Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38423760

RESUMO

Photoreceptors are electrically coupled to one another, and the spatiotemporal properties of electrical synapses in a two-dimensional retinal network are still not well studied, because of the limitation of the single electrode or pair recording techniques which do not allow simultaneously measuring responses of multiple photoreceptors at various locations in the retina. A multiple electrode recording system is needed. In this study, we investigate the network properties of the two-dimensional rod coupled array of the salamander retina (both sexes were used) by using the newly available multiple patch electrode system that allows simultaneous recordings from up to eight cells and to determine the electrical connectivity among multiple rods. We found direct evidence that voltage signal spread in the rod-rod coupling network in the absence of I h (mediated by HCN channels) is passive and follows the linear cable equation. Under physiological conditions, I h shapes the network signal by progressively shortening the response time-to-peak of distant rods, compensating the time loss of signal traveling from distant rods to bipolar cell somas and facilitating synchronization of rod output signals. Under voltage-clamp conditions, current flow within the coupled rods follows Ohm's law, supporting the idea that nonlinear behaviors of the rod network are dependent on membrane voltage. Rod-rod coupling is largely symmetrical in the 2D array, and voltage-clamp blocking the next neighboring rod largely suppresses rod signal spread into the second neighboring rod, suggesting that indirect coupling pathways play a minor role in rod-rod coupling.


Assuntos
Células Fotorreceptoras , Retina , Animais , Células Fotorreceptoras/fisiologia , Retina/fisiologia , Urodelos/fisiologia
2.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930960

RESUMO

Sulforaphane is a chiral phytochemical with chemopreventive properties. The presence of a stereogenic sulfur atom is responsible for the chirality of the natural isothiocyanate. The key role of sulfur chirality in biological activity is underscored by studies of the efficacy of individual enantiomers as chemoprotective agents. The predominant native (R) enantiomer is active, whereas the (S) antipode is inactive or has little or no biological activity. Here we provide an enantioselective high-performance liquid chromatography (HPLC) protocol for the direct and complete resolution of sulforaphane and its chiral natural homologs with different aliphatic chain lengths between the sulfinyl sulfur and isothiocyanate group, namely iberin, alyssin, and hesperin. The chromatographic separations were carried out on the immobilized-type CHIRALPAK IH-3 chiral stationary phase with amylose tris-[(S)-methylbenzylcarbamate] as a chiral selector. The effects of different mobile phases consisting of pure alcoholic solvents and hydroalcoholic mixtures on enantiomer retention and enantioselectivity were carefully investigated. Simple and environmentally friendly enantioselective conditions for the resolution of all chiral ITCs were found. In particular, pure ethanol and highly aqueous mobile phases gave excellent enantioseparations. The retention factors of the enantiomers were recorded as the water content in the aqueous-organic modifier (methanol, ethanol, or acetonitrile) mobile phases progressively varied. U-shaped retention maps were generated, indicating a dual and competitive hydrophilic interaction liquid chromatography (HILIC) and reversed-phase liquid chromatography retention mechanism on the CHIRALPAK IH-3 chiral stationary phase. Finally, experimental chiroptical studies performed in ethanol solution showed that the (R) enantiomers were eluted before the (S) counterpart under all eluent conditions investigated.


Assuntos
Amilose , Isotiocianatos , Isotiocianatos/química , Cromatografia Líquida de Alta Pressão/métodos , Estereoisomerismo , Amilose/química , Amilose/análogos & derivados , Química Verde/métodos
3.
J Physiol ; 601(7): 1225-1246, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36930567

RESUMO

Although hyperpolarization-activated cation (HCN) ion channels are well established to underlie cardiac pacemaker activity, their role in smooth muscle organs remains controversial. HCN-expressing cells are localized to renal pelvic smooth muscle (RPSM) pacemaker tissues of the murine upper urinary tract and HCN channel conductance is required for peristalsis. To date, however, the Ih pacemaker current conducted by HCN channels has never been detected in these cells, raising questions on the identity of RPSM pacemakers. Indeed, the RPSM pacemaker mechanisms of the unique multicalyceal upper urinary tract exhibited by humans remains unknown. Here, we developed immunopanning purification protocols and demonstrate that 96% of isolated HCN+ cells exhibit Ih . Single-molecule STORM to whole-tissue imaging showed HCN+ cells express single HCN channels on their plasma membrane and integrate into the muscular syncytium. By contrast, PDGFR-α+ cells exhibiting the morphology of ICC gut pacemakers were shown to be vascular mural cells. Translational studies in the homologous human and porcine multicalyceal upper urinary tracts showed that contractions and pacemaker depolarizations originate in proximal calyceal RPSM. Critically, HCN+ cells were shown to integrate into calyceal RPSM pacemaker tissues, and HCN channel block abolished electrical pacemaker activity and peristalsis of the multicalyceal upper urinary tract. Cumulatively, these studies demonstrate that HCN ion channels play a broad, evolutionarily conserved pacemaker role in both cardiac and smooth muscle organs and have implications for channelopathies as putative aetiologies of smooth muscle disorders. KEY POINTS: Pacemakers trigger contractions of involuntary muscles. Hyperpolarization-activated cation (HCN) ion channels underpin cardiac pacemaker activity, but their role in smooth muscle organs remains controversial. Renal pelvic smooth muscle (RPSM) pacemakers trigger contractions that propel waste away from the kidney. HCN+ cells localize to murine RPSM pacemaker tissue and HCN channel conductance is required for peristalsis. The HCN (Ih ) current has never been detected in RPSM cells, raising doubt whether HCN+ cells are bona fide pacemakers. Moreover, the pacemaker mechanisms of the unique multicalyceal RPSM of higher order mammals remains unknown. In total, 97% of purified HCN+ RPSM cells exhibit Ih . HCN+ cells integrate into the RPSM musculature, and pacemaker tissue peristalsis is dependent on HCN channels. Translational studies in human and swine demonstrate HCN channels are conserved in the multicalyceal RPSM and that HCN channels underlie pacemaker activity that drives peristalsis. These studies provide insight into putative channelopathies that can underlie smooth muscle dysfunction.


Assuntos
Canalopatias , Humanos , Camundongos , Animais , Suínos , Canalopatias/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Rim/metabolismo , Músculo Liso/fisiologia , Cátions/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Mamíferos/metabolismo
4.
J Biol Chem ; 298(7): 102069, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623388

RESUMO

Major depressive disorder is a critical public health problem with a lifetime prevalence of nearly 17% in the United States. One potential therapeutic target is the interaction between hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and an auxiliary subunit of the channel named tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). HCN channels regulate neuronal excitability in the mammalian hippocampus, and recent work has established that antagonizing HCN function rescues cognitive impairment caused by chronic stress. Here, we utilize a high-throughput virtual screen to find small molecules capable of disrupting the TRIP8b-HCN interaction. We found that the hit compound NUCC-0200590 disrupts the TRIP8b-HCN interaction in vitro and in vivo. These results provide a compelling strategy for developing new small molecules capable of disrupting the TRIP8b-HCN interaction.


Assuntos
Transtorno Depressivo Maior , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismo
5.
Neurobiol Dis ; 181: 106107, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001612

RESUMO

Hyperpolarization-activation cyclic nucleotide-gated (HCN) channels were for the first time implicated in absence seizures (ASs) when an abnormal Ih (the current generated by these channels) was reported in neocortical layer 5 neurons of a mouse model. Genetic studies of large cohorts of children with Childhood Absence Epilepsy (where ASs are the only clinical symptom) have identified only 3 variants in HCN1 (one of the genes that code for the 4 HCN channel isoforms, HCN1-4), with one (R590Q) mutation leading to loss-of-function. Due to the multi-faceted effects that HCN channels exert on cellular excitability and neuronal network dynamics as well as their modulation by environmental factors, it has been difficult to identify the detailed mechanism by which different HCN isoforms modulate ASs. In this review, we systematically and critically analyze evidence from established AS models and normal non-epileptic animals with area- and time-selective ablation of HCN1, HCN2 and HCN4. Notably, whereas knockout of rat HCN1 and mouse HCN2 leads to the expression of ASs, the pharmacological block of all HCN channel isoforms abolishes genetically determined ASs. These seemingly contradictory results could be reconciled by taking into account the well-known opposite effects of Ih on cellular excitability and network function. Whereas existing evidence from mouse and rat AS models indicates that pan-HCN blockers may provide a novel approach for the treatment of human ASs, the development of HCN isoform-selective drugs would greatly contribute to current research on the role for these channels in ASs generation and maintenance as well as offer new potential clinical applications.


Assuntos
Epilepsia Tipo Ausência , Animais , Criança , Humanos , Camundongos , Ratos , Epilepsia Tipo Ausência/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Neurônios/metabolismo , Convulsões/genética , Convulsões/metabolismo
6.
Small ; 19(26): e2300597, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36938902

RESUMO

The development of methodologies for inducing and tailoring activities of catalysts is an important issue in various catalysis. The ultrathin 2D monolayer metal-organic framework (MOF) nanosheets with more accessible active sites and faster diffusion obtained by exfoliating 3D layered MOFs are of great potential as heterogeneous catalysts, but the rational design and preparation of 3D layered MOFs remains a grand challenge. Herein, a novel weak electrostatic interaction strategy to construct a 3D layered cerium-bearing MOF by coordinating chlorine-capped cerium nodes and linear photoactive methyl viologen (MV+ ) organic linkers is used. Under multiphoton excitation, the MV+ ligands and CeCl chromophores are triggered consecutively to form the high activity chlorine radical (Cl• ) for activation of inert C(sp3 )H bond through a hydrogen atom transfer. Benefiting from framework confinement effects, synergistic effects of two active sites and/or flexibility of the ultrathin framework nanosheets with high surface utilization, the observed activities increase in the order CeCl3 /MV+  < bulk 3D MOF crystals < 2D MOF nanosheets in photocatalysis. This work not only contributes a new strategy to construct 3D layered MOFs and their ultrathin nanosheets but also paves the way to use nanostructured MOFs to handle synergy of multiple molecular catalysts.

7.
Mol Genet Metab ; 140(3): 107669, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37542767

RESUMO

BACKGROUND: Severe mucopolysaccharidosis type I, (MPS IH) is a rare inherited lysosomal disorder resulting in progressive storage of proteoglycans (GAGs) in central nervous system and somatic tissues and, if left untreated, causing death within the first decade of life. Hematopoietic cell transplantation (HCT) arrests many of the features of MPS IH but carries a 10-15% risk of mortality. Decreased cardiac function can occur in MPS IH and increase the risk of HCT. METHODS: Retrospective chart review was performed to determine the long-term outcome of individuals evaluated for HCT with MPS IH who had decreased cardiac function as measured by cardiac echocardiogram (echo) and ejection fraction (EF) of <50% at the time of initial evaluation. RESULTS: Six patients ranging in age from 1 week to 21 months (median: 4 months) had EFs ranging from 25 to 47% (median: 32%) at diagnosis and were initiated on enzyme replacement therapy (ERT) with improvement in EF in three patients by 5 months. The remaining three patients continued to have EFs <50% and continuous milrinone infusion was added in the pre-HCT period. On average, milrinone infusion was able to be discontinued post-HCT, prior to hospital discharge, within a mean of 37 days. Five patients survived HCT and are alive today with normal EFs. One patient receiving milrinone died of sepsis during HCT with a normal EF. CONCLUSION: Decreased cardiac systolic function in infants with MPS IH that fails to normalize with ERT alone may benefit from the addition of continuous milrinone infusion during HCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mucopolissacaridose I , Lactente , Humanos , Recém-Nascido , Mucopolissacaridose I/diagnóstico , Estudos Retrospectivos , Milrinona/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/métodos , Coração , Terapia de Reposição de Enzimas/métodos
8.
J Fluoresc ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615897

RESUMO

Dy3+ doped calcium aluminum borosilicate (CABS) glasses have been synthesized via quick melt quench technique. CABS: xDy3+ glasses (x = 0.1, 0.5, 1, 1.5 and 2 mol%) were subjected to various morphological and photoluminescence studies. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy were conducted to study the structural and bonding nature of the undoped glass. The excitation spectra of Dy3+ doped CABS glasses under 574 nm emission show many sharp peaks amongst which the transition from 6H15/2 → 6P7/2 (351 nm) had the highest intensity. Under 351 nm excitation, glasses exhibit sharp peaks in the blue, yellow and red regions corresponding to the transitions 4F9/2 → 6H15/2, 6H13/2, 6H11/2 and 6H9/2 respectively. The dipole-dipole nature of the interaction between the Dy3+ ions is confirmed via Dexter theory and Inokuti-Hirayama (I-H) model. CIE coordinates estimated from the emission profiles of these glasses under 351 nm excitation fall in the white region. Considering that these glasses exhibit sharp visible emission under UV excitation, have stable yellow to blue (Y/B) ratios and fast decays with intense energy transfers, we propose to utilise these glasses for white light generation and other white light LED (w-LED) and solid-state lighting (SSL) applications.

9.
Biosci Biotechnol Biochem ; 87(12): 1495-1504, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37742308

RESUMO

Isomaltooligosaccharides (IMOs), including isomaltose, are valuable oligosaccharides, and the development of methods to synthesize high-purity IMOs has long been underway. We recently discovered a novel enzyme, 4-O-α-d-isomaltooligosaccharylmaltooligosaccharide 1,4-α-isomaltooligosaccharohydrolase (IMM-4IH), that showed promise for improving the synthesis process. In this study, we establish methods for synthesizing isomaltose and IMOs consisting of a variety of degrees of polymerization from starch using IMM-4IH. With 5% substrate, by combining IMM-4IH with 1,4-α-glucan 6-α-glucosyltransferase from Bacillus globisporus N75, the yield of isomaltose was 63.0%; incorporating isoamylase and cyclomaltodextrin glucanotransferase increased the yield to 75.3%. On the other hand, by combining IMM-4IH with 1,4-α-glucan 6-α-glucosyltransferase from Paenibacillus sp. PP710, IMOs were synthesized. The inclusion of isoamylase and α-amylase led to the 136 mM IMOs, consisting of oligosaccharides from isomaltose to isomaltodecaose, from 10% starch. The development of these efficient methods will be an important contribution to the industrial production of IMOs.


Assuntos
Isoamilase , Isomaltose , Oligossacarídeos , Glucanos , Amido
10.
Pediatr Dermatol ; 40(1): 28-34, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36127831

RESUMO

BACKGROUND/OBJECTIVES: We sought to describe the experience among members of the Hemangioma Investigator Group with pulsed dye laser (PDL) in the treatment of nonulcerated infantile hemangioma (IH) in pediatric patients in the pre- and post-beta-blocker era. METHODS: A multicenter retrospective cohort study was conducted in patients with nonulcerated IH treated with laser therapy. Patient demographics, IH characteristics, indications for/timing of laser therapy, as well as laser parameters were collected. Responses to laser therapy were evaluated using a visual analog scale (VAS). RESULTS: One hundred and seventeen patients with IH were treated with PDL. 18/117 (15.4%) had early intervention (defined as <12 months of life), and 99/117 (84.6%) had late intervention (≥12 months of life). In the late intervention group, 73.7% (73/99) had additional medical management of their IH. The mean age at PDL initiation for the late intervention group was 46.7 ± 35.3 months of life (range 12-172 months) with total number of treatments to maximal clearing of 4.2 ± 2.8 (range 1-17). Those who received propranolol prior to PDL received fewer sessions (1.1 fewer sessions, approaching significance [p = .056]).     On the VAS, there was a mean 85% overall improvement compared to baseline (range 18%-100%), with most improvement noted in erythema and/or telangiectasias. The incidence of adverse effects was 6/99 (6.1%). CONCLUSIONS: PDL is a useful tool in the treatment of IH, with notable improvement of telangiectasia and erythema and low risk of complications.   PDL is often introduced after the maximal proliferative phase.


Assuntos
Hemangioma Capilar , Hemangioma , Lasers de Corante , Humanos , Criança , Estudos Retrospectivos , Lasers de Corante/uso terapêutico , Hemangioma Capilar/radioterapia , Hemangioma Capilar/cirurgia , Hemangioma/radioterapia , Hemangioma/cirurgia , Hemangioma/etiologia , Antagonistas Adrenérgicos beta , Resultado do Tratamento
11.
Luminescence ; 38(9): 1607-1617, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37350180

RESUMO

A dysprosium (Dy3+ )-activated potassium calcium silicate (K4 CaSi3 O9 ) phosphor was prepared using a solid-state synthesis route. The phosphor had a cubic structure with the space group Pa 3 ¯ as confirmed using X-ray diffraction (XRD) measurements. Details of surface morphology and elemental composition of the as-synthesized undoped KCS phosphor was obtained using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy. The chemical structure as well as the vibrational modes present in the as-prepared KCS phosphor was analyzed using Fourier transform infrared (FT-IR) spectroscopy. Diffuse reflectance spectra (DRS) were used to determine the optical bandgap of the phosphors and were found to be in the optical range 3.52-3.71 eV. Photoluminescence (PL) spectra showed intense yellow emission corresponding to the 4 F9/2 →6 H13/2 transition under 350 nm excitation. Commission International de l'Eclairage colour chromaticity coordinates were evaluated using the PL spectral data lie within the white region. Dexter theory and the Inokuti-Hirayama (I-H) model were applied to study the nature of the energy transfer mechanism in the as-prepared phosphors. The relatively high activation energy of the phosphors was evaluated using temperature-dependent PL (TDPL) data and confirmed the high thermal stability of the titled phosphor. The abovementioned results indicated that the as-prepared KCS:Dy3+ phosphor was a promising candidate for n-UV-based white light-emitting diodes.


Assuntos
Luminescência , Substâncias Luminescentes , Substâncias Luminescentes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Cálcio
12.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901952

RESUMO

Mucopolysaccharidosis I-Hurler (MPS I-H) is caused by the loss of α-L-iduronidase, a lysosomal enzyme that degrades glycosaminoglycans. Current therapies cannot treat many MPS I-H manifestations. In this study, triamterene, an FDA-approved, antihypertensive diuretic, was found to suppress translation termination at a nonsense mutation associated with MPS I-H. Triamterene rescued enough α-L-iduronidase function to normalize glycosaminoglycan storage in cell and animal models. This new function of triamterene operates through premature termination codon (PTC) dependent mechanisms that are unaffected by epithelial sodium channel activity, the target of triamterene's diuretic function. Triamterene represents a potential non-invasive treatment for MPS I-H patients carrying a PTC.


Assuntos
Mucopolissacaridose I , Animais , Mucopolissacaridose I/genética , Iduronidase , Triantereno , Códon sem Sentido , Diuréticos , Glicosaminoglicanos/metabolismo
13.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902146

RESUMO

A spinal cord injury (SCI) damages the axonal projections of neurons residing in the neocortex. This axotomy changes cortical excitability and results in dysfunctional activity and output of infragranular cortical layers. Thus, addressing cortical pathophysiology after SCI will be instrumental in promoting recovery. However, the cellular and molecular mechanisms of cortical dysfunction after SCI are poorly resolved. In this study, we determined that the principal neurons of the primary motor cortex layer V (M1LV), those suffering from axotomy upon SCI, become hyperexcitable following injury. Therefore, we questioned the role of hyperpolarization cyclic nucleotide gated channels (HCN channels) in this context. Patch clamp experiments on axotomized M1LV neurons and acute pharmacological manipulation of HCN channels allowed us to resolve a dysfunctional mechanism controlling intrinsic neuronal excitability one week after SCI. Some axotomized M1LV neurons became excessively depolarized. In those cells, the HCN channels were less active and less relevant to control neuronal excitability because the membrane potential exceeded the window of HCN channel activation. Care should be taken when manipulating HCN channels pharmacologically after SCI. Even though the dysfunction of HCN channels partakes in the pathophysiology of axotomized M1LV neurons, their dysfunctional contribution varies remarkably between neurons and combines with other pathophysiological mechanisms.


Assuntos
Neurônios Motores , Traumatismos da Medula Espinal , Humanos , Potenciais da Membrana/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais de Cátion Regulados por Nucleotídeos Cíclicos
14.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901853

RESUMO

The failure of arteriovenous fistulas (AVFs) following intimal hyperplasia (IH) increases morbidity and mortality rates in patients undergoing hemodialysis for chronic kidney disease. The peroxisome-proliferator associated receptor (PPAR-γ) may be a therapeutic target in IH regulation. In the present study, we investigated PPAR-γ expression and tested the effect of pioglitazone, a PPAR-γ agonist, in different cell types involved in IH. As cell models, we used Human Endothelial Umbilical Vein Cells (HUVEC), Human Aortic Smooth Muscle Cells (HAOSMC), and AVF cells (AVFCs) isolated from (i) normal veins collected at the first AVF establishment (T0), and (ii) failed AVF with IH (T1). PPAR-γ was downregulated in AVF T1 tissues and cells, in comparison to T0 group. HUVEC, HAOSMC, and AVFC (T0 and T1) proliferation and migration were analyzed after pioglitazone administration, alone or in combination with the PPAR-γ inhibitor, GW9662. Pioglitazone negatively regulated HUVEC and HAOSMC proliferation and migration. The effect was antagonized by GW9662. These data were confirmed in AVFCs T1, where pioglitazone induced PPAR-γ expression and downregulated the invasive genes SLUG, MMP-9, and VIMENTIN. In summary, PPAR-γ modulation may represent a promising strategy to reduce the AVF failure risk by modulating cell proliferation and migration.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Tiazolidinedionas , Humanos , Pioglitazona , Agonistas PPAR-gama , Veias Umbilicais , Proliferação de Células , PPAR gama/metabolismo , Miócitos de Músculo Liso/metabolismo , Fístula Arteriovenosa/metabolismo
15.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108039

RESUMO

Obstructive sleep apnea (OSA) is an emerging risk factor for cancer occurrence and progression, mainly mediated by intermittent hypoxia (IH). Systemic IH, a main landmark of OSA, and local sustained hypoxia (SH), a classical feature at the core of tumors, may act separately or synergistically on tumor cells. Our aim was to compare the respective consequences of intermittent and sustained hypoxia on HIF-1, endothelin-1 and VEGF expression and on cell proliferation and migration in HepG2 liver tumor cells. Wound healing, spheroid expansion, proliferation and migration were evaluated in HepG2 cells following IH or SH exposure. The HIF-1α, endothelin-1 and VEGF protein levels and/or mRNA expression were assessed, as were the effects of HIF-1 (acriflavine), endothelin-1 (macitentan) and VEGF (pazopanib) inhibition. Both SH and IH stimulated wound healing, spheroid expansion and proliferation of HepG2 cells. HIF-1 and VEGF, but not endothelin-1, expression increased with IH exposure but not with SH exposure. Acriflavine prevented the effects of both IH and SH, and pazopanib blocked those of IH but not those of SH. Macitentan had no impact. Thus, IH and SH stimulate hepatic cancer cell proliferation via distinct signaling pathways that may act synergistically in OSA patients with cancer, leading to enhanced tumor progression.


Assuntos
Apneia Obstrutiva do Sono , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Hep G2 , Acriflavina , Hipóxia/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Fator 1 Induzível por Hipóxia , Proliferação de Células , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
16.
J Neurosci ; 41(4): 689-710, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33262246

RESUMO

Circadian rhythms have been extensively studied in Drosophila; however, still little is known about how the electrical properties of clock neurons are specified. We have performed a behavioral genetic screen through the downregulation of candidate ion channels in the lateral ventral neurons (LNvs) and show that the hyperpolarization-activated cation current Ih is important for the behaviors that the LNvs influence: temporal organization of locomotor activity, analyzed in males, and sleep, analyzed in females. Using whole-cell patch clamp electrophysiology we demonstrate that small LNvs (sLNvs) are bursting neurons, and that Ih is necessary to achieve the high-frequency bursting firing pattern characteristic of both types of LNvs in females. Since firing in bursts has been associated to neuropeptide release, we hypothesized that Ih would be important for LNvs communication. Indeed, herein we demonstrate that Ih is fundamental for the recruitment of pigment dispersing factor (PDF) filled dense core vesicles (DCVs) to the terminals at the dorsal protocerebrum and for their timed release, and hence for the temporal coordination of circadian behaviors.SIGNIFICANCE STATEMENT Ion channels are transmembrane proteins with selective permeability to specific charged particles. The rich repertoire of parameters that may gate their opening state, such as voltage-sensitivity, modulation by second messengers and specific kinetics, make this protein family a determinant of neuronal identity. Ion channel structure is evolutionary conserved between vertebrates and invertebrates, making any discovery easily translatable. Through a screen to uncover ion channels with roles in circadian rhythms, we have identified the Ih channel as an important player in a subset of clock neurons of the fruit fly. We show that lateral ventral neurons (LNvs) need Ih to fire action potentials in a high-frequency bursting mode and that this is important for peptide transport and the control of behavior.


Assuntos
Comportamento Animal/fisiologia , Ritmo Circadiano/fisiologia , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Animais , Comunicação Celular/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Feminino , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Masculino , Atividade Motora/fisiologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Técnicas de Patch-Clamp , Caracteres Sexuais
17.
J Neurophysiol ; 128(1): 181-196, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35675444

RESUMO

Cellular and network properties must be capable of generating rhythmic activity that is both flexible and stable. This is particularly important for breathing, a rhythmic behavior that dynamically adapts to environmental, behavioral, and metabolic changes from the first to the last breath. The pre-Bötzinger complex (preBötC), located within the ventral medulla, is responsible for producing rhythmic inspiration. Its cellular properties must be tunable, flexible as well as stabilizing. Here, we explore the role of the hyperpolarization-activated, nonselective cation current (Ih) for stabilizing PreBötC activity during opioid exposure and reduced excitatory synaptic transmission. Introducing Ih into an in silico preBötC network predicts that loss of this depolarizing current should significantly slow the inspiratory rhythm. By contrast, in vitro and in vivo experiments revealed that the loss of Ih minimally affected breathing frequency, but destabilized rhythmogenesis through the generation of incompletely synchronized bursts (burstlets). Associated with the loss of Ih was an increased susceptibility of breathing to opioid-induced respiratory depression or weakened excitatory synaptic interactions, a paradoxical depolarization at the cellular level, and the suppression of tonic spiking. Tonic spiking activity is generated by nonrhythmic excitatory and inhibitory preBötC neurons, of which a large percentage express Ih. Together, our results suggest that Ih is important for maintaining tonic spiking, stabilizing inspiratory rhythmogenesis, and protecting breathing against perturbations or changes in network state.NEW & NOTEWORTHY The Ih current plays multiple roles within the preBötC. This current is important for promoting intrinsic tonic spiking activity in excitatory and inhibitory neurons and for preserving rhythmic function during conditions that dampen network excitability, such as in the context of opioid-induced respiratory depression. We therefore propose that the Ih current expands the dynamic range of rhythmogenesis, buffers the preBötC against network perturbations, and stabilizes rhythmogenesis by preventing the generation of unsynchronized bursts.


Assuntos
Analgésicos Opioides , Insuficiência Respiratória , Analgésicos Opioides/farmacologia , Humanos , Bulbo/fisiologia , Neurônios/fisiologia , Centro Respiratório/fisiologia , Transmissão Sináptica/fisiologia
18.
Emerg Infect Dis ; 28(2): 415-419, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35076365

RESUMO

We report the rapid emergence of severe acute respiratory syndrome coronavirus 2 lineages B.1.619 and B.1.620 in South Korea. The surge in frequency in a relatively short time emphasizes the need for ongoing monitoring for new lineages to track potential increases in transmissibility and disease severity and reductions in vaccine efficacy.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , República da Coreia/epidemiologia , Eficácia de Vacinas
19.
J Neurosci ; 40(27): 5327-5340, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467357

RESUMO

Channelopathies are implicated in Fragile X syndrome (FXS), yet the dysfunction of a particular ion channel varies with cell type. We previously showed that HCN channel function is elevated in CA1 dendrites of the fmr1-/y mouse model of FXS, but reduced in L5 PFC dendrites. Using male mice, we tested whether Fragile X Mental Retardation Protein (FMRPO), the protein whose absence causes FXS, differentially modulates HCN channels in CA1 versus L5 PFC dendrites. Using a combination of viral tools, intracellular peptide, and dendritic electrophysiology, we found that FMRP regulates HCN channels via a cell-autonomous protein-protein interaction. Virally expressed FMRP restored WT HCN channel-related dendritic properties in both CA1 and L5 neurons. Rapid intracellular perfusion of the non-mRNA binding N-terminal fragment, FMRP1-298, similarly restored dendritic function. In support of a protein-protein interaction, we found that FMRP associated with HCN-TRIP8b complexes in both hippocampus and PFC. Finally, voltage-clamp recordings showed that FMRP modulated Ih by regulating the number of functional dendritic HCN channels rather than individual channel properties. Together, these represent three novel findings as to the nature of the changes in dendritic function in CA1 and PFC neurons based on the presence or absence of FMRP. Moreover, our findings provide evidence that FMRP can regulate its targets in opposite directions depending upon the cellular milieu.SIGNIFICANCE STATEMENT Changes in dendritic function, and voltage-gated ion channels in particular, are increasingly the focus of neurological disorders. We, and others, previously identified cell type-specific channelopathies in a mouse of model of Fragile X syndrome. The present study shows that replacing Fragile X Mental Retardation Protein, which is absent in Fragile X syndrome, in adult CA1 and L5 PFC neurons regulates the number of functional dendritic HCN channels in a cell type-specific manner. These results suggest that Fragile X Mental Retardation Protein regulates dendritic HCN channels via a cell-autonomous protein--protein mechanism.


Assuntos
Dendritos/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , RNA Longo não Codificante/genética , Animais , Região CA1 Hipocampal/fisiopatologia , Dendritos/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Feminino , Síndrome do Cromossomo X Frágil/fisiopatologia , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Condução Nervosa/genética , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/farmacologia , Córtex Pré-Frontal/citologia , RNA Longo não Codificante/fisiologia
20.
J Neurophysiol ; 125(4): 1501-1516, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689489

RESUMO

Pyramidal neurons in neocortex have complex input-output relationships that depend on their morphologies, ion channel distributions, and the nature of their inputs, but which cannot be replicated by simple integrate-and-fire models. The impedance properties of their dendritic arbors, such as resonance and phase shift, shape neuronal responses to synaptic inputs and provide intraneuronal functional maps reflecting their intrinsic dynamics and excitability. Experimental studies of dendritic impedance have shown that neocortical pyramidal tract neurons exhibit distance-dependent changes in resonance and impedance phase with respect to the soma. We, therefore, investigated how well several biophysically detailed multicompartment models of neocortical layer 5 pyramidal tract neurons reproduce the location-dependent impedance profiles observed experimentally. Each model tested here exhibited location-dependent impedance profiles, but most captured either the observed impedance amplitude or phase, not both. The only model that captured features from both incorporates hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and a shunting current, such as that produced by Twik-related acid-sensitive K+ (TASK) channels. TASK-like channel density in this model was proportional to local HCN channel density. We found that although this shunting current alone is insufficient to produce resonance or realistic phase response, it modulates all features of dendritic impedance, including resonance frequencies, resonance strength, synchronous frequencies, and total inductive phase. We also explored how the interaction of HCN channel current (Ih) and a TASK-like shunting current shape synaptic potentials and produce degeneracy in dendritic impedance profiles, wherein different combinations of Ih and shunting current can produce the same impedance profile.NEW & NOTEWORTHY We simulated chirp current stimulation in the apical dendrites of 5 biophysically detailed multicompartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.


Assuntos
Dendritos/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Modelos Teóricos , Neocórtex/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Células Piramidais/fisiologia , Tratos Piramidais/fisiologia , Animais , Impedância Elétrica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA