Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(14): E2011-8, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001857

RESUMO

Cullin-RING E3 ubiquitin ligases (CRL) control a myriad of biological processes by directing numerous protein substrates for proteasomal degradation. Key to CRL activity is the recruitment of the E2 ubiquitin-conjugating enzyme Cdc34 through electrostatic interactions between E3's cullin conserved basic canyon and the acidic C terminus of the E2 enzyme. This report demonstrates that a small-molecule compound, suramin, can inhibit CRL activity by disrupting its ability to recruit Cdc34. Suramin, an antitrypansomal drug that also possesses antitumor activity, was identified here through a fluorescence-based high-throughput screen as an inhibitor of ubiquitination. Suramin was shown to target cullin 1's conserved basic canyon and to block its binding to Cdc34. Suramin inhibits the activity of a variety of CRL complexes containing cullin 2, 3, and 4A. When introduced into cells, suramin induced accumulation of CRL substrates. These observations help develop a strategy of regulating ubiquitination by targeting an E2-E3 interface through small-molecule modulators.


Assuntos
Ligases/antagonistas & inibidores , Suramina/farmacologia , Relação Estrutura-Atividade
2.
Neoplasia ; 22(10): 459-469, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32784074

RESUMO

Interferon Regulatory Factors (IRFs) are key regulators of immunity, cell survival and apoptosis. IRF transcriptional activity and subcellular localization are tightly regulated by posttranscriptional modifications including phosphorylation. The IκB kinase family member IKK-ε is essential in regulating antiviral innate immunity mediated by IRFs but is now also recognized as an oncoprotein amplified and overexpressed in breast cancer cell lines and patient-derived tumors. In the present study, we report that the tumor suppressor IRF-1 is a specific target of IKK-ε in breast cancer cells. IKK-ε-mediated phosphorylation of IRF-1 dramatically decreases IRF-1 protein stability, accelerating IRF-1 degradation and quenching IRF-1 transcriptional activity. Chemical inhibition of IKK-ε activity, fully restores IRF-1 levels and function and positively correlates with inhibition of cell growth and proliferation of breast cancer cells. By using a breast cancer cell line stably expressing a dominant negative version of IRF-1 we were able to demonstrate that IKK-ε preferentially exerts its oncogenic potential in breast cancer through the regulation of IRF-1 and point to the IKK-ε-mediated phosphorylation of IRF-1 as a therapeutic target to overcome IKK-ε-mediated tumorigenesis.


Assuntos
Neoplasias da Mama/patologia , Quinase I-kappa B/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Ubiquitina/metabolismo , Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Humanos , Quinase I-kappa B/genética , Fator Regulador 1 de Interferon/genética , Fosforilação , Proteólise , Transdução de Sinais , Células Tumorais Cultivadas , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA