Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Infect Immun ; 90(7): e0003522, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35695502

RESUMO

Melioidosis is an underreported human disease caused by the Gram-negative intracellular pathogen Burkholderia pseudomallei (Bpm). Both the treatment and the clearance of the pathogen are challenging, with high relapse rates leading to latent infections. This has been linked to the bacterial persistence phenomenon, a growth arrest strategy that allows bacteria to survive under stressful conditions, as in the case of antibiotic treatment, within a susceptible clonal population. At a molecular level, this phenomenon has been associated with the presence of toxin-antitoxin (TA) systems. We annotated the Bpm K96243 genome and selected 11 pairs of genes encoding for these TA systems, and their expression was evaluated under different conditions (supralethal antibiotic conditions; intracellular survival bacteria). The predicted HigB toxin (BPSL3343) and its predicted antitoxin HigA (BPS_RS18025) were further studied using mutant construction. The phenotypes of two mutants (ΔhigB and ΔhigB ΔhigA) were evaluated under different conditions compared to the wild-type (WT) strain. The ΔhigB toxin mutant showed a defect in intracellular survival on macrophages, a phenotype that was eliminated after levofloxacin treatment. We found that the absence of the toxin provides an advantage over the WT strain, in both in vitro and in vivo models, during persister conditions induced by levofloxacin. The lack of the antitoxin also resulted in differential responses to the conditions evaluated, and under some conditions, it restored the WT phenotype, overall suggesting that both toxin and antitoxin components play a role in the persister-induced phenotype in Bpm.


Assuntos
Antitoxinas , Burkholderia pseudomallei , Sistemas Toxina-Antitoxina , Antibacterianos/farmacologia , Antitoxinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Humanos , Levofloxacino , Sistemas Toxina-Antitoxina/genética , Virulência/genética
2.
J Sci Food Agric ; 102(14): 6749-6756, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35633128

RESUMO

BACKGROUND: Toxin-antitoxin (TA) systems are prevalent adaptive genetic elements in bacterial genomes, which can respond to environmental stress. While, few studies have addressed TA systems in probiotics and their roles in the adaptation to gastrointestinal transit (GIT) environments. RESULTS: The Weissella cibaria 018 could survive in pH 3.0-5.0 and 0.5-3.0 g L-1 bile salt, and its HigBA system responded to the bile salt stress, but not to acid stress. The toxin protein HigB and its cognate antitoxin protein HigA had 85.1% and 100% similarity with those of Lactobacillus plantarum, respectively, and they formed the stable tetramer HigB-(HigA)2 -HigB structure in W. cibaria 018. When exposed to 1.5-3.0 g L-1 bile salt, the transcriptions of higB and higA were up-regulated with 4.39-19.29 and 5.94-30.91 folds, respectively. Meanwhile, W. cibaria 018 gathered into a mass with 48.07% survival rate and its persister cells were found to increase 8.21% under 3.0 g L-1 bile salt. CONCLUSION: The HigBA TA system of W. cibaria 018 responded to the bile salt stress, but not to acid stress, which might offer novel perspectives to understand the tolerant mechanism of probiotics to GIT environment. © 2022 Society of Chemical Industry.


Assuntos
Antitoxinas , Sistemas Toxina-Antitoxina , Weissella , Antitoxinas/química , Antitoxinas/metabolismo , Bile/metabolismo , Ácidos e Sais Biliares , Estresse Salino , Sistemas Toxina-Antitoxina/genética , Weissella/genética , Weissella/metabolismo
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(5): 828-833, 2022 Sep.
Artigo em Zh | MEDLINE | ID: mdl-36224685

RESUMO

Objective: To investigate the effect of Mycobacterium tuberculosis ( Mtb) higBA on bacterial stress response and intracellular infection and immunity. Methods: The target gene amplified from Mtb H37Rv genome was cloned to the vector and then transferred to Mycobacterium smegmatis ( Ms) to construct a recombinant strain. Stress response experiment and Raw264.7 mouse macrophage infection was carried out with Ms_higBA, the recombinant strain, and Ms_ vec, the vector strain. Tests were conducted to measure bacterial colony forming unit (CFU) and transcriptional levels of cytokines, including interleukin ( IL)-1ß, IL-6, IL-10, IL-12 p40, interferon ( IFN)- γ, tumor necrosis factor ( TNF)- α, and inducible nitric oxide synthase ( iNOS). Results: The recombinant strain, Ms_higBA, was constructed successfully. According to the findings of the stress response experiment, higBA could indeed enhance bacterial survival under certain conditions of in vitro culture. Intracellular infection experiment demonstrated that higBA enhanced bacterial survival in macrophages and influenced the transcriptional level of cytokines. Conclusion: The higBA genes from Mtb play a role in bacterial stress response and intracellular infection and immunity.


Assuntos
Mycobacterium tuberculosis , Animais , Linhagem Celular , Citocinas/metabolismo , Interferons , Interleucina-10/metabolismo , Interleucina-12 , Interleucina-6 , Camundongos , Mycobacterium smegmatis/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Biochem J ; 477(20): 4001-4019, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33000860

RESUMO

The toxin-antitoxin (TA) systems are small operon systems that are involved in important physiological processes in bacteria such as stress response and persister cell formation. Escherichia coli HigBA complex belongs to the type II TA systems and consists of a protein toxin called HigB and a protein antitoxin called HigA. The toxin HigB is a ribosome-dependent endoribonuclease that cleaves the translating mRNAs at the ribosome A site. The antitoxin HigA directly binds the toxin HigB, rendering the HigBA complex catalytically inactive. The existing biochemical and structural studies had revealed that the HigBA complex forms a heterotetrameric assembly via dimerization of HigA antitoxin. Here, we report a high-resolution crystal structure of E. coli HigBA complex that revealed a well-ordered DNA binding domain in HigA antitoxin. Using SEC-MALS and ITC methods, we have determined the stoichiometry of complex formation between HigBA and a 33 bp DNA and report that HigBA complex as well as HigA homodimer bind to the palindromic DNA sequence with nano molar affinity. Using E. coli growth assays, we have probed the roles of key, putative active site residues in HigB. Spectroscopic methods (CD and NMR) and molecular dynamics simulations study revealed intrinsic dynamic in antitoxin in HigBA complex, which may explain the large conformational changes in HigA homodimer in free and HigBA complexes observed previously. We also report a truncated, heterodimeric form of HigBA complex that revealed possible cleavage sites in HigBA complex, which can have implications for its cellular functions.


Assuntos
Antitoxinas/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Óperon/genética , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos/genética , Multimerização Proteica , Proteínas Recombinantes , Regulação para Cima
5.
Biochem Biophys Res Commun ; 478(4): 1521-7, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27601326

RESUMO

The toxin-antitoxin system is ubiquitously existed in bacteria and archaea, performing a wide variety of functions modulating cell fitness in response to environmental cues. In this report, we solved the crystal structure of the toxin-antitoxin HigBA complex from E. coli K-12 to 2.7 Å resolution. The crystal structure of the HigBA complex displays a hetero-tetramer (HigBA)2 form comprised by two HigB and two HigA subunits. Each toxin HigB resumes a microbial RNase T1 fold, characteristic of a three antiparallel ß-sheet core shielded by a few α-helices at either side. Each antitoxin HigA composed of all α-helices resembles a "C"-shaped clamp nicely encompassing a HigB in the (HigBA)2 complex. Two HigA monomers dimerize at their N-terminal domain. We showed that HigA helix α1 was essential for HigA dimerization and the hetero-tetramer (HigBA)2 formation, but not for a hetero-dimeric HigBA formation. HigA dimerization mediated by helix α1 was dispensable for DNA-binding, as a heterodimeric HigBA complex still bound to the higBA operator in vitro. The HigA C-terminal domain with a helix-turn-helix fold was essential for DNA binding. We also defined two palindromes in higBA operator specifically recognized by HigA and HigBA in vitro.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Peso Molecular , Regiões Operadoras Genéticas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína
6.
Microbiol Spectr ; 12(8): e0074824, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38916327

RESUMO

Burkholderia pseudomallei (Bpm) is a Gram-negative intracellular pathogen that causes melioidosis in humans, a neglected, underreported, and lethal disease that can reach a fatal outcome in over 50% of the cases. It can produce both acute and chronic infections, the latter being particularly challenging to eliminate because of the intracellular life cycle of the bacteria and its ability to generate a "persister" dormant state. The molecular mechanism that allows the switch between growing and persister phenotypes is not well understood but it is hypothesized to be due at least in part to the participation of toxin-antitoxin (TA) systems. We have previously studied the link between one of those systems (defined as HigBA) with specific expression patterns associated with levofloxacin antibiotic exposure. Through in silico methods, we predicted the presence of another three pairs of genes encoding for additional putative HigBA systems. Therefore, our main goal was to establish which mechanisms are conserved as well as which pathways are specific among different Bpm TA systems from the same family. We hypothesize that the high prevalence, and sometimes even redundancy of these systems in the Bpm chromosomes indicates that they can interact with each other and not function as only individual systems, as it was traditionally thought, and might be playing an undefined role in Bpm lifecycle. Here, we show that both the toxin and the antitoxin of the different systems contribute to bacterial survival and that toxins from the same family can have a cumulative effect under environmental stressful conditions. IMPORTANCE: Toxin-antitoxin (TA) systems play a significant role in bacterial persistence, a phenomenon where bacterial cells enter a dormant or slow-growing state to survive adverse conditions such as nutrient deprivation, antibiotic exposure, or host immune responses. By studying TA systems in Burkholderia pseudomallei, we can gain insights into how this pathogen survives and persists in the host environment, contributing to its virulence and ability to cause melioidosis chronic infections.


Assuntos
Proteínas de Bactérias , Burkholderia pseudomallei , Melioidose , Sistemas Toxina-Antitoxina , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/patogenicidade , Sistemas Toxina-Antitoxina/genética , Melioidose/microbiologia , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Antibacterianos/farmacologia , Virulência/genética , Regulação Bacteriana da Expressão Gênica , Antitoxinas/genética , Antitoxinas/metabolismo
7.
J Microbiol ; 60(2): 192-206, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35102526

RESUMO

Toxin-antitoxin (TA) systems are growth-controlling genetic elements consisting of an intracellular toxin protein and its cognate antitoxin. TA systems have been spread among microbial genomes through horizontal gene transfer and are now prevalent in most bacterial and archaeal genomes. Under normal growth conditions, antitoxins tightly counteract the activity of the toxins. Upon stresses, antitoxins are inactivated, releasing activated toxins, which induce growth arrest or cell death. In this study, among nine functional TA modules in Bosea sp. PAMC 26642 living in Arctic lichen, we investigated the functionality of BoHigBA2. BohigBA2 is located close to a genomic island and adjacent to flagellar gene clusters. The expression of BohigB2 induced the inhibition of E. coli growth at 37°C, which was more manifest at 18°C, and this growth defect was reversed when BohigA2 was co-expressed, suggesting that this BoHigBA2 module might be an active TA module in Bosea sp. PAMC 26642. Live/dead staining and viable count analyses revealed that the BoHigB2 toxin had a bactericidal effect, causing cell death. Furthermore, we demonstrated that BoHigB2 possessed mRNA-specific ribonuclease activity on various mRNAs and cleaved only mRNAs being translated, which might impede overall translation and consequently lead to cell death. Our study provides the insight to understand the cold adaptation of Bosea sp. PAMC 26642 living in the Arctic.


Assuntos
Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Bradyrhizobiaceae/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Regiões Árticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas , Família Multigênica , RNA Mensageiro/metabolismo
8.
Front Microbiol ; 12: 748890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917044

RESUMO

The extraordinary expansion of Toxin Antitoxin (TA) modules in the genome of Mycobacterium tuberculosis has received significant attention over the last few decades. The cumulative evidence suggests that TA systems are activated in response to stress conditions and are essential for M. tuberculosis pathogenesis. In M. tuberculosis, Rv1955-Rv1956-Rv1957 constitutes the only tripartite TAC (Toxin Antitoxin Chaperone) module. In this locus, Rv1955 (HigB1) encodes for the toxin and Rv1956 (HigA1) encodes for antitoxin. Rv1957 encodes for a SecB-like chaperone that regulates HigBA1 toxin antitoxin system by preventing HigA1 degradation. Here, we have investigated the physiological role of HigB1 toxin in stress adaptation and pathogenesis of Mycobacterium tuberculosis. qPCR studies revealed that higBA1 is upregulated in nutrient limiting conditions and upon exposure to levofloxacin. We also show that the promoter activity of higBA1 locus in M. tuberculosis is (p)ppGpp dependent. We observed that HigB1 locus is non-essential for M. tuberculosis growth under different stress conditions in vitro. However, guinea pigs infected with higB1 deletion strain exhibited significantly reduced bacterial loads and pathological damage in comparison to the animals infected with the parental strain. Transcriptome analysis suggested that deletion of higB1 reduced the expression of genes involved in virulence, detoxification and adaptation. The present study describes the role of higB1 toxin in M. tuberculosis physiology and highlights the importance of higBA1 locus during infection in host tissues.

9.
Microorganisms ; 9(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668424

RESUMO

Chaperone proteins are crucial for proper protein folding and quality control, especially when cells encounter stress caused by non-optimal temperatures. DnaK is one of such essential chaperones in bacteria. Although DnaK has been well characterized, the function of its intrinsically disordered C-terminus has remained enigmatic as the deletion of this region has been shown to either enhance or reduce its protein folding ability. We have shown previously that DnaK interacts with toxin GraT of the GraTA toxin-antitoxin system in Pseudomonas putida. Interestingly, the C-terminal truncation of DnaK was shown to alleviate GraT-caused growth defects. Here, we aim to clarify the importance of DnaK in GraT activity. We show that DnaK increases GraT toxicity, and particularly important is the negatively charged motif in the DnaK C-terminus. Given that GraT has an intrinsically disordered N-terminus, the assistance of DnaK is probably needed for re-modelling the toxin structure. We also demonstrate that the DnaK C-terminal negatively charged motif contributes to the competitive fitness of P. putida at both high and optimal growth temperatures. Thus, our data suggest that the disordered C-terminal end of DnaK enhances the chaperone functionality.

10.
IUCrJ ; 8(Pt 5): 823-832, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34584743

RESUMO

Transcription factors are the primary regulators of gene expression and recognize specific DNA sequences under diverse physiological conditions. Although they are vital for many important cellular processes, it remains unclear when and how transcription factors and DNA interact. The antitoxin from a toxin-antitoxin system is an example of negative transcriptional autoregulation: during expression of the cognate toxin it is suppressed through binding to a specific DNA sequence. In the present study, the antitoxin HigA2 from Mycobacterium tuberculosis M37Rv was structurally examined. The crystal structure of M. tuberculosis HigA2 comprises three sections: an N-terminal autocleavage region, an α-helix bundle which contains an HTH motif, and a C-terminal ß-lid. The N-terminal region is responsible for toxin binding, but was shown to cleave spontaneously in its absence. The HTH motif performs a key role in DNA binding, with the C-terminal ß-lid influencing the interaction by mediating the distance between the motifs. However, M. tuberculosis HigA2 exhibits a unique coordination of the HTH motif and no DNA-binding activity is detected. Three crystal structures of M. tuberculosis HigA2 show a flexible alignment of the HTH motif, which implies that the motif undergoes structural rearrangement to interact with DNA. This study reveals the molecular mechanisms of how transcription factors interact with partner proteins or DNA.

11.
IUCrJ ; 7(Pt 4): 748-760, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32695421

RESUMO

The bacterial toxin-antitoxin (TA) system regulates cell growth under various environmental stresses. Mycobacterium tuberculosis, the causative pathogen of tuberculosis (TB), has three HigBA type II TA systems with reverse gene organization, consisting of the toxin protein HigB and labile antitoxin protein HigA. Most type II TA modules are transcriptionally autoregulated by the antitoxin itself. In this report, we first present the crystal structure of the M. tuberculosis HigA3 antitoxin (MtHigA3) and MtHigA3 bound to its operator DNA complex. We also investigated the interaction between MtHigA3 and DNA using NMR spectroscopy. The MtHigA3 antitoxin structure is a homodimer that contains a structurally well conserved DNA-binding domain at the N-terminus and a dimerization domain at the C-terminus. Upon comparing the HigA homologue structures, a distinct difference was found in the C-terminal region that possesses the ß-lid, and diverse orientations of two helix-turn-helix (HTH) motifs from HigA homologue dimers were observed. The structure of MtHigA3 bound to DNA reveals that the promoter DNA is bound to two HTH motifs of the MtHigA3 dimer presenting 46.5° bending, and the distance between the two HTH motifs of each MtHigA3 monomer was increased in MtHigA3 bound to DNA. The ß-lid, which is found only in the tertiary structure of MtHigA3 among the HigA homologues, causes the formation of a tight dimerization network and leads to a unique arrangement for dimer formation that is related to the curvature of the bound DNA. This work could contribute to the understanding of the HigBA system of M. tuberculosis at the atomic level and may contribute to the development of new antibiotics for TB treatment.

12.
Int J Biol Macromol ; 130: 99-108, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797012

RESUMO

In toxin-antitoxin systems, many antitoxin proteins that neutralize their cognate toxin proteins also bind to DNA to repress transcription, and the DNA-binding affinity of the antitoxin is affected by its toxin. We solved crystal structures of the antitoxin HigA (apo-SfHigA) and its complex with the toxin HigB (SfHigBA) from Shigella flexneri. The apo-SfHigA shows a distinctive V-shaped homodimeric conformation with sequestered N-domains having a novel fold. SfHigBA appears as a heterotetramer formed by N-terminal dimerization of SfHigB-bound SfHigA molecules. The conformational change in SfHigA upon SfHigB binding is mediated by rigid-body movements of its C-domains, which accompanied an overall conformational change from wide V-shaped to narrow V-shaped dimer. Consequently, the two putative DNA-binding helices (α7 in each subunit) are repositioned to a conformation more compatible with canonical homodimeric DNA-binding proteins containing HTH motifs. Collectively, this study demonstrates a conformational change in an antitoxin protein, which occurs upon toxin binding and is responsible for regulating antitoxin DNA binding.


Assuntos
Antitoxinas/química , Antitoxinas/metabolismo , Shigella flexneri , Toxinas Biológicas/metabolismo , Sequência de Aminoácidos , DNA/metabolismo , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína
13.
Toxins (Basel) ; 11(2)2019 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-30744127

RESUMO

The potentially self-poisonous toxin-antitoxin modules are widespread in bacterial chromosomes, but despite extensive studies, their biological importance remains poorly understood. Here, we used whole-cell proteomics to study the cellular effects of the Pseudomonas putida toxin GraT that is known to inhibit growth and ribosome maturation in a cold-dependent manner when the graA antitoxin gene is deleted from the genome. Proteomic analysis of P. putida wild-type and ΔgraA strains at 30 °C and 25 °C, where the growth is differently affected by GraT, revealed two major responses to GraT at both temperatures. First, ribosome biogenesis factors, including the RNA helicase DeaD and RNase III, are upregulated in ΔgraA. This likely serves to alleviate the ribosome biogenesis defect of the ΔgraA strain. Secondly, proteome data indicated that GraT induces downregulation of central carbon metabolism, as suggested by the decreased levels of TCA cycle enzymes isocitrate dehydrogenase Idh, α-ketoglutarate dehydrogenase subunit SucA, and succinate-CoA ligase subunit SucD. Metabolomic analysis revealed remarkable GraT-dependent accumulation of oxaloacetate at 25 °C and a reduced amount of malate, another TCA intermediate. The accumulation of oxaloacetate is likely due to decreased flux through the TCA cycle but also indicates inhibition of anabolic pathways in GraT-affected bacteria. Thus, proteomic and metabolomic analysis of the ΔgraA strain revealed that GraT-mediated stress triggers several responses that reprogram the cell physiology to alleviate the GraT-caused damage.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Pseudomonas putida/metabolismo , Antitoxinas/genética , Ciclo do Ácido Cítrico , Metaboloma , Proteoma , Pseudomonas putida/crescimento & desenvolvimento , Proteínas Ribossômicas/metabolismo
14.
Front Microbiol ; 9: 732, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706946

RESUMO

Acinetobacter baumannii is one of the major causes of hard to treat multidrug-resistant hospital infections. A. baumannii features contributing to its spread and persistence in clinical environment are only beginning to be explored. Bacterial toxin-antitoxin (TA) systems are genetic loci shown to be involved in plasmid maintenance and proposed to function as components of stress response networks. Here we present a thorough characterization of type II system of A. baumannii, which is the most ubiquitous TA module present in A. baumannii plasmids. higBA of A. baumannii is a reverse TA (the toxin gene is the first in the operon) and shows little homology to other TA systems of RelE superfamily. It is represented by two variants, which both are functional albeit exhibit strong difference in sequence conservation. The higBA2 operon is found on ubiquitous 11 Kb pAB120 plasmid, conferring carbapenem resistance to clinical A. baumannii isolates and represents a higBA variant that can be found with multiple sequence variations. We show here that higBA2 is capable to confer maintenance of unstable plasmid in Acinetobacter species. HigB2 toxin functions as a ribonuclease and its activity is neutralized by HigA2 antitoxin through formation of an unusually large heterooligomeric complex. Based on the in vivo expression analysis of gfp reporter gene we propose that HigA2 antitoxin and HigBA2 protein complex bind the higBA2 promoter region to downregulate its transcription. We also demonstrate that higBA2 is a stress responsive locus, whose transcription changes in conditions encountered by A. baumannii in clinical environment and within the host. We show elevated expression of higBA2 during stationary phase, under iron deficiency and downregulated expression after antibiotic (rifampicin) treatment.

15.
Toxins (Basel) ; 10(11)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441856

RESUMO

Staphylococcus aureus is a nosocomial pathogen that can cause chronic to persistent infections. Among different mediators of pathogenesis, toxin-antitoxin (TA) systems are emerging as the most prominent. These systems are frequently studied in Escherichia coli and Mycobacterial species but rarely explored in S. aureus. In the present study, we thoroughly analyzed the S. aureus genome and screened all possible TA systems using the Rasta bacteria and toxin-antitoxin database. We further searched E. coli and Mycobacterial TA homologs and selected 67 TA loci as putative TA systems in S. aureus. The host inhibition of growth (HigBA) TA family was predominantly detected in S. aureus. In addition, we detected seven pathogenicity islands in the S. aureus genome that are enriched with virulence genes and contain 26 out of 67 TA systems. We ectopically expressed multiple TA genes in E. coli and S. aureus that exhibited bacteriostatic and bactericidal effects on cell growth. The type I Fst toxin created holes in the cell wall while the TxpA toxin reduced cell size and induced cell wall septation. Besides, we identified a new TA system whose antitoxin functions as a transcriptional autoregulator while the toxin functions as an inhibitor of autoregulation. Altogether, this study provides a plethora of new as well as previously known TA systems that will revitalize the research on S. aureus TA systems.


Assuntos
Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Sistemas Toxina-Antitoxina/genética , Biologia Computacional , Escherichia coli/genética , Escherichia coli/imunologia , Mycobacterium/genética , Mycobacterium/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA