Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 155(3): 569-581, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630934

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous disease with distinct molecular subtypes described as classical/progenitor and basal-like/squamous PDAC. We hypothesized that integrative transcriptome and metabolome approaches can identify candidate genes whose inactivation contributes to the development of the aggressive basal-like/squamous subtype. Using our integrated approach, we identified endosome-lysosome associated apoptosis and autophagy regulator 1 (ELAPOR1/KIAA1324) as a candidate tumor suppressor in both our NCI-UMD-German cohort and additional validation cohorts. Diminished ELAPOR1 expression was linked to high histological grade, advanced disease stage, the basal-like/squamous subtype, and reduced patient survival in PDAC. In vitro experiments demonstrated that ELAPOR1 transgene expression not only inhibited the migration and invasion of PDAC cells but also induced gene expression characteristics associated with the classical/progenitor subtype. Metabolome analysis of patient tumors and PDAC cells revealed a metabolic program associated with both upregulated ELAPOR1 and the classical/progenitor subtype, encompassing upregulated lipogenesis and downregulated amino acid metabolism. 1-Methylnicotinamide, a known oncometabolite derived from S-adenosylmethionine, was inversely associated with ELAPOR1 expression and promoted migration and invasion of PDAC cells in vitro. Taken together, our data suggest that enhanced ELAPOR1 expression promotes transcriptome and metabolome characteristics that are indicative of the classical/progenitor subtype, whereas its reduction associates with basal-like/squamous tumors with increased disease aggressiveness in PDAC patients. These findings position ELAPOR1 as a promising candidate for diagnostic and therapeutic targeting in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Masculino , Feminino , Metaboloma , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Invasividade Neoplásica , Transcriptoma , Pessoa de Meia-Idade , Reprogramação Metabólica
2.
Biomedicines ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36140165

RESUMO

Objective: To identify circulating miRNAs associated with ovarian endometriosis (OMA), and to analyze candidate genes targeted by these miRNAs. Methods: Putative regulating miRNAs were identified through an original bioinformatics approach. We first queried the miRWalk 2.0 database to collect putative miRNA targets. Then, we matched it to a transcriptomic dataset of OMA. Moving from gene expression in the tissue to possible alterations in the patient plasma, a selection of these miRNAs was quantified by qRT-PCR in plasma samples from 93 patients with isolated OMA and 95 patients surgically checked as free from endometriosis. Then, we characterized the genes regulated by more than one miRNA and validated them by immunohistochemistry and transfection experiments on endometrial cell primary cultures obtained from endometrial biopsies of 10 women with and without endometriosis with miRNA mimics. Stromal and epithelial cells were isolated and cultured separately and gene expression levels were measured by RT-qPCR. Results: Eight miRNAs were identified by bioinformatics analysis. Two of them were overexpressed in plasma from OMA patients: let-7b-5p and miR-92a-3p (p < 0.005). Three miRNAs, let-7b and miR-92a-3p, and miR-93-5p potentially targeted KIAA1324, an estrogen-responsive gene and one of the most downregulated genes in OMA. Transfection experiments with mimics of these two miRNAs showed a strong decrease in KIAA1324 expression, up to 40%. Immunohistochemistry revealed a moderate-to-intense staining for KIAA1324 in the eutopic endometrium and a faint-to-moderate staining in the ectopic endometrium for half of the samples, which is concordant with the transcriptomic data. Discussion and Conclusion: Our results suggested that KIAA1324 might be involved in endometriosis through the downregulating action of two circulating miRNAs. As these miRNAs were found to be overexpressed, their quantification in plasma could provide a tool for an early diagnosis of endometriosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA