Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(12): e2304881, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946631

RESUMO

InP/ZnS quantum dots (QDs) have received a large focus in recent years as a safer alternative to heavy metal-based QDs. Given their intrinsic fluorescent imaging capabilities, these QDs can be potentially relevant for in vivo platelet imaging. The InP/ZnS QDs are synthesized and their biocompatibility investigated through the use of different phase transfer agents. Analysis of platelet function indicates that platelet-QD interaction can occur at all concentrations and for all QD permutations tested. However, as the QD concentration increases, platelet aggregation is induced by QDs alone independent of natural platelet agonists. This study helps to define a range of concentrations and coatings (thioglycolic acid and penicillamine) that are biocompatible with platelet function. With this information, the platelet-QD interaction can be identified using multiple methods. Fluorescent lifetime imaging microscopy (FLIM) and confocal studies have shown QDs localize on the surface of the platelet toward the center while showing evidence of energy transfer within the QD population. It is believed that these findings are an important stepping point for the development of fluorescent probes for platelet imaging.


Assuntos
Pontos Quânticos , Ligantes
2.
Molecules ; 28(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770784

RESUMO

In this work, the effects of InP/ZnS quantum dots modified with amino or carboxyl group on the characteristic parameters in phase behavior, elastic modulus, relaxation time of the DPPC/DPPG mixed monolayers are studied by the Langmuir technology at the temperature of 37, 40 and 45 °C. Additionally, the information on the morphology and height of monolayers are obtained by the Langmuir-Bloggett technique and atomic force microscope technique. The results suggest that the modification of the groups can reduce the compressibility of monolayers at a higher temperature, and the most significant effect is the role of the amino group. At a high temperature of 45 °C, the penetration ability of InP/ZnS-NH2 quantum dots in the LC phase of the mixed monolayer is stronger. At 37 °C and 40 °C, there is no clear difference between the penetration ability of InP/ZnS-NH2 quantum dots and InP/ZnS-COOH quantum dots. The InP/ZnS-NH2 quantum dots can prolong the recombination of monolayers at 45 °C and accelerate it at 37 °C and 40 °C either in the LE phase or in the LC phase. However, the InP/ZnS-COOH quantum dots can accelerate it in the LE phase at all temperatures involved but only prolong it at 45 °C in the LC phase. This work provides support for understanding the effects of InP/ZnS nanoparticles on the structure and properties of cell membranes, which is useful for understanding the behavior about the ingestion of nanoparticles by cells and the cause of toxicity.

3.
Small ; 18(15): e2108120, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35253372

RESUMO

InP quantum dots (QDs) have attracted much attention owing to their nontoxic properties and shown great potential in optoelectronic applications. Due to the surface defects and lattice mismatch, the interfacial structure of InP/ZnS QDs plays a significant role in their performance. Herein, the formation of In-S and Sx -In-P1-x interlayers through anion exchange at the shell-growth stage is revealed. More importantly, it is proposed that the composition of interface is dependent on the synergistic effect of halogen ions and shelling temperature. High shelling temperature contributes to the optical performance improvement resulting from the formation of interlayers, besides the thicker ZnS shell. Moreover, the effect relates to the halogen ions where I- presents more obvious enhancement than Br- and Cl- , owing to their different ability to coordinate with In dangling bonds, which are inclined to form In-S and Sx -In-P1-x bonds. Further, the anion exchange under I- -rich environment causes a blue-shift of emission wavelength with shelling temperature increasing, unobserved in a Cl- - or Br- -rich environment. It contributes to the preparation of highly efficient blue emissive InP/ZnS QDs with emission wavelength of 473 nm, photoluminescence quantum yield of ≈50% and full width at half maximum of 47 nm.


Assuntos
Pontos Quânticos , Halogênios , Pontos Quânticos/química , Sulfetos/química , Temperatura , Compostos de Zinco
4.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142888

RESUMO

Quantum dots (QDs) have outstanding optical properties such as strong fluorescence, excellent photostability, broad absorption spectra, and narrow emission bands, which make them useful for bioimaging. However, cadmium (Cd)-based QDs, which have been widely studied, have potential toxicity problems. Cd-free QDs have also been studied, but their weak photoluminescence (PL) intensity makes their practical use in bioimaging challenging. In this study, Cd-free QD nanoprobes for bioimaging were fabricated by densely embedding multiple indium phosphide/zinc sulfide (InP/ZnS) QDs onto silica templates and coating them with a silica shell. The fabricated silica-coated InP/ZnS QD-embedded silica nanoparticles (SiO2@InP QDs@SiO2 NPs) exhibited hydrophilic properties because of the surface silica shell. The quantum yield (QY), maximum emission peak wavelength, and full-width half-maximum (FWHM) of the final fabricated SiO2@InP QDs@SiO2 NPs were 6.61%, 527.01 nm, and 44.62 nm, respectively. Moreover, the brightness of the particles could be easily controlled by adjusting the amount of InP/ZnS QDs in the SiO2@InP QDs@SiO2 NPs. When SiO2@InP QDs@SiO2 NPs were administered to tumor syngeneic mice, the fluorescence signal was prominently detected in the tumor because of the preferential distribution of the SiO2@InP QDs@SiO2 NPs, demonstrating their applicability in bioimaging with NPs. Thus, SiO2@InP QDs@SiO2 NPs have the potential to successfully replace Cd-based QDs as highly bright and biocompatible fluorescent nanoprobes.


Assuntos
Nanopartículas , Neoplasias , Pontos Quânticos , Animais , Cádmio , Índio , Camundongos , Fosfinas , Dióxido de Silício , Sulfetos , Compostos de Zinco
5.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992627

RESUMO

InP QDs have shown a great potential as cadmium-free QDs alternatives in biomedical applications. It is essential to understand the biological fate and toxicity of InP QDs. In this study, we investigated the in vivo renal toxicity of InP/ZnS QDs terminated with different functional groups-hydroxyl (hQDs), amino (aQDs) and carboxyl (cQDs). After a single intravenous injection into BALB/c mice, blood biochemistry, QDs distribution, histopathology, inflammatory response, oxidative stress and apoptosis genes were evaluated at different predetermined times. The results showed fluorescent signals from QDs could be detected in kidneys during the observation period. No obvious changes were observed in histopathological detection or biochemistry parameters. Inflammatory response and oxidative stress were found in the renal tissues of mice exposed to the three kinds of QDs. A significant increase of KIM-1 expression was observed in hQDs and aQDs groups, suggesting hQDs and aQDs could cause renal involvement. Apoptosis-related genes (Bax, Caspase 3, 7 and 9) were up-regulated in hQDs and aQDs groups. The above results suggested InP/ZnS QDs with different surface chemical properties would cause different biological behaviors and molecular actions in vivo. The surface chemical properties of QDs should be fully considered in the design of InP/ZnS QDs for biomedical applications.


Assuntos
Índio/química , Índio/toxicidade , Rim/efeitos dos fármacos , Fosfinas/química , Fosfinas/toxicidade , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Dióxido de Carbono/química , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Radical Hidroxila/química , Índio/administração & dosagem , Índio/farmacocinética , Inflamação/induzido quimicamente , Injeções Intravenosas , Rim/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Fosfinas/administração & dosagem , Fosfinas/farmacocinética , Pontos Quânticos/administração & dosagem , Sulfetos/administração & dosagem , Sulfetos/química , Sulfetos/farmacocinética , Sulfetos/toxicidade , Propriedades de Superfície , Distribuição Tecidual , Compostos de Zinco/administração & dosagem , Compostos de Zinco/química , Compostos de Zinco/farmacocinética , Compostos de Zinco/toxicidade
6.
Luminescence ; 33(3): 495-504, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29282888

RESUMO

Polyethylene glycol (PEG) surface modified biocompatible InP/ZnS quantum dots (QDs) act as a potential alternative for conventional carcinogenic cadmium-based quantum dots for in vivo and in vitro studies. Comprehensively, we studied the interaction between a model protein bovine serum albumin (BSA) and PEGylated toxic free InP/ZnS QDs using various spectroscopic tools such as absorption, fluorescence quenching, time resolved and synchronous fluorescence spectroscopic measurements. These studies principally show that tryptophan (Trp) residues of BSA have preferable binding affinity towards PEG-InP/ZnS QDs surface and a blue shift in Trp fluorescence emission is a signature of conformational changes in its hydrophobic microenvironment. Photoluminescence (PL) intensity of Trp is quenched by ground state complex formation (static quenching) at room temperature. However, InP/ZnS@BSA conjugates become unstable with increasing temperature and PL intensity of Trp is quenched via dynamic quenching by PEG-InP/ZnS QDs. Experimentally determined thermodynamic parameters for these conjugates have shown spontaneity, entropy driven and exothermic nature of bio-conjugation. The calculated binding affinity (n ≅ 1, Hill coefficient) suggest that the affinity of InP/ZnS QDs for a BSA protein is not dependent on whether or not other BSA proteins are already bound to the QD surface. Energy transfer efficiency (E), Trp residue to InP/ZnS QDs distances and energy transfer rate (kT ) were all obtained from FÖrster resonance energy.


Assuntos
Pontos Quânticos/química , Soroalbumina Bovina/química , Transferência Ressonante de Energia de Fluorescência , Luminescência , Teste de Materiais , Polietilenoglicóis/química , Conformação Proteica , Pontos Quânticos/metabolismo , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta , Sulfetos/química , Temperatura , Termodinâmica , Triptofano/química , Compostos de Zinco/química
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124167, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38498963

RESUMO

A turn-on type ratiometric fluorescence sensing system of blue quantum dot Eu-MPA-InP/ZnS was established for multi-color visualization determination of tetracycline (TC). Mercaptopropionic acid (MPA)-capped InP/ZnS quantum dots (MPA-InP/ZnS QDs) both modify the hydrophilicity of InP/ZnS QDs and serve as a scaffold for coordinating of Eu3+ ions. The blue fluorescence of Eu-MPA-InP/ZnS at 478 nm is reduced by the TC through the inner filter effect (IFE) under a single excitation wavelength of 365 nm. Rich colour gradients and a highly discriminative colour change were features of this multicolour response to TC, which allowed visual quantification of TC in a dose-dependent manner. Furthermore, by cross-linking Eu-MPA-InP/ZnS with agarose (Aga.), a mouldable Eu-MPA-InP/ZnS@Aga 96-well gel sensing device was designed to serve as a handheld sensor for on-site detection of TC. This probe expands the use of InP QDs in analytical sensing and has been effectively applied to the visual detection of tetracycline in milk and the environment.

8.
Nanomaterials (Basel) ; 14(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38998690

RESUMO

Fluorescent nanoparticles known as quantum dots (QDs) have unique properties that make them useful in biomedicine. Specifically, CdSe/ZnS QDs, while good at fluorescing, show toxicity. Due to this, safer alternatives have been developed. This study uses a tetrazolium dye (XTT) viability assay, reactive oxygen species (ROS) fluorescent imaging, and apoptosis to investigate the effect of QD alternatives InP/ZnS, CuInS2/ZnS, and nitrogen-doped carbon dots (NCDs) in liver cells. The liver is a possible destination for the accumulation of QDs, making it an appropriate model for testing. A cancerous liver cell line known as HepG2 and an immortalized liver cell line known as THLE-2 were used. At a nanomolar range of 10-150, HepG2 cells demonstrated no reduced cell viability after 24 h. The XTT viability assay demonstrated that CdSe/ZnS and CuInS2/ZnS show reduced cell viability in THLE-2 cells with concentrations between 50 and 150 nM. Furthermore, CdSe/ZnS- and CuInS2/ZnS-treated THLE-2 cells generated ROS as early as 6 h after treatment and elevated apoptosis after 24 h. To further corroborate our results, apoptosis assays revealed an increased percentage of cells in the early stages of apoptosis for CdSe/ZnS-treated (52%) and CuInS2/ZnS-treated (38%) THLE-2. RNA transcriptomics revealed heavy downregulation of cell adhesion pathways such as wnt, cadherin, and integrin in all QDs except NCDs. In conclusion, NCDs show the least toxicity toward these two liver cell lines. While demonstrating less toxicity than CdSe/ZnS, the metallic QDs (InP/ZnS and CuInS2/ZnS) still demonstrate potential concerns in liver cells. This study serves to explore the toxicity of QD alternatives and better understand their cellular interactions.

9.
Aquat Toxicol ; 261: 106593, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327537

RESUMO

Quantum dots (QDs) inhibit fish hatching, but the mechanism is still unclear. In this study, the effect of Indium phosphide/zinc sulfide quantum dots (InP/ZnS QDs) on the embryo incubation of rare minnow was investigated. Five experimental concentration groups were set up according to the preliminary experimental results, which were 0, 50, 100, 200 and 400 nM. A direct exposure method was adopted to expose embryos to InP/ZnS QDs solution. The results showed that InP/ZnS QDs significantly inhibited the embryo hatching rate, delayed embryo emergence, affected the expression of genes associated with hatching gland cells and hatching enzymes. InP/ZnS QDs also destroy the structure of the embryo chorion. In addition, QDs can cause oxidative stress in embryos. Transcriptional sequencing analysis showed that InP/ZnS QDs InP/ZnS QDs may have induced the production of a hypoxic environment and triggered induce abnormal cardiac muscle contraction, inflammatory response and apoptosis process in embryos. In conclusion, QDs influences embryo hatchability largely through egg chorion mediation.


Assuntos
Cyprinidae , Pontos Quânticos , Poluentes Químicos da Água , Animais , Pontos Quânticos/toxicidade , Poluentes Químicos da Água/toxicidade , Compostos de Zinco/toxicidade , Compostos de Zinco/química , Sulfetos/toxicidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-36717047

RESUMO

InP/ZnS quantum dots (QDs) are widely used in biomedical imaging and light-emitting component manufacturing industries, but there are few studies on their biological toxicity. In this study, we conducted experiments with rare minnow larvae and found that InP/ZnS QDs can cause liver damage. InP/ZnS QDs appeared only in the intestine of larvae and were not enriched in other parts of the larvae. The activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (AKP) increased, while the decrease in bile acid. InP/ZnS QDs caused hepatic cell nuclear lysis, abnormal cytoplasmic staining, and mitochondrial cristae reduction, swelling, and fragmentation. RNA-sequencing results revealed that InP/ZnS QDs exposure treatment affected the expression of genes involved in lipid metabolism, sterol synthesis, bile acid synthesis and other pathways. The excessive production of reactive oxygen species (ROS) induced by InP/ZnS QDs may be the main source of toxicity.


Assuntos
Cyprinidae , Pontos Quânticos , Animais , Pontos Quânticos/toxicidade , Larva , Fígado
11.
Food Chem ; 384: 132521, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245752

RESUMO

A fluorescence-visualized sensor based on 3-mercaptopropionic acid (MPA)-capped indium phosphide/ zinc sulfide quantum dots (InP/ZnS QDs) and sodium rhodizonate (SR) was designed to sensitively monitor fish freshness. MPA-InP/ZnS QDs, which exhibit orange-red fluorescence, were synthesized by a solvothermal method. In the MPA-InP/ZnS QDs-SR system, the fluorescence of MPA-InP/ZnS QDs was quenched by SR due to the combined function of the inner filter effect (IFE) and static quenching effect (SQE) at pH = 3. When ammonia was added, the fluorescence was recovered, and the color changed from colorless to bright orange-red under UV light (365 nm). The sensing performance for volatile amine gas was studied, and the sensor demonstrated good linearity between the fluorescence intensity, the total volatile basic nitrogen (TVB-N) and the total color change (ΔE) of bighead carp stored at room temperature (25 °C) and refrigerated temperature (4 °C). The proposed sensor has potential applications in monitoring fish freshness.


Assuntos
Pontos Quânticos , Animais , Cicloexanonas , Sulfetos , Compostos de Zinco
12.
J Hazard Mater ; 430: 128478, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35180520

RESUMO

Ultrasensitive detection of Hg2+ in aquatic ecosystems is of great significance due to its high toxicity and ubiquity in water. Herein, using a one-step in-situ synthesis method, blue fluorescent carbon dots (CDs), red fluorescent InP/ZnS quantum dots (InPQDs), and MOFs (ZIF-8) integrated multicolor nano-sensor CDs/InPQDs@ZIF-8 was constructed for consecutive visual detection of Hg2+ and Cys. The InPQDs can act as the response unit for Hg2+ and Cys, with the limit of detection (LOD) of 8.68 and 37.96 nM, respectively. Significantly, the low detection limit combines with good specificity and accuracy of the nano-sensor meet the requirement for the safety monitoring and control of Hg2+ in drinking and environmental water. Moreover, the color recognition and processing software installed on smart phone can realize the real-time and rapid sensing of Hg2+ and Cys. A logic gate circuit was also devised, providing the possibilities for the application of the nano-sensor in the field of intelligent devices. As far as we know, this was the first example to apply InPQDs to the continuous multicolor visual detection of Hg2+ and Cys, which provided reference for the construction of environmentally-friendly dual emission fluorescent sensors for hazardous substance monitoring.


Assuntos
Mercúrio , Pontos Quânticos , Carbono , Cisteína , Ecossistema , Corantes Fluorescentes , Limite de Detecção , Espectrometria de Fluorescência/métodos
13.
Nanomaterials (Basel) ; 12(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35564224

RESUMO

The study of the interaction of engineered nanoparticles, including quantum dots (QDs), with cellular constituents and the kinetics of their localization and transport, has provided new insights into their biological consequences in cancers and for the development of effective cancer therapies. The present study aims to elucidate the toxicity and intracellular transport kinetics of CdSe/ZnS and InP/ZnS QDs in late-stage ML-1 thyroid cancer using well-tested HeLa as a control. Our XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) viability assay (Cell Proliferation Kit II) showed that ML-1 cells and non-cancerous mouse fibroblast cells exhibit no viability defect in response to these QDs, whereas HeLa cell viability decreases. These results suggest that HeLa cells are more sensitive to the QDs compared to ML-1 cells. To test the possibility that transporting rates of QDs are different between HeLa and ML-1 cells, we performed a QD subcellular localization assay by determining Pearson's Coefficient values and found that HeLa cells showed faster QDs transporting towards the lysosome. Consistently, the ICP-OES test showed the uptake of CdSe/ZnS QDs in HeLa cells was significantly higher than in ML-1 cells. Together, we conclude that high levels of toxicity in HeLa are positively correlated with the traffic rate of QDs in the treated cells.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35675901

RESUMO

InP/ZnS quantum dots (QDs) stand out among cadmium-free alternatives for higher exciton Bohr radius and strong quantum confined effect. In this study, the reproductive toxicity and mechanism of InP/ZnS QDs at different concentrations in male Chinese rare minnows (Gobiocypris rarus) were investigated. The results showed that QDs in 800 nmol/L concentration group could enter the testes after 1 d of exposure and caused changes in the structure of the testes, including the scattered distribution of seminal vesicles, reduction in germ cells and vacuolation in some areas of interstitial cells. The expression levels of androgen receptor (Ar) and doublesex and mab-3 related transcription factor 1 (Dmrt1) and the tight junction protein-related genes ß-catenin and occludin were upregulated in rare minnows. The sperm quality and ATP content of parents in the 800 nmol/L treatment group were significantly decreased. Continuous detection of the development of F1 generation embryos showed that parental exposure to InP/ZnS QDs reduced the heart rate and spontaneous movement frequency of F1 generation embryos, and the fertilization rate of the F1 generation in the 800 nmol/L treatment group was significantly reduced. In general, the sperm quality and testicular structure of adult rare minnows were not significantly affected by concentrations below 400 nmol/L. High-concentration InP/ZnS QDs exposure can damage the integrity of the blood-testis barrier (BTB) and cause reproductive damage to the parents of rare minnows, which will continue to the next generation and affect their development.


Assuntos
Cyprinidae , Pontos Quânticos , Animais , Índio/toxicidade , Masculino , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Sêmen , Sulfetos , Compostos de Zinco
15.
Nanomaterials (Basel) ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064198

RESUMO

InP@ZnS core-shell colloidal quantum dots (CQDs) were synthesized and characterized using the z-scan technique. The nonlinear refraction and nonlinear absorption coefficients (γ = -2 × 10-12 cm2 W-1, ß = 4 × 10-8 cm W-1) of these CQDs were determined using 10 ns, 532 nm pulses. The saturable absorption (ß = -1.4 × 10-9 cm W-1, Isat = 3.7 × 108 W cm-2) in the 3.5 nm CQDs dominated at small intensities of the probe pulses (I ≤ 7 × 107 W cm-2) followed by reverse saturable absorption at higher laser intensities. We report the optical limiting studies using these CQDs showing the suppression of propagated nanosecond radiation in the intensity range of 8 × 107-2 × 109 W cm-2. The role of nonlinear scattering is considered using off-axis z-scan scheme, which demonstrated the insignificant role of this process along the whole range of used intensities of 532 nm pulses. We discuss the thermal nature of the negative nonlinear refraction in the studied species.

16.
Front Bioeng Biotechnol ; 9: 714922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490224

RESUMO

Quantum dots (QDs) as a promising optical probe have been widely used for in vivo biomedical imaging; especially enormous efforts recently have focused on the potential toxicity of QDs to the human body. The toxicological effects of the representative InP/ZnS QDs as a cadmium-free emitter are still in the early stage and have not been fully unveiled. In this study, the DPPC/DPPG mixed monolayer was used to simulate the lung surfactant monolayer. The InP/ZnS-COOH QDs and InP/ZnS-NH2 QDs were introduced to simulate the lung surfactant membrane's environment in the presence of InP/ZnS QDs. The effects of InP/ZnS QDs on the surface behavior, elastic modulus, and stability of DPPC/DPPG mixed monolayer were explored by the surface pressure-mean molecular area isotherms and surface pressure-time curves. The images observed by Brewster angle microscope and atomic force microscope showed that the InP/ZnS QDs affected the morphology of the monolayer. The results further demonstrated that the InP/ZnS QDs coated with different surface groups can obviously adjust the mean molecular area, elastic modulus, stability, and microstructure of DPPC/DPPG mixed monolayer. Overall, this work provided useful information for in-depth understanding of the effects of the -COOH or -NH2 group coated InP/ZnS QDs on the surface of lung surfactant membrane, which will help scientists to further study the physiological toxicity of InP/ZnS QDs to lung health.

17.
Adv Sci (Weinh) ; 8(16): e2100513, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34174170

RESUMO

Efficient charge storage media play a pivotal role in transistor-based memories and thus are under intense research. In this work, the charge storage ability of type-I InP/ZnS core/shell quantum dots is well revealed through studying a pentacene-based organic transistor with the quantum dots (QDs) integrated. The quantum well-like energy band structure enables the QDs to directly confine either holes or electrons in the core, signifying a dielectric layer-free nonvolatile memory. Especially, the QDs in this device can be charged by electrons using light illumination as the exclusive method. The electron charging process is ascribed to the photoexcitation process in the InP-core and the hot holes induced. The QDs layer demonstrates an electron storage density of ≈5.0 × 1011  cm-2 and a hole storage density of ≈6.4 × 1011  cm-2 . Resultingly, the output device shows a fast response speed to gate voltage (10 µs), large memory window (42 V), good retention (>4.0 × 104 s), and reliable endurance. This work suggests that the core/shell quantum dot as a kind of charge storage medium is of great promise for optoelectronic memories.

18.
Nanotheranostics ; 4(3): 173-183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483522

RESUMO

Indium phosphide/zinc sulfate (InP/ZnS) quantum dots (QDs) are presumed to be less hazardous than those that contain cadmium. However, the toxicological profile has not been established. The present study investigated the acute toxicity of InP/ZnS QDs with different surface modifications (COOH, NH2, and OH) in mice after pulmonary aerosol inhalation. InP/ZnS QDs were able to pass through the blood-gas barrier and enter the circulation, and subsequently accumulated in major organs. No obvious changes were observed in the body weight or major organ coefficients. Red blood cell counts and platelet-related indicators were in the normal range, but the proportion of white blood cells was altered. The InP/ZnS QDs caused varying degrees of changes in some serum markers, but no histopathological abnormalities related to InP/ZnS QDs treatment was observed in major organs except that hyperemia in alveolar septa was found in lung sections. These results suggested that the effects of respiratory exposure to InP/ZnS QDs on the lungs need to be fully considered in future biomedical application although the overall toxicity of quantum dots is relatively low.


Assuntos
Pulmão , Pontos Quânticos , Administração por Inalação , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Índio/administração & dosagem , Índio/farmacocinética , Índio/toxicidade , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Fosfinas/administração & dosagem , Fosfinas/farmacocinética , Fosfinas/toxicidade , Pontos Quânticos/administração & dosagem , Pontos Quânticos/análise , Pontos Quânticos/metabolismo , Pontos Quânticos/toxicidade , Propriedades de Superfície , Distribuição Tecidual , Sulfato de Zinco/administração & dosagem , Sulfato de Zinco/farmacocinética , Sulfato de Zinco/toxicidade
19.
ACS Appl Mater Interfaces ; 12(28): 31382-31391, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32551487

RESUMO

Various hybrid zero-dimensional/two-dimensional (0D/2D) systems have been developed to fabricate phototransistors with better performance compared to two-dimensional (2D) layered materials as well as broaden potential applications. Herein, we integrated environment-friendly InP@ZnS core-shell QDs with high efficiency of light absorption and light-emitting properties with bilayer MoS2 for the realization of 0D/2D mixed-dimensional phototransistors. Interdigitated (IDT) electrodes with Pt-patterned arrays, acting as light collectors as well as plasmonic resonators, can further enhance light harvesting from the InP@ZnS-MoS2 hybrid phototransistors, contributing to achieving a photoresponsivity as high as 1374 A·W-1. Moreover, thanks to the asymmetric Pt/MoS2 Schottky junction at the source/drain contact, a self-powered characteristic with an ultrafast speed of 21.5 µs was achieved, which is among the best performances for 2D layered material-based phototransistors. In terms of these features, we demonstrated the artificial synapse network with short-time plasticity based on the self-powered photodetection device. Our work reveals the great potential of 0D/2D hybrid phototransistors for high-response, ultrafast-speed, and self-powered photodetectors coupled with artificial neuromorphic function.

20.
Int J Nanomedicine ; 15: 1951-1965, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256071

RESUMO

INTRODUCTION: Indium phosphide (InP) quantum dots (QDs) have shown a broad application prospect in the fields of biophotonics and nanomedicine. However, the potential toxicity of InP QDs has not been systematically evaluated. In particular, the effects of different surface modifications on the biodistribution and toxicity of InP QDs are still unknown, which hinders their further developments. The present study aims to investigate the biodistribution and in vivo toxicity of InP/ZnS QDs. METHODS: Three kinds of InP/ZnS QDs with different surface modifications, hQDs (QDs-OH), aQDs (QDs-NH2), and cQDs (QDs-COOH) were intravenously injected into BALB/c mice at the dosage of 2.5 mg/kg BW or 25 mg/kg BW, respectively. Biodistribution of three QDs was determined through cryosection fluorescence microscopy and ICP-MS analysis. The subsequent effects of InP/ZnS QDs on histopathology, hematology and blood biochemistry were evaluated at 1, 3, 7, 14 and 28 days post-injection. RESULTS: These types of InP/ZnS QDs were rapidly distributed in the major organs of mice, mainly in the liver and spleen, and lasted for 28 days. No abnormal behavior, weight change or organ index were observed during the whole observation period, except that 2 mice died on Day 1 after 25 mg/kg BW hQDs treatment. The results of H&E staining showed that no obvious histopathological abnormalities were observed in the main organs (including heart, liver, spleen, lung, kidney, and brain) of all mice injected with different surface-functionalized QDs. Low concentration exposure of three QDs hardly caused obvious toxicity, while high concentration exposure of the three QDs could cause some changes in hematological parameters or biochemical parameters related to liver function or cardiac function. More attention needs to be paid on cQDs as high-dose exposure of cQDs induced death, acute inflammatory reaction and slight changes in liver function in mice. CONCLUSION: The surface modification and exposure dose can influence the biological behavior and in vivo toxicity of QDs. The surface chemistry should be fully considered in the design of InP-based QDs for their biomedical applications.


Assuntos
Pontos Quânticos/toxicidade , Animais , Análise Química do Sangue , Feminino , Índio/química , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Fosfinas/química , Pontos Quânticos/química , Sulfetos/química , Propriedades de Superfície , Distribuição Tecidual , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA