RESUMO
Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) generates genome-wide chromatin accessibility profiles, providing valuable insights into epigenetic gene regulation at both pooled-cell and single-cell population levels. Comprehensive analysis of ATAC-seq data involves the use of various interdependent programs. Learning the correct sequence of steps needed to process the data can represent a major hurdle. Selecting appropriate parameters at each stage, including pre-analysis, core analysis, and advanced downstream analysis, is important to ensure accurate analysis and interpretation of ATAC-seq data. Additionally, obtaining and working within a limited computational environment presents a significant challenge to non-bioinformatic researchers. Therefore, we present Cloud ATAC, an open-source, cloud-based interactive framework with a scalable, flexible, and streamlined analysis framework based on the best practices approach for pooled-cell and single-cell ATAC-seq data. These frameworks use on-demand computational power and memory, scalability, and a secure and compliant environment provided by the Google Cloud. Additionally, we leverage Jupyter Notebook's interactive computing platform that combines live code, tutorials, narrative text, flashcards, quizzes, and custom visualizations to enhance learning and analysis. Further, leveraging GPU instances has significantly improved the run-time of the single-cell framework. The source codes and data are publicly available through NIH Cloud lab https://github.com/NIGMS/ATAC-Seq-and-Single-Cell-ATAC-Seq-Analysis. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.
Assuntos
Computação em Nuvem , Sequenciamento de Nucleotídeos em Larga Escala , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Biologia Computacional/métodos , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Análise de Célula Única/métodos , Cromatina/genética , Cromatina/metabolismoRESUMO
Houston TX experienced a widely known failure of its police forensic laboratory. This gave rise to the Houston Forensic Science Center (HFSC) as a separate entity to provide forensic services to the City of Houston. HFSC is a very large forensic laboratory and has made significant progress at remediating the past failures and improving public trust in forensic testing. HFSC has a large and robust blind testing program, which has provided many insights into the challenges forensic laboratories face. HFSC's journey from a notoriously failed lab to a model also gives perspective to the resource challenges faced by all labs in the country. Challenges for labs include the pervasive reality of poor-quality evidence. Also that forensic laboratories are necessarily part of a much wider system of interdependent functions in criminal justice making blind testing something in which all parts have a role. This interconnectedness also highlights the need for an array of oversight and regulatory frameworks to function properly. The major essential databases in forensics need to be a part of blind testing programs and work is needed to ensure that the results from these databases are indeed producing correct results and those results are being correctly used. Last, laboratory reports of "inconclusive" results are a significant challenge for laboratories and the system to better understand when these results are appropriate, necessary and most importantly correctly used by the rest of the system.
Assuntos
Crime , Medicina Legal , Humanos , Ciências Forenses , Polícia , Direito PenalRESUMO
This paper examines the causal impact of poverty reduction interventions on the social preferences of the poor. A multifaceted poverty reduction program in China provides a setting for the use of a fuzzy regression discontinuity design. The design compares households with base-year income just below a preset criterion, who were more likely to receive the program treatment, with households just above the criterion. Five years after the program's launch, we conducted a lab-in-the-field experiment to measure the distributional preferences of household heads. Combining quasi-random variation from program rules with administrative census and experimental data, we find both economic and behavioral consequences of the program: It increased household income by 50% 5 y later, increased consistency with utility maximization by household heads, and increased their efficiency preference while reducing selfishness and leaving equality preference unchanged. Our findings advance scientific understanding of social preferences formation and highlight a broad perspective in evaluating poverty reduction interventions.
Assuntos
Censos , Renda , China , PobrezaRESUMO
Proximity labeling with genetically encoded enzymes is widely used to study protein-protein interactions in cells. However, the accuracy of proximity labeling is limited by a lack of control over the enzymatic labeling process. Here, we present a light-activated proximity labeling technology for mapping protein-protein interactions at the cell membrane with high accuracy and precision. Our technology, called light-activated BioID (LAB), fuses the two halves of the split-TurboID proximity labeling enzyme to the photodimeric proteins CRY2 and CIB1. We demonstrate, in multiple cell lines, that upon illumination with blue light, CRY2 and CIB1 dimerize, reconstitute split-TurboID and initiate biotinylation. Turning off the light leads to the dissociation of CRY2 and CIB1 and halts biotinylation. We benchmark LAB against the widely used TurboID proximity labeling method by measuring the proteome of E-cadherin, an essential cell-cell adhesion protein. We show that LAB can map E-cadherin-binding partners with higher accuracy and significantly fewer false positives than TurboID.
Assuntos
Caderinas , Proteoma , Linhagem Celular , Caderinas/genética , Caderinas/metabolismo , BiotinilaçãoRESUMO
Since the late 1990s, efforts have been made to utilize cytoskeletal filaments, propelled by molecular motors, for nanobiotechnological applications, for example, in biosensing and parallel computation. This work has led to in-depth insights into the advantages and challenges of such motor-based systems, and has yielded small-scale, proof-of-principle applications but, to date, no commercially viable devices. Additionally, these studies have also elucidated fundamental motor and filament properties, as well as providing other insights obtained from biophysical assays in which molecular motors and other proteins are immobilized on artificial surfaces. In this Perspective, I discuss the progress towards practically viable applications achieved so far using the myosin II-actin motor-filament system. I also highlight several fundamental pieces of insights derived from the studies. Finally, I consider what may be required to achieve real devices in the future or at least to allow future studies with a satisfactory cost-benefit ratio.
Assuntos
Actinas , Miosinas , Citoesqueleto , Bioensaio , BiofísicaRESUMO
Science is humanity's best insurance against threats from nature, but it is a fragile enterprise that must be nourished and protected. The preponderance of scientific evidence indicates a natural origin for SARS-CoV-2. Yet, the theory that SARS-CoV-2 was engineered in and escaped from a lab dominates media attention, even in the absence of strong evidence. We discuss how the resulting anti-science movement puts the research community, scientific research, and pandemic preparedness at risk.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/virologia , COVID-19/transmissão , Pandemias , AnimaisRESUMO
Multicellular model organisms, such as Drosophila melanogaster (fruit fly), are frequently used in a myriad of biological research studies due to their biological significance and global standardization. However, traditional tools used in these studies generally require manual handling, subjective phenotyping, and bulk treatment of the organisms, resulting in laborious experimental protocols with limited accuracy. Advancements in microtechnology over the course of the last two decades have allowed researchers to develop automated, high-throughput, and multifunctional experimental tools that enable novel experimental paradigms that would not be possible otherwise. We discuss recent advances in microtechnological systems developed for small model organisms using D. melanogaster as an example. We critically analyze the state of the field by comparing the systems produced for different applications. Additionally, we suggest design guidelines, operational tips, and new research directions based on the technical and knowledge gaps in the literature. This review aims to foster interdisciplinary work by helping engineers to familiarize themselves with model organisms while presenting the most recent advances in microengineering strategies to biologists.
Assuntos
Drosophila melanogaster , Animais , Microtecnologia/métodos , Modelos Animais , Desenho de Equipamento , Nanotecnologia/métodosRESUMO
Nearly seventy percent of diagnostic lab test errors occur due to variability in preanalytical factors. These are the parameters involved with all aspects of tissue processing, starting from the time tissue is collected from the patient in the operating room, until it is received and tested in the laboratory. While there are several protocols for transporting fixed tissue, organs, and liquid biopsies, such protocols are lacking for transport and handling of live solid tumor tissue specimens. There is a critical need to establish preanalytical protocols to reduce variability in biospecimen integrity and improve diagnostics for personalized medicine. Here, we provide a comprehensive protocol for the standard collection, handling, packaging, cold-chain logistics, and receipt of solid tumor tissue biospecimens to preserve tissue viability.