Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 262: 110178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460892

RESUMO

Controlling the excessive inflammatory response is one of the key ways to reduce the severity and mortality of severe influenza virus infections. RAGE is involved in inflammatory responses and acute lung injuries. Here, we investigated the role of RAGE and its potential application as a target for severe influenza treatment through serological correlation analysis for influenza patients, and treatment with the RAGE inhibitor FPS-ZM1 on A549 cells or mice with influenza A (H1N1) infection. The results showed high levels of RAGE were correlated with immunopathological injury and severity of influenza, and FPS-ZM1 treatment increased the viability of A549 cells with influenza A infection and decreased morbidity and mortality of influenza A virus infection in mice. The RAGE/NF-κb inflammatory signaling pathway is a major targeting pathway for FPS-ZM1 treatment in severe influenza. These findings provide further insights into the immune injury of severe influenza and a potential targeting candidate for the disease treatment.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Camundongos , Animais , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Benzamidas/farmacologia
2.
Mol Ther ; 31(5): 1365-1382, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36733250

RESUMO

Mesenchymal stem cells regulate remote intercellular signaling communication via their secreted extracellular vesicles. Here, we report that menstrual blood-derived stem cells alleviate acute lung inflammation and injury via their extracellular vesicle-transmitted miR-671-5p. Disruption of this abundantly expressed miR-671-5p dramatically reduced the ameliorative effect of extracellular vesicles released by menstrual blood-derived stem cells on lipopolysaccharide (LPS)-induced pulmonary inflammatory injury. Mechanistically, miR-671-5p directly targets the kinase AAK1 for post-transcriptional degradation. AAK1 is found to positively regulate the activation of nuclear factor κB (NF-κB) signaling by controlling the stability of the inhibitory protein IκBα. This study identifies a potential molecular basis of how extracellular vesicles derived from mesenchymal stem cells improve pulmonary inflammatory injury and highlights the functional importance of the miR-671-5p/AAK1 axis in the progression of pulmonary inflammatory diseases. More importantly, this study provides a promising cell-based approach for the treatment of pulmonary inflammatory disorders through an extracellular vesicle-dependent pathway.


Assuntos
Vesículas Extracelulares , Lesão Pulmonar , MicroRNAs , Pneumonia , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Inflamação/genética , Inflamação/terapia , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Pneumonia/genética , Pneumonia/terapia , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas Serina-Treonina Quinases
3.
Ecotoxicol Environ Saf ; 283: 116784, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39088896

RESUMO

2-ethylhexyl diphenyl phosphate (EHDPHP) is a widely used organophosphorus flame retardant and plasticizer, which is commonly found in the environment. EHDPHP not only potentially harms the environment but also causes different degrees of damage to the organism. In this study, the duodenum of chicks was selected as the potential toxic target organ to explore the mechanism of duodenal injury induced by EHDPHP exposure. Ninety one-day-old healthy male chicks were selected and randomly divided into C1(control group), C2(solvent control group), L(800 mg/kg), M(1600 mg/kg), H(3200 mg/kg) according to different doses of EHDPHP after one week of environmental adaptation. The chicks were given continuous gavage for 14 d, 28 d, and 42 d. It was found that constant exposure to EHDPHP caused an increase in duodenal MDA content, a decrease in P-gp, SOD, GSH-Px activities, and a decrease in duodenal mucosal immune factor (sIgA, GSH-Px). The expression of sIgM and mucosal link proteins (CLDN, OCLN, ZO-1, JAM) decreased, and the expression of the inflammatory protein (NF-κB, COX2) in duodenal tissues was up-regulated. The results showed that continuous exposure to EHDPHP could cause duodenal oxidative stress, inflammation, and mucosal barrier damage in chicks, which provided a basis for studying the mechanism of toxic damage caused by EHDPHP in poultry.


Assuntos
Galinhas , Duodeno , Retardadores de Chama , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Duodeno/efeitos dos fármacos , Duodeno/patologia , Duodeno/metabolismo , Masculino , Retardadores de Chama/toxicidade , Inflamação/induzido quimicamente , Inflamação/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Compostos Organofosforados/toxicidade , Organofosfatos/toxicidade
4.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38256101

RESUMO

Actinobacillus pleuropneumoniae (APP) is responsible for causing Porcine pleuropneumonia (PCP) in pigs. However, using vaccines and antibiotics to prevent and control this disease has become more difficult due to increased bacterial resistance and weak cross-immunity between different APP types. Naringin (NAR), a dihydroflavonoid found in citrus fruit peels, has been recognized as having significant therapeutic effects on inflammatory diseases of the respiratory system. In this study, we investigated the effects of NAR on the inflammatory response caused by APP through both in vivo and in vitro models. The results showed that NAR reduced the number of neutrophils (NEs) in the bronchoalveolar lavage fluid (BALF), and decreased lung injury and the expression of proteins related to the NLRP3 inflammasome after exposure to APP. In addition, NAR inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in porcine alveolar macrophage (PAMs), reduced protein expression of NLRP3 and Caspase-1, and reduced the secretion of pro-inflammatory cytokines induced by APP. Furthermore, NAR prevented the assembly of the NLRP3 inflammasome complex by reducing protein interaction between NLRP3, Caspase-1, and ASC. NAR also inhibited the potassium (K+) efflux induced by APP. Overall, these findings suggest that NAR can effectively reduce the lung inflammation caused by APP by inhibiting the over-activated NF-κB/NLRP3 signalling pathway, providing a basis for further exploration of NAR as a potential natural product for preventing and treating APP.


Assuntos
Actinobacillus pleuropneumoniae , Flavanonas , NF-kappa B , Animais , Suínos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos , Caspase 1
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(9): 967-973, 2024.
Artigo em Zh | MEDLINE | ID: mdl-39267513

RESUMO

OBJECTIVES: To study the effects and mechanisms of tetramethylpyrazine (TMP) on tumor necrosis factor-α (TNF-α)-induced inflammatory injury in human coronary artery endothelial cells (HCAEC). METHODS: HCAEC were randomly divided into four groups: the control group (no treatment), the model group (treated with TNF-α, 50 ng/mL for 24 hours), the TMP group (pre-treated with TMP, 80 µg/mL for 12 hours followed by TNF-α treatment for 24 hours), and the SIRT1 inhibitor group (pre-treated with TMP and the specific SIRT1 inhibitor EX527 for 12 hours followed by TNF-α treatment for 24 hours). Cell viability was assessed using the CCK-8 method, lactate dehydrogenase (LDH) activity was measured using an LDH assay kit, reactive oxygen species (ROS) levels were observed using DCFH-DA staining, expression of pyroptosis-related proteins was detected by Western blot, and SIRT1 expression was analyzed using immunofluorescence staining. RESULTS: Compared to the control group, the model group showed decreased cell viability, increased LDH activity, ROS level and expression of pyroptosis-related proteins, and decreased SIRT1 expression (P<0.05). Compared to the model group, the TMP group exhibited increased cell viability, decreased LDH activity, ROS level and expression of pyroptosis-related proteins, and increased SIRT1 expression (P<0.05). In comparison to the TMP group, the SIRT1 inhibitor group showed decreased cell viability, increased LDH activity, ROS level and expression of pyroptosis-related proteins, and decreased SIRT1 expression (P<0.05). CONCLUSIONS: TMP may attenuate TNF-α-induced inflammatory injury in HCAEC, which is associated with the inhibition of pyroptosis and activation of the SIRT1 signaling pathway.


Assuntos
Células Endoteliais , Pirazinas , Espécies Reativas de Oxigênio , Transdução de Sinais , Sirtuína 1 , Fator de Necrose Tumoral alfa , Sirtuína 1/metabolismo , Sirtuína 1/fisiologia , Humanos , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Células Cultivadas , Inflamação/tratamento farmacológico
6.
J Cell Physiol ; 238(7): 1605-1621, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269461

RESUMO

Cadmium (Cd) is a toxic metal pollutant that still exists in the environment. The microRNA (miRNA) is a type of noncoding RNA that plays an important role in gene posttranscriptional regulation and disease development. Although the toxic effects of Cd have been extensively studied, studies on the mechanism of Cd from the perspective of miRNA are still limited. So, we established a Cd-exposure pig model, which confirmed that Cd exposure would cause pig artery damage. The miR-210 with the most reduced expression and the nuclear factor kappa B (NF-κB) that had a targeting relationship with miR-210 were screened. The effect of miR-210/NF-κB on the artery damage induced by Cd exposure was investigated by acridine orange/ethidium bromide staining, reactive oxygen species (ROS) staining, quantitative PCR, and western blotting. The results showed that miR-210 inhibitor, pcDNA-NF-κB could induce ROS overproduction in pig hip artery endothelial cells, thus inducing Th1/Th2 imbalance and necroptosis, leading to increased inflammation, while small interfering RNA-NF-κB played a mitigating role. In conclusion, Cd can induce artery necroptosis and Th1/Th2 imbalance by regulating the miR-210/NF-κB axis, so as to lead to artery inflammatory damage. In this study, we explored the way in which Cd exposure causes artery damage in pig, providing a new perspective on the regulatory damage of miR-210/NF-κB axis.


Assuntos
Arterite , Cádmio , MicroRNAs , NF-kappa B , Animais , Artérias/metabolismo , Cádmio/toxicidade , Células Endoteliais/metabolismo , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Suínos , Arterite/metabolismo
7.
J Cell Biochem ; 124(11): 1667-1684, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37850620

RESUMO

Chronic pharyngitis (CP) is an inflammatory disease of the pharyngeal mucosa and its lymphatic tissues that is difficult to treat clinically. However, research on the exact therapeutic agents and molecular mechanisms of CP is still unclear. In this study, we investigated Rabdosichuanin C (RC) to attenuate lipopolysaccharide (LPS)-induced inflammatory damage in RAW264.7 cells by a combination of targeted virtual screening and in vitro activity assay and further clarified its molecular mechanism of action centering on the IκB/nuclear factor kappa B (NF-κB) pathway. Molecular docking and pharmacophore simulation methods were used to screen compounds with IκB inhibitory effects. Expression of genes and proteins related to the IκB/NF-κB signaling pathway by RC in LPS-induced inflammatory injury model of RAW264.7 cells was detected by PCR, enzyme-linked immunosorbent assay, and Western blot. The docking of RC with IκB protein showed good binding energy, and pharmacophore simulations further confirmed the active effect of RC in inhibiting IκB protein. RC intervention in LPS-induced RAW264.7 cells significantly reduced the expression levels of inflammatory factors tumor necrosis factor-α, interleukins-6, iNOS, and CD-86 at the messenger RNA and protein levels, downregulated IκB, p65 protein phosphorylation levels, and significantly inhibited IκB/NF-κB signaling pathway activation. Virtual screening provided us with an effective method to rapidly identify compounds RC that target inhibit the action of IκB, and the activity results showed that RC inhibits NF-κB signaling pathway activation. It is suggested that RC may play a role in the treatment of CP by inhibiting the IκB/NF-κB signaling pathway.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Camundongos , Proteínas I-kappa B/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
8.
Mol Med ; 29(1): 116, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641009

RESUMO

BACKGROUND: Inflammatory injury of gallbladder mucosal epithelial cells affects the development of cholelithiasis, and aquaporin 3 (AQP3) is an important regulator of inflammatory response. This study reports a mechanistic insight into AQP3 regulating gallstone formation in cholelithiasis based on high-throughput sequencing. METHODS: A mouse model of cholelithiasis was induced using a high-fat diet, and the gallbladder tissues were harvested for high-throughput sequencing to obtain differentially expressed genes. Primary mouse gallbladder mucosal epithelial cells were isolated and induced with Lipopolysaccharides (LPS) to mimic an in vitro inflammatory injury environment. Cell biological phenotypes were detected by TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, flow cytometry, Cell Counting Kit-8 (CCK-8) assay, and Trypan blue staining. In addition, enzyme linked immunosorbent assay (ELISA) determined the production of inflammatory factors in mouse gallbladder mucosa. RESULTS: Whole-transcriptome sequencing data analysis identified 489 up-regulated and 1007 down-regulated mRNAs. Bioinformatics analysis revealed that AQP3 was significantly down-regulated in mice with cholelithiasis. AQP3 might also confer an important role in LPS-induced gallbladder mucosal injury. Overexpression of AQP3 activated the AMPK (adenosine monophosphate-activated protein kinase) / SIRT1 (sirtuin-1) signaling pathway to reduce LPS-induced inflammatory injury of the gallbladder mucosa epithelium, thereby ameliorating gallbladder damage and repressing gallstone formation in mice. CONCLUSION: Data from our study highlight the inhibitory role of AQP3 in gallbladder damage and gallstone formation in mice by reducing inflammatory injury of gallbladder mucosal epithelial cells, which is achieved through activation of the AMPK/SIRT1 signaling pathway.


Assuntos
Cálculos Biliares , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Aquaporina 3 , Sirtuína 1/genética , Lipopolissacarídeos , Células Epiteliais , Mucosa , Transdução de Sinais
9.
Clin Exp Immunol ; 214(1): 120-129, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37402316

RESUMO

Excessive inflammatory injury is the main cause of the incidence of severe neonatal pneumonia (NP) and associated deaths. Although dickkopf-3 (DKK3) exhibits anti-inflammatory activity in numerous pathological processes, its role in NP is still unknown. In this study, human embryonic lung WI-38 and MRC-5 cells were treated with lipopolysaccharide (LPS) to induce inflammatory injury of NP in vitro. The expression of DKK3 was downregulated in LPS-stimulated WI-38 and MRC-5 cells. DKK3 overexpression decreased LPS-induced inhibition of cell viability, and reduced LPS-induced apoptosis of WI-38 and MRC-5 cells. DKK3 overexpression also reduced LPS-induced production of pro-inflammatory factors such as ROS, IL-6, MCP-1, and TNF-α. Nuclear respiratory factors 1 (NRF1) knockdown was found to upregulate DKK3 and inactivate the GSK-3ß/ß-catenin pathway in LPS-injured WI-38 and MRC-5 cells. NRF1 knockdown also suppressed LPS-induced inhibition on cell viability, repressed LPS-induced apoptosis, and inhibited the accumulation of ROS, IL-6, MCP-1, and TNF-α in LPS-injured WI-38 and MRC-5 cells. DKK3 knockdown or re-activation of the GSK-3ß/ß-catenin pathway reversed the inhibitory effects of NRF1 knockdown on LPS-induced inflammatory injury. In conclusion, NRF1 knockdown can alleviate LPS-triggered inflammatory injury by regulating DKK3 and the GSK-3ß/ß-catenin pathway.


Assuntos
Pneumonia , Transdução de Sinais , Recém-Nascido , Humanos , Lipopolissacarídeos , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
10.
Microb Pathog ; 181: 106169, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37257668

RESUMO

The increased levels of IL-1ß and IL-18 cytokines have been associated with the severity of sepsis and outcomes of patients infected with Talaromyces marneffei. Previous studies have suggested that NLRP3 plays an important role in caspase-1 activated secretion of IL-1ß and IL-18 in fungal-infected macrophages. In the present study, the role of the NLRP3 inflammasome in talaromycosis is investigated in an in vitro assay and in vivo with a mice systemic infection model. We found that the NLRP3 inflammasome pathway in infected mice is activated along with increased production of IL-1ß. Such an activation of the NLRP3 inflammasome is also observed in either mice or human macrophages challenged with T. marneffei conidia. Our results indicate that IL-1ß release by infected macrophages is NLRP3 inflammasome-dependent and NLRP3 contributes to death of mice at the early stage of pulmonary infection. Moreover, a greater number of MPO-positive cells are found in the lungs of infected Nlrp3-/- mice and WT mice with reduced LDH levels, especially at the last stage of infection. Therefore, we conclude that the NLRP3 Inflammasome activation is important for fungal clearance, neutrophil recruitment and lung injury during T. marneffei Infection.


Assuntos
Inflamassomos , Lesão Pulmonar , Animais , Humanos , Camundongos , Inflamassomos/metabolismo , Interleucina-18 , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
11.
Environ Sci Technol ; 57(50): 21337-21347, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38059579

RESUMO

Impacts of an environmental matrix on mercury (Hg) bioavailability and toxicity to medaka (Oryzias latipes) were investigated in matrix-free controls and treatments with a stepwise increased environmental matrix of river water, sediments, and biofilms. Generally, river water enhanced but the presence of sediments and biofilms reduced Hg bioavailability to medaka up to 105 times, so that Hgtotal concentrations/amounts among different environmental media cannot mirror Hg availability and toxicity to medaka. On average, 12.9 and 12.4% of Hg in medaka was, respectively, methylated to methylmercury (MeHg) in matrix-free and -containing treatments, indicating no influence of the environmental matrix on Hg methylation in medaka. All oxidative stress, inflammatory injury, and malformation parameters correlated strongly and significantly with Hgtotal and MeHg concentrations in medaka, notably with steeper slopes in matrix-free controls than in matrix-containing treatments, highlighting that the environmental matrix mitigated Hg and MeHg toxicity to medaka. Moreover, oxidative stress was more strongly mitigated than inflammatory injury according to the stronger decreases of the regression line slopes from matrix-free to -containing treatments. Here, we have newly identified that the potential of the environmental matrix to decrease Hg bioavailability and mitigate Hg toxicity to fish together could buffer Hg ecotoxicity in the aquatic environment.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryzias , Poluentes Químicos da Água , Animais , Rios , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Mercúrio/toxicidade , Mercúrio/análise , Compostos de Metilmercúrio/toxicidade , Água , Sedimentos Geológicos
12.
Thromb J ; 21(1): 44, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076891

RESUMO

BACKGROUND: Deep vein thrombosis (DVT) is an interplay of genetic and acquired risk factors, where functional interactions in lncRNA-miRNA-mRNA ceRNA networks contribute to disease pathogenesis. Based on the high-throughput transcriptome sequencing prediction, we have assessed the contribution of lncRNA Crnde/miR-181a-5p/Pcyox1l axis to thrombus formation. METHODS: DVT was modeled in mice by inferior vena cava stenosis, and inferior vena cava tissues were harvested for high-throughput transcriptome sequencing to screen differentially expressed lncRNAs and mRNAs. The key miRNA binding to Crnde and Pcyox1l was obtained through searching the RNAInter and mirWalk databases. The binding affinity between Crnde, miR-181a-5p, and Pcyox1l was examined by FISH, dual luciferase reporter gene, RNA pull-down, and RIP assays. Functional experiments were conducted in DVT mouse models to assess thrombus formation and inflammatory injury in inferior vena cava. RESULTS: It was noted that Crnde and Pcyox1l were upregulated in the blood of DVT mice. Crnde competitively bound to miR-181a-5p and inhibited miR-181a-5p expression, and Pcyox1l was the downstream target gene of miR-181a-5p. Silencing of Crnde or restoration of miR-181a-5p reduced inflammatory injury in the inferior vena cava, thus curtailing thrombus formation in mice. Ectopic expression of Pcyox1l counterweighed the inhibitory effect of Crnde silencing. CONCLUSIONS: Therefore, Crnde sequesters miR-181a-5p to release Pcyox1l expression via ceRNA mechanism, thus aggravating thrombus formation in DVT.

13.
Chin J Physiol ; 66(5): 335-344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929344

RESUMO

Acute lung injury is a severe clinical condition constituting a major cause of mortality in intensive care units. This study aimed to investigate the role of klotho in alleviating lipopolysaccharide (LPS)-induced acute lung injury. LPS-induced acute lung injury was used to simulate the acute lung injury caused by severe pneumonia in vitro. The viability and apoptosis of A549 cells were detected by cell counting kit-8 assay and flow cytometry. The inflammatory response, oxidative stress, and mitochondrial function in A549 cells were analyzed by commercial assay kits and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl carbocyanine iodide (JC-1) staining. The expression of apoptosis-related proteins, Sirtuin 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway-related proteins, and NOD-like receptor family pyrin domain containing 3 (NLRP3) expression in A549 cells was detected by western blot. The mtDNA synthase level in A549 cells was analyzed by reverse transcription-quantitative polymerase chain reaction. The results showed that, klotho had no cytotoxic effect on A549 cells. The viability and mitochondrial function were inhibited and apoptosis, inflammatory response, and oxidative stress were aggravated in LPS-induced A549 cells, which were all reversed by klotho. Klotho activated the SIRT1/Nrf2 signaling pathway to inhibit the LPS-induced NLRP3 inflammasome activation in A549 cells. However, EX527, a SIRT1 inhibitor, attenuated the klotho effect to suppress viability and mitochondrial function and promoted apoptosis, inflammatory response, and oxidative stress of A549 cells. In conclusion, klotho inhibited the activation of NLRP3 inflammasome to alleviate LPS-induced inflammatory injury of A549 cells and restore mitochondrial function through activating the SIRT1/Nrf2 signaling pathway.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Proteínas Klotho , Humanos , Células A549 , Lesão Pulmonar Aguda/induzido quimicamente , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , Mitocôndrias , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteínas Klotho/metabolismo
14.
Pediatr Surg Int ; 39(1): 207, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249714

RESUMO

Biliary atresia (BA) is a severe cholangiopathy in infants. It is characterized by inflammatory fibro-obliteration of the intra- and extrahepatic bile ducts. Although the restoration of bile flow can be successful after Kasai operation, the rapid progression of liver fibrosis can continue, leading to cirrhosis. It is believed that the progression of liver fibrosis in BA is exacerbated by complicated mechanisms other than the consequence of bile duct obstruction. The fibrogenic cascade in BA liver can be divided into three stages, including liver inflammatory injury, myofibroblast activation, and fibrous scar formation. Recent studies have revealed that the activation of an immune response following bile duct injury plays an important role in promoting the inflammatory process, the releasing of inflammatory cytokines, and the development of fibrogenesis in BA liver. In this article, we summarized the evidence regarding liver inflammatory injury and the possible mechanisms that explain the rapid progression of liver fibrosis in BA.


Assuntos
Atresia Biliar , Colestase , Lactente , Humanos , Atresia Biliar/complicações , Atresia Biliar/cirurgia , Fígado/patologia , Colestase/etiologia , Cirrose Hepática/complicações , Fibrose
15.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982193

RESUMO

Acute respiratory distress syndrome (ARDS) threatens the survival of critically ill patients, the mechanisms of which are still unclear. Neutrophil extracellular traps (NETs) released by activated neutrophils play a critical role in inflammatory injury. We investigated the role of NETs and the underlying mechanism involved in acute lung injury (ALI). We found a higher expression of NETs and cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) in the airways, which was reduced by Deoxyribonuclease I (DNase I) in ALI. The administration of the STING inhibitor H-151 also significantly relieved inflammatory lung injury, but failed to affect the high expression of NETs in ALI. We isolated murine neutrophils from bone marrow and acquired human neutrophils by inducing HL-60 to differentiate. After the PMA interventions, exogenous NETs were obtained from such extracted neutrophils. Exogenous NETs intervention in vitro and in vivo resulted in airway injury, and such inflammatory lung injury was reversed upon degrading NETs with or inhibiting cGAS-STING with H-151 as well as siRNA STING. In conclusion, cGAS-STING participates in regulating NETs-mediated inflammatory pulmonary injury, which is expected to be a new therapeutic target for ARDS/ALI.


Assuntos
Lesão Pulmonar Aguda , Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Armadilhas Extracelulares/metabolismo , Lesão Pulmonar Aguda/metabolismo , Neutrófilos/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
16.
Int Heart J ; 64(4): 732-740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37518354

RESUMO

To investigate the possible effect of FoxO on coxsackievirus B3 (CVB3) -induced cardiomyocyte inflammation and apoptosis via modulation of the TLR4/NF-κB signaling pathway.Viral myocarditis (VMC) models were establied via CVB3 infection both in vivo and in vitro. Western blotting was adopted to detect FoxO1 and TLR4 expressions in myocardial tissues and cells. Cardiomyocytes of suckling mouse were divided into the control, CVB3, CVB3 + pcDNA, CVB3 + pcDNA-FoxO1, CVB3 + TLR4 siRNA, and CVB3 + pcDNA-FoxO1 + TLR4 siRNA groups. Flow cytometry was employed to evaluate cell apoptosis. The expressions of inflammatory factors including TNF-α, IL-1ß, and IL-6 were detected via quantitative reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay. Then, TLR4/NF-κB pathway-related proteins were determined via Western blotting.VMC mice had increased FoxO1 and TLR4 expressions in myocardial tissues. Cardiomyocytes with CVB3 infection also had upregulated protein expressions of p-FoxO1/FoxO1 and TLR4. Compared with those in the control group, the cardiomyocytes in the CVB3 group were increased in LDH and CK-MB levels, cell apoptosis rate and inflammatory factors (TNF-α, IL-1ß and IL-6), as well as protein expressions of TLR4 and p-p65/p65. Compared with those in the CVB3 group, the cardiomyocytes in the CVB3 + pcDNA-FoxO1 group were further upregulated whereas those in the CVB3 +TLR4 siRNA group were downregulated in the aforementioned indicators. Furthermore, TLR4 siRNA can reverse the effect of pcDNA-FoxO1 on the aggravation of cardiomyocyte injury induced by CVB3 infection.FoxO1 can upregulate the TLR4/NF-κB signaling pathway to promote cardiomyocyte apoptosis and inflammatory injury in CVB3-induced VMC.


Assuntos
Infecções por Coxsackievirus , Miocardite , Camundongos , Animais , Miocardite/metabolismo , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Receptor 4 Toll-Like/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Apoptose , Infecções por Coxsackievirus/metabolismo , RNA Interferente Pequeno
17.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(2): 252-259, 2023 Feb 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-36999472

RESUMO

Inflammatory injury of the intestine is often accompanied by symptoms such as damage to intestinal mucosa, increased intestinal permeability, and intestinal motility dysfunction. Inflammatory factors spread throughout the body via blood circulation, and can cause multi-organ failure. Pyroptosis is a newly discovered way of programmed cell death, which is mainly characterized by the formation of plasma membrane vesicles, cell swelling until the rupture of the cell membrane, and the release of cell contents, thereby activating a drastic inflammatory response and expanding the inflammatory response cascade. Pyroptosis is widely involved in the occurrence of diseases, and the underlying mechanisms for inflammation are still a hot spot of current research. The caspase-1 mediated canonical inflammasome pathway of pyroptosis and caspase-4/5/8/11-mediated non-canonical inflammasome pathway are closely related to the occurrence and development of intestinal inflammation. Therefore, investigation of the signaling pathways and molecular mechanisms of pyroptosis in intestinal injury in sepsis, inflammatory bowel diseases, infectious enteristic, and intestinal tumor is of great significance for the prevention and treatment of intestinal inflammatory injury.


Assuntos
Inflamassomos , Piroptose , Humanos , Inflamassomos/metabolismo , Apoptose , Caspase 1 , Inflamação
18.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(11): 1650-1658, 2023 Nov 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38432855

RESUMO

OBJECTIVES: Percutaneous coronary intervention (PCI) is one of the most important treatments for coronary artery disease (CAD). However, in-stent restenosis (ISR) after PCI is a serious complication without effective measures for prevention and treatment. This study aims to investigate the Ras-related protein 1A (Rap1A) level in ISR patients and in the tumor necrosis factor-α (TNF-α)-induced inflammatory injury model of human umbilical vein endothelial cells (HUVECs), to explore the role of Rap1A in regulating TNF-α-induced inflammation in HUVECs and to provide a new potential target for ISR prevention and treatment. METHODS: A total of 60 CAD patients, who underwent PCI between December 2020 and July 2022 from the Department of Cardiovascular Medicine of Xiangya Hospital, Central South University, and re-examined coronary angiography (CAG) 1 year after the operation, were included. After admission, 27 patients were diagnosed with ISR and 33 patients were diagnosed with non-in-stent restenosis (non-ISR) according to the CAG. Clinical data were collected, and the plasma Rap1A level was determined by enzyme linked immunosorbent assay (ELISA). In cell experiments, an inflammatory injury model was established with TNF-α treatment (10 ng/mL, 24 h) in HUVECs. The mRNA and protein expression levels of Rap1A, interlukin-6 (IL-6), and vascular cell adhesion molecule-1 (VCAM-1) were measured by real-time reverse transcription PCR and Western blotting. Small interfering RNA (siRNA) was used to explore the role of Rap1A in regulating TNF-α-induced inflammation in HUVECs. RESULTS: Compared with the non-ISR patients, a higher proportion of ISR patients had a history of smoking (P=0.005) and diabetes (P=0.028), and higher levels of glycosylated hemoglobin (HbA1c) (P=0.012), low-density lipoprotein cholesterol (LDL-c) (P=0.014), and hypersensitive C-reactive protein (hs-CRP) (P=0.027). The remaining projects did not show significant differences (all P>0.05). The plasma level of Rap1A in the ISR group was significantly higher than that in the non-ISR group [942.14 (873.28 to 1 133.81) µg/mL vs 886.93 (812.61 to 930.98) µg/mL; P=0.004]. Diabetes, LDL-c, and Rap1A were risk factors for ISR by univariate logistic regression analysis (all P<0.05). The mRNA and protein expression levels of inflammatory factors IL-6 and VCAM-1 were increased in HUVECs after 10 ng/mL TNF-α treatment for 24 h compared with the control group (all P<0.05), while the mRNA and protein levels of Rap1A were increased (both P<0.05). After inhibition of Rap1A in HUVECs, the mRNA and protein expression levels of IL-6 and VCAM-1 were significantly decreased (all P<0.05). CONCLUSIONS: The plasma Rap1A level was significantly elevated in patients with ISR, suggesting that Rap1A may be a potential biomarker for predicting ISR. In the TNF-α- induced HUVECs inflammatory injury model, the expression level of Rap1A was increased. The level of TNF-α-induced endothelial cell inflammation was decreased after inhibition of Rap1A expression, suggesting that Rap1A may be a potential target for the treatment of endothelial cell inflammation in ISR.


Assuntos
Doença da Artéria Coronariana , Reestenose Coronária , Diabetes Mellitus , Intervenção Coronária Percutânea , Humanos , Molécula 1 de Adesão de Célula Vascular , LDL-Colesterol , Interleucina-6 , Fator de Necrose Tumoral alfa , Constrição Patológica , Células Endoteliais da Veia Umbilical Humana , Inflamação , RNA Mensageiro
19.
Neurochem Res ; 47(7): 2064-2075, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35538293

RESUMO

Ischemic stroke is a grievous intimidation to the healthiness of sufferers. Previous studies have reported that dexmedetomidine (DEX) has a protective effect on a variety of organs. This paper aimed to explore the regulatory mechanism of DEX in ischemic stroke through miR-665/ROCK2 axis. The mice model of ischemic stroke was constructed by middle cerebral artery occlusion (MCAO). The cell model of ischemic stroke was constructed by oxygen-glucose deprivation (OGD). Cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry. The expression of cytokines was detected by ELISA. Lactate dehydrogenase (LDH) concentration was evaluated by LDH kit. The cerebral infarct volume of MCAO mice was detected by TTC staining, and the apoptosis of brain cells was detected by TUNEL staining. The target relationship between ROCK2 and miR-665 was analyzed by dual-luciferase reporter assay. DEX contributed cell viability from 42 to 66% (1 µM) and restrained cell apoptosis from 26 to 18% in HT22 cells treated with OGD (P < 0.01). Meanwhile, DEX decreased the expression of cytokines and LDH concentration from 184 to 126% (P < 0.001). Moreover, the expression of miR-665 enhanced 2.9 times (P < 0.05) and the expression of ROCK2 (P < 0.05) and NF-κB p65 (P < 0.01) reduced 1.8 times and 2.2 times after DEX treatment in OGD induced HT22. And miR-665 knockdown attenuated the effect of DEX on inflammation damage (the levels of TNF-α, IL-1ß and IL-6 increased 1.36 times, 1.31 times, 1.43 time, respectively, and IL-10 decreased 1.68 times) and apoptosis from 17 to 25% (P < 0.01). MiR-665 directly targeted ROCK2 and regulated ROCK2 and NF-κB p65 expression (P < 0.01). Furthermore, ROCK2 overexpression inhibited the protective effect of DEX in HT22 induced by OGD (P < 0.001), while miR-665 overexpression reversed the regulatory of ROCK2 (P < 0.01). In vivo, DEX decreased cerebral infarction volume and inhibited apoptosis of brain cell (P < 0.001). DEX has a protective effect in ischemic stroke by promoting miR-665 expression to downregulate ROCK2/NF-κB axis, suggesting DEX has a beneficial effect on ischemic stroke and miR-665 is a conceivable target for the therapeutics and diagnosis of ischemic stroke.


Assuntos
Isquemia Encefálica , Dexmedetomidina , AVC Isquêmico , MicroRNAs , Traumatismo por Reperfusão , Animais , Apoptose , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Citocinas/metabolismo , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Glucose/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Camundongos , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Regulação para Cima , Quinases Associadas a rho/metabolismo
20.
Cells Tissues Organs ; 211(1): 57-72, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34525477

RESUMO

Periodontitis is an inflammatory disease resulting from subgingival microorganisms. Human periodontal ligament stem cells (hPDLSCs) can be applied in periodontal tissue regeneration. This study investigated the effect of hPDLSC-derived extracellular vesicles (EVs) on periodontitis. hPDLSC-derived EVs were isolated and identified. The murine model of periodontitis was established by ligation, and the cell model of periodontitis was established by treatment of macrophages with lipopolysaccharide (LPS). The effects of EVs on macrophage pyroptosis and periodontal inflammatory injury were measured by the means of HE staining, detection of LDH content, CCK-8 assay, Calcein-AM/PI staining, ELISA, Western blot, as well as measurement of caspase-1, SOD, and MDA. miR-590-3p expression was detected using RT-qPCR. miR-590-3p expression was then intervened to validate the effect of miR-590-3p on macrophage pyroptosis. The binding relationship between miR-590-3p and TLR4 was verified using dual-luciferase assay. Functional rescue experiment was performed to validate the role of TLR4 in macrophage pyroptosis. The results showed that inflammatory levels and macrophage pyroptosis were enhanced in the in vivo and in vitro models of periodontitis, evidenced by the increased NLRP3, GSDMD-N, caspase-1, IL-1ß, IL-18, TNF-α, and MDA and decreased IL-10 and SOD. EVs alleviated periodontal inflammatory injury and macrophage pyroptosis. Physiologically, EVs carried miR-590-3p into macrophages to upregulate miR-590-3p expression and thereby suppress TLR4 transcription. miR-590-3p silencing or TLR4 overexpression reduced the inhibitory effect of EVs on macrophage pyroptosis. Collectively, EVs carried miR-590-3p into macrophages to subsequently inhibit TLR4 transcription, thereby reducing macrophage pyroptosis and alleviating periodontal inflammatory injury.


Assuntos
Vesículas Extracelulares , MicroRNAs , Periodontite , Animais , Caspases/metabolismo , Caspases/farmacologia , Vesículas Extracelulares/metabolismo , Humanos , Macrófagos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Ligamento Periodontal/metabolismo , Periodontite/metabolismo , Piroptose , Células-Tronco/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA