The deletion of slr1064 hampers the turnover rate of Gap2 under mixotrophic conditions and disrupts the assembly of the PRK/GAPDH/CP12 complex under dark culture conditions. Additionally, UDP-GlcNAc, the pivotal metabolite responsible for the O-GlcNAc modification of GAPDH, is downregulated in the Δslr1064. Our work provides new insights into the role of GTs in carbon metabolism in Synechocystis and elucidate the mechanism by which carbon metabolism is regulated in this important model organism.


Assuntos
Proteínas de Bactérias , Carbono , Glicosiltransferases , Synechocystis , Uridina Difosfato N-Acetilglicosamina , Synechocystis/metabolismo , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Carbono/metabolismo , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Uridina Difosfato N-Acetilglicosamina/metabolismo , Regulação Bacteriana da Expressão Gênica , Deleção de Genes
16.
Chemistry ; 30(32): e202401108, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38567703

RESUMO

Sialyl-Lewisx (SLex) is involved in immune regulation, human fertilization, cancer, and bacterial and viral diseases. The influence of the complex glycan structures, which can present SLex epitopes, on binding is largely unknown. We report here a chemoenzymatic strategy for the preparation of a panel of twenty-two isomeric asymmetrical tri-antennary N-glycans presenting SLex-Lex epitopes on either the MGAT4 or MGAT5 arm that include putative high-affinity ligands for E-selectin. The N-glycans were prepared starting from a sialoglycopeptide isolated from egg yolk powder and took advantage of inherent substrate preferences of glycosyltransferases and the use of 5'-diphospho-N-trifluoracetylglucosamine (UDP-GlcNHTFA) that can be transferred by branching N-acetylglucosaminyltransferases to give, after base treatment, GlcNH2-containing glycans that temporarily disable an antenna from enzymatic modification. Glycan microarray binding studies showed that E-selectin bound equally well to linear glycans and tri-antennary N-glycans presenting SLex-Lex. On the other hand, it was found that hemagglutinins (HA) of H5 influenza A viruses (IAV) preferentially bound the tri-antennary N-glycans. Furthermore, several H5 HAs preferentially bound to N-glycan presenting SLex on the MGAT4 arm. SLex is displayed in the respiratory tract of several avian species, demonstrating the relevance of investigating the binding of, among others IAVs, to complex N-glycans presenting SLex.


Assuntos
Selectina E , Vírus da Influenza A , Polissacarídeos , Antígeno Sialil Lewis X , Polissacarídeos/química , Polissacarídeos/metabolismo , Vírus da Influenza A/metabolismo , Antígeno Sialil Lewis X/metabolismo , Antígeno Sialil Lewis X/química , Selectina E/metabolismo , Selectina E/química , Humanos , Oligossacarídeos/química , Oligossacarídeos/síntese química , Oligossacarídeos/metabolismo , Receptores Virais/metabolismo , Receptores Virais/química , Epitopos/química , Epitopos/metabolismo , Animais
17.
Bioorg Chem ; 146: 107287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503024

RESUMO

Enzyme-based glycosylation is of great interest in the context of natural products decoration. Yet, its industrial application is hindered by optimisation difficulties and hard-to-standardise productivities. In this study, five sugar nucleotide-dependent glucosyltransferases from different origins (bacterial, plant and fungal) were coupled with soy sucrose synthase (GmSuSy) to create a set of diverse cascade biocatalysts for flavonoid glucosylation, which evaluation brought new insights into the field. Investigations into co-expression conditions and reaction settings enabled to define optimal induction temperature (25 °C) and uridine diphosphate (UDP) concentration (0.5 mM) for all tested pairs of enzymes. Moreover, the influence of pH and substrate concentration on the monoglucosylated product distribution was detected and analysed. The utilisation of crude protein extracts as a cost-effective source of catalysts unveiled their glycosidase activity against flavonoid glucosides, resulting in decreased productivity, which, to our knowledge, has not previously been discussed in such a context. Additionally, examination of the commercially available EziG immobilisation resins showed that selection of suitable carrier for solid catalyst production can be problematic and not only enzyme's but also reagent's properties have to be considered. Flavonoids, due to their complexation and hydrophobic properties, can adsorb on different types of surfaces, including divalent metal ions required for IMAC based immobilisation, necessitating detailed examination of the resins while the catalysis design.


Assuntos
Flavonoides , Glucosiltransferases , Glucosiltransferases/metabolismo , Glicosilação , Nucleotídeos
18.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928016

RESUMO

While much has been learned about sphingolipids, originally named for their sphinx-like enigmatic properties, there are still many unanswered questions about the possible effect(s) of the composition of ceramide on the synthesis and/or behavior of a glycosphingolipid (GSL). Over time, studies of their ceramide component, the sphingoid base containing the lipid moiety of GSLs, were frequently distinct from those performed to ascertain the roles of the carbohydrate moieties. Due to the number of classes of GSLs that can be derived from ceramide, this review focuses on the possible role(s) of ceramide in the synthesis/function of just one GSL class, derived from glucosylceramide (Glc-Cer), namely sialylated ganglio derivatives, initially characterized and named gangliosides (GGs) due to their presence in ganglion cells. While much is known about their synthesis and function, much is still being learned. For example, it is only within the last 15-20 years or so that the mechanism by which the fatty acyl component of ceramide affected its transport to different sites in the Golgi, where it is used for the synthesis of Glu- or galactosyl-Cer (Gal-Cer) and more complex GSLs, was defined. Still to be fully addressed are questions such as (1) whether ceramide composition affects the transport of partially glycosylated GSLs to sites where their carbohydrate chain can be elongated or affects the activity of glycosyl transferases catalyzing that elongation; (2) what controls the differences seen in the ceramide composition of GGs that have identical carbohydrate compositions but vary in that of their ceramide and vice versa; (3) how alterations in ceramide composition affect the function of membrane GGs; and (4) how this knowledge might be applied to the development of therapies for treating diseases that correlate with abnormal expression of GGs. The availability of an updatable data bank of complete structures for individual classes of GSLs found in normal tissues as well as those associated with disease would facilitate research in this area.


Assuntos
Ceramidas , Gangliosídeos , Glicoesfingolipídeos , Ceramidas/química , Ceramidas/metabolismo , Humanos , Animais , Gangliosídeos/química , Gangliosídeos/metabolismo , Glicoesfingolipídeos/metabolismo , Glicoesfingolipídeos/química , Esfingolipídeos/metabolismo , Esfingolipídeos/química , Glucosilceramidas/metabolismo , Glucosilceramidas/química
19.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892266

RESUMO

Insects have developed sophisticated detoxification systems to protect them from plant secondary metabolites while feeding on plants to obtain necessary nutrients. As an important enzyme in the system, glycosyltransferase 1 (GT1) conjugates toxic compounds to mitigate their harm to insects. However, the evolutionary link between GT1s and insect plant feeding remains elusive. In this study, we explored the evolution of GT1s across different insect orders and feeding niches using publicly available insect genomes. GT1 is widely present in insect species; however, its gene number differs among insect orders. Notably, plant-sap-feeding species have the highest GT1 gene numbers, whereas blood-feeding species display the lowest. GT1s appear to be associated with insect adaptations to different plant substrates in different orders, while the shift to non-plant feeding is related to several losses of GT1s. Most large gene numbers are likely the consequence of tandem duplications showing variations in collinearity among insect orders. These results reveal the potential relationships between the evolution of GT1s and insect adaptation to plant feeding, facilitating our understanding of the molecular mechanisms underlying insect-plant interactions.


Assuntos
Adaptação Fisiológica , Duplicação Gênica , Glicosiltransferases , Insetos , Animais , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Adaptação Fisiológica/genética , Plantas/genética , Plantas/metabolismo , Evolução Molecular , Filogenia , Herbivoria , Genoma de Inseto , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
20.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474028

RESUMO

The uridine diphosphate glycosyltransferase (UGT) superfamily plays a key role in the metabolism of xenobiotics and metabolic wastes, which is essential for detoxifying those species. Over the last several decades, a huge effort has been put into studying human and mammalian UGT homologs, but family members in other organisms have been explored much less. Potentially, other UGT homologs can have desirable substrate specificity and biological activities that can be harnessed for detoxification in various medical settings. In this review article, we take a plant UGT homology, UGT71G1, and compare its structural and biochemical properties with the human homologs. These comparisons suggest that even though mammalian and plant UGTs are functional in different environments, they may support similar biochemical activities based on their protein structure and function. The known biological functions of these homologs are discussed so as to provide insights into the use of UGT homologs from other organisms for addressing human diseases related to UGTs.


Assuntos
Glicosiltransferases , Difosfato de Uridina , Animais , Humanos , Glicosiltransferases/metabolismo , Plantas/metabolismo , Filogenia , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA