Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(5): 1497-1509, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429928

RESUMO

The hallmark of epidermolysis bullosa (EB) is fragile attachment of epithelia due to genetic variants in cell adhesion genes. We describe 16 EB patients treated in the ear, nose, and throat department of a tertiary pediatric hospital linked to the United Kingdom's national EB unit between 1992 and 2023. Patients suffered a high degree of morbidity and mortality from laryngotracheal stenosis. Variants in laminin subunit alpha-3 (LAMA3) were found in 10/15 patients where genotype was available. LAMA3 encodes a subunit of the laminin-332 heterotrimeric extracellular matrix protein complex and is expressed by airway epithelial basal stem cells. We investigated the benefit of restoring wild-type LAMA3 expression in primary EB patient-derived basal cell cultures. EB basal cells demonstrated weak adhesion to cell culture substrates, but could otherwise be expanded similarly to non-EB basal cells. In vitro lentiviral overexpression of LAMA3A in EB basal cells enabled them to differentiate in air-liquid interface cultures, producing cilia with normal ciliary beat frequency. Moreover, transduction restored cell adhesion to levels comparable to a non-EB donor culture. These data provide proof of concept for a combined cell and gene therapy approach to treat airway disease in LAMA3-affected EB.


Assuntos
Adesão Celular , Epidermólise Bolhosa , Laminina , Lentivirus , Humanos , Laminina/metabolismo , Laminina/genética , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa/terapia , Epidermólise Bolhosa/patologia , Criança , Lentivirus/genética , Masculino , Feminino , Pré-Escolar , Terapia Genética/métodos , Vetores Genéticos/genética , Células Epiteliais/metabolismo , Células Cultivadas , Expressão Gênica , Adolescente , Lactente
2.
Immunology ; 173(1): 93-105, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38778445

RESUMO

Cytokines of the common-γ receptor chain (γc) family are crucial for T-cell differentiation and dysregulation of γc cytokine pathways is involved in the pathogenesis of autoimmune diseases. There is increasing evidence that the availability of the γc receptor (CD132) for the associated receptor chains has implications for T-cell functions. Here we studied the influence of differential γc expression on the expression of the IL-2Rα (CD25), the IL-7Rα (CD127) and the differentiation of activated naïve T cells. We fine-tuned the regulation of γc expression in human primary naïve T cells by lentiviral transduction using small hairpin (sh)RNAs and γc cDNA. Differential γc levels were then analysed for effects on T-cell phenotype and function after activation. Differential γc expression markedly affected IL-2Rα and IL-7Rα expression on activated naïve T cells. High γc expression (γc-high) induced significantly higher expression of IL-2Rα and re-expression of IL-7Rα after activation. Inhibition of γc caused lower IL-2Rα/IL-7Rα expression and impaired proliferation of activated naïve T cells. In contrast, γc-high T cells secreted significantly higher concentrations of effector cytokines (i.e., IFN-γ, IL-6) and showed higher cytokine-receptor induced STAT5 phosphorylation during initial stages as well as persistently higher pSTAT1 and pSTAT3 levels after activation. Finally, accelerated transition towards a CD45RO expressing effector/memory phenotype was seen especially for CD4+ γc-high naïve T cells. These results suggested that high expression of γc promotes expression of IL-2Rα and IL-7Rα on activated naïve T cells with significant effects on differentiation and effector cytokine expression.


Assuntos
Diferenciação Celular , Ativação Linfocitária , Humanos , Diferenciação Celular/imunologia , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Receptores de Interleucina-7/metabolismo , Receptores de Interleucina-7/genética , Células Cultivadas , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transdução de Sinais , Fosforilação , Fator de Transcrição STAT5/metabolismo , Regulação da Expressão Gênica
3.
Am J Physiol Lung Cell Mol Physiol ; 327(4): L587-L599, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39137525

RESUMO

Basal cells are adult stem cells in the airway epithelium and regenerate differentiated cell populations, including the mucosecretory and ciliated cells that enact mucociliary clearance. Human basal cells can proliferate and produce differentiated epithelium in vitro. However, studies of airway epithelial differentiation mostly rely on immunohistochemical or immunofluorescence-based staining approaches, meaning that a dynamic approach is lacking, and quantitative data are limited. Here, we use a lentiviral reporter gene approach to transduce primary human basal cells with bioluminescence reporter constructs to monitor airway epithelial differentiation longitudinally. We generated three constructs driven by promoter sequences from the TP63, MUC5AC, and FOXJ1 genes to quantitatively assess basal cell, mucosecretory cell, and ciliated cell abundance, respectively. We validated these constructs by tracking differentiation of basal cells in air-liquid interface and organoid ("bronchosphere") cultures. Transduced cells also responded appropriately to stimulation with interleukin 13 (IL-13; to increase mucosecretory differentiation and mucus production) and IL-6 (to increase ciliated cell differentiation). These constructs represent a new tool for monitoring airway epithelial cell differentiation in primary epithelial and/or induced pluripotent stem cell (iPSC)-derived cell cultures.NEW & NOTEWORTHY Orr et al. generated and validated new lentiviral vectors to monitor the differentiation of airway basal cells, goblet cells, or multiciliated cells using bioluminescence.


Assuntos
Diferenciação Celular , Células Epiteliais , Lentivirus , Humanos , Lentivirus/genética , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Mucina-5AC/metabolismo , Mucina-5AC/genética , Medições Luminescentes/métodos , Células Cultivadas , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Interleucina-6/metabolismo , Interleucina-6/genética , Genes Reporter , Fatores de Transcrição , Proteínas Supressoras de Tumor
4.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674017

RESUMO

The mainstays of lung cancer pathogenesis are cell cycle progression dysregulation, impaired apoptosis, and unregulated cell proliferation. While individual microRNA (miR) targeting or delivering is a promising approach that has been extensively studied, combination of miR targeting can enhance therapeutic efficacy and overcome limitations present in individual miR regulations. We previously reported on the use of a miR-143 and miR-506 combination via transient transfections against lung cancer. In this study, we evaluated the effect of miR-143 and miR-506 under stable deregulations in A549 lung cancer cells. We used lentiviral transductions to either up- or downregulate the two miRs individually or in combination. The cells were sorted and analyzed for miR deregulation via qPCR. We determined the miR deregulations' effects on the cell cycle, cell proliferation, cancer cell morphology, and cell motility. Compared to the individual miR deregulations, the combined miR upregulation demonstrated a miR-expression-dependent G2 cell cycle arrest and a significant increase in the cell doubling time, whereas the miR-143/506 dual downregulation demonstrated increased cellular motility. Furthermore, the individual miR-143 and miR-506 up- and downregulations exhibited cellular responses lacking an apparent miR-expression-dependent response in the respective analyses. Our work here indicates that, unlike the individual miR upregulations, the combinatorial miR treatment remained advantageous, even under prolonged miR upregulation. Finally, our findings demonstrate potential advantages of miR combinations vs. individual miR treatments.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Regulação para Cima , MicroRNAs/genética , Humanos , Proliferação de Células/genética , Células A549 , Movimento Celular/genética , Regulação para Cima/genética , Ciclo Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Apoptose/genética
5.
Microcirculation ; 30(2-3): e12792, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36369987

RESUMO

BACKGROUND: Dysfunction of the lymphatic system following injury, disease, or cancer treatment can lead to lymphedema, a debilitating condition with no cure. Despite the various physical therapy and surgical options available, most treatments are palliative and fail to address the underlying lymphatic vascular insufficiency driving lymphedema progression. Stem cell therapy provides a promising alternative in the treatment of various chronic diseases with a wide range of therapeutic effects that reduce inflammation, fibrosis, and oxidative stress, while promoting lymphatic vessel (LV) regeneration. Specifically, stem cell transplantation is suggested to promote LV restoration, rebuild lymphatic circulation, and thus potentially be utilized towards an effective lymphedema treatment. In addition to stem cells, studies have proposed the administration of vascular endothelial growth factor C (VEGFC) to promote lymphangiogenesis and decrease swelling in lymphedema. AIMS: Here, we seek to combine the benefits of stem cell therapy, which provides a cellular therapeutic approach that can respond to the tissue environment, and VEGFC administration to restore lymphatic drainage. MATERIALS & METHODS: Specifically, we engineered mesenchymal stem cells (MSCs) to overexpress VEGFC using a lentiviral vector (hVEGFC MSC) and investigated their therapeutic efficacy in improving LV function and tissue swelling using near infrared (NIR) imaging, and lymphatic regeneration in a single LV ligation mouse tail lymphedema model. RESULTS: First, we showed that overexpression of VEGFC using lentiviral transduction led to an increase in VEGFC protein synthesis in vitro. Then, we demonstrated hVEGFC MSC administration post-injury significantly increased the lymphatic contraction frequency 14-, 21-, and 28-days post-surgery compared to the control animals (MSC administration) in vivo, while also reducing tail swelling 28-days post-surgery compared to controls. CONCLUSION: Our results suggest a therapeutic potential of hVEGFC MSC in alleviating the lymphatic dysfunction observed during lymphedema progression after secondary injury and could provide a promising approach to enhancing autologous cell therapy for treating lymphedema.


Assuntos
Vasos Linfáticos , Linfedema , Células-Tronco Mesenquimais , Animais , Camundongos , Linfangiogênese , Vasos Linfáticos/fisiologia , Linfedema/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos BALB C , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Lentivirus/genética
6.
Curr Genomics ; 24(3): 155-170, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38178986

RESUMO

Background: Recent studies on CRISPR/Cas9-mediated gene editing in Schistosoma mansoni have shed new light on the study and control of this parasitic helminth. However, the gene editing efficiency in this parasite is modest. Methods: To improve the efficiency of CRISPR/Cas9 genome editing in schistosomes, we used lentivirus, which has been effectively used for gene editing in mammalian cells, to deliver plasmid DNA encoding Cas9 nuclease, a sgRNA targeting acetylcholinesterase (SmAChE) and a mCherry fluorescence marker into schistosomes. Results: MCherry fluorescence was observed in transduced eggs, schistosomula, and adult worms, indicating that the CRISPR components had been delivered into these parasite stages by lentivirus. In addition, clearly changed phenotypes were observed in SmAChE-edited parasites, including decreased SmAChE activity, reduced hatching ability of edited eggs, and altered behavior of miracidia hatched from edited eggs. Next-generation sequencing analysis demonstrated that the lentiviral transduction-based CRISPR/Cas9 gene modifications in SmAChE-edited schistosomes were homology-directed repair predominant but with much lower efficiency than that obtained using electroporation (data previously published by our laboratory) for the delivery of CRISPR components. Conclusion: Taken together, electroporation is more efficient than lentiviral transduction in the delivery of CRISPR/Cas9 into schistosomes for programmed genome editing. The exploration of tactics for enhancing CRISPR/Cas9 gene editing provides the basis for the future improvement of programmed genome editing in S. mansoni.

7.
Mol Biol Rep ; 49(6): 4435-4441, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35348963

RESUMO

BACKGROUND: Nerve growth factor (NGF) is a protein exhibiting an influence on the neural development and also, its' impact on the stem cells remains a great potential treatment strategy. The influence of its overexpression on the neural pathway differentiation on Wharton's Jelly derived MSC (WJ-MSC) has not been studied so far, but considering the fact that these cells are relatively easy to obtain, using them may indicate an innovative change in stem cell therapies. The aim of this study was to evaluate the effect of NGF overexpression in human mesenchymal stem cells (MSC) on SOX1 and genes related to the neural pathway. METHODS AND RESULTS: The lentiviral transduction was performed in order to obtain the NGF overexpression, as well as RT-PCR to evaluate the expression level SOX1, SOX2, NES, NGF under influence of overexpressed NGF protein in WJ-MSC. During the study we have observed a decrease in SOX1 expression as the marker of neural stem cells. Other than that an increase of SOX2, NES and NGF was noticed, as they all are markers of early-neural as well as already differentiated neural cells. The results show a great potential of using those examined genes' expression as a form of a new stem cell therapy. CONCLUSIONS: The achieved overexpression of NGF in this study, led the modified MSC onto the neural pathway as well as caused a decrease of SOX1 expression and an increase of expression of genes related to neural differentiated cells.


Assuntos
Células-Tronco Mesenquimais , Fator de Crescimento Neural , Fatores de Transcrição SOXB1 , Geleia de Wharton , Diferenciação Celular/genética , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Vias Neurais , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Geleia de Wharton/citologia , Geleia de Wharton/metabolismo
8.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012192

RESUMO

Adipose-derived mesenchymal stromal cells (ADSC) are a promising source for cellular therapy of chronic wounds. However, the limited life span during in vitro expansion impedes their extensive use in clinical applications and basic research. We hypothesize that by introduction of an ectopic expression of telomerase into ADSC, the cells' lifespans could be significantly extended. To test this hypothesis, we aimed at engineering an immortalized human ADSC line using a lentiviral transduction with human telomerase (hTERT). ADSC were transduced with a third-generation lentiviral system and a hTERT codifying plasmid (pLV-hTERT-IRES-hygro). A population characterized by increased hTERT expression, extensive proliferative potential and remarkable (potent) multilineage differentiation capacity was selected. The properties for wound healing of this immortalized ADSC line were assessed after 17 passages. Their secretome induced the proliferation and migration of keratinocytes, dermal fibroblasts, and endothelial cells similarly to untransduced ADSC. Moreover, they sustained the complete re-epithelialization of a full thickness wound performed on a skin organotypic model. In summary, the engineered immortalized ADSC maintain the beneficial properties of parent cells and could represent a valuable and suitable tool for wound healing in particular, and for skin regenerative therapy in general.


Assuntos
Células-Tronco Mesenquimais , Telomerase , Proliferação de Células , Células Endoteliais/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Telomerase/genética , Telomerase/metabolismo , Cicatrização/fisiologia
9.
Cytotherapy ; 23(5): 411-422, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33781710

RESUMO

Mesenchymal stromal cells (MSCs) possess remarkable tumor tropism, making them ideal vehicles to deliver tumor-targeted therapeutic agents; however, their value in clinical medicine has yet to be realized. A barrier to clinical utilization is that only a small fraction of infused MSCs ultimately localize to the tumor. In an effort to overcome this obstacle, we sought to enhance MSC trafficking by focusing on the factors that govern MSC arrival within the tumor microenvironment. Our findings show that MSC chemoattraction is only present in select tumors, including osteosarcoma, and that the chemotactic potency among similar tumors varies substantially. Using an osteosarcoma xenograft model, we show that human MSCs traffic to the tumor within several hours of infusion. After arrival, MSCs are observed to localize in clusters near blood vessels and MSC-associated bioluminescence signal intensity is increased, suggesting that the seeded cells expand after engraftment. However, our studies reveal that a significant portion of MSCs are eliminated en route by splenic macrophage phagocytosis, effectively limiting the number of cells available for tumor engraftment. To increase MSC survival, we transiently depleted macrophages with liposomal clodronate, which resulted in increased tumor localization without substantial reduction in tumor-associated macrophages. Our data suggest that transient macrophage depletion will significantly increase the number of MSCs in the spleen and thus improve MSC localization within a tumor, theoretically increasing the effective dose of an anti-cancer agent. This strategy may subsequently improve the clinical efficacy of MSCs as vehicles for the tumor-directed delivery of therapeutic agents.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteossarcoma , Humanos , Macrófagos , Osteossarcoma/terapia , Fagocitose , Microambiente Tumoral
10.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069872

RESUMO

Loss-of-function mutations in the synaptosomal-associated protein 29 (SNAP29) lead to the rare autosomal recessive neurocutaneous cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma (CEDNIK) syndrome. SNAP29 is a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein. So far, it has been shown to be involved in membrane fusion, epidermal differentiation, formation of primary cilia, and autophagy. Recently, we reported the successful generation of two mouse models for the human CEDNIK syndrome. The aim of this investigation was the generation of a CRISPR/Cas9-mediated SNAP29 knockout (KO) in an immortalized human cell line to further investigate the role of SNAP29 in cellular homeostasis and signaling in humans independently of animal models. Comparison of different methods of delivery for CRISPR/Cas9 plasmids into the cell revealed that lentiviral transduction is more efficient than transfection methods. Here, we reported to the best of our knowledge the first successful generation of a CRISPR/Cas9-mediated SNAP29 KO in immortalized human MRC5Vi fibroblasts (c.169_196delinsTTCGT) via lentiviral transduction.


Assuntos
Fibroblastos/metabolismo , Técnicas de Inativação de Genes/métodos , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Animais , Autofagia/genética , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Linhagem Celular , Fibroblastos/fisiologia , Humanos , Ceratodermia Palmar e Plantar/genética , Fusão de Membrana/genética , Mutação/genética , Síndromes Neurocutâneas/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
11.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209365

RESUMO

Mesenchymal stem cells (MSC) are potentially a good material for transplantation in many diseases, including neurodegenerative diseases. The main problem with using them is the low percentage of surviving cells after the transplant procedure and the naturally poor ability of MSC to spontaneously differentiate into certain types of cells, which results in their poor integration with the host cells. The aim and the novelty of this work consists in the synergistic overexpression of two genes, BCL2 and BDNF, using lentiviral vectors. According to our hypothesis, the overexpression of the BCL2 gene is aimed at increasing the resistance of cells to stressors and toxic factors. In turn, the overexpression of the BDNF gene is suspected to direct the MSC into the neural differentiation pathway. As a result, it was shown that the overexpression of both genes and the overproduction of proteins is permanent and persists for at least 60 days. The synergistically transduced MSC were significantly more resistant to the action of staurosporine; 12 days after transduction, the synergistically transduced MSC had a six-times greater survival rate. The overexpression of the Bcl-2 and BDNF proteins was sufficient to stimulate a significant overexpression of the CHAT gene, and under specific conditions, the TH, TPH1, and SYP genes were also overexpressed. Modified MSC are able to differentiate into cholinergic and dopaminergic neurons, and the release of acetylcholine and dopamine may indicate their functionality.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Diferenciação Celular , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Fator Neurotrófico Derivado do Encéfalo/genética , Neurônios Dopaminérgicos/citologia , Humanos , Lentivirus , Células-Tronco Mesenquimais/citologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução Genética
12.
J Transl Med ; 18(1): 363, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967676

RESUMO

BACKGROUND: Adoptive transfer of engineered immune cells is a promising strategy for cancer treatment. However, low transduction efficiency particularly when large payload lentiviral vectors are used on primary T cells is a limitation for the development of cell therapy platforms that include multiple constructs bearing long DNA sequences. RB-340-1 is a new CAR T cell that combines two strategies in one product through a CRISPR interference (CRISPRi) circuit. Because multiple regulatory components are included in the circuit, RB-340-1 production needs delivery of two lentiviral vectors into human primary T cells, both containing long DNA sequences. To improve lentiviral transduction efficiency, we looked for inhibitors of receptors involved in antiviral response. BX795 is a pharmacological inhibitor of the TBK1/IKKɛ complex, which has been reported to augment lentiviral transduction of human NK cells and some cell lines, but it has not been tested with human primary T cells. The purpose of this study was to test if BX795 treatment promotes large payload RB-340-1 lentiviral transduction of human primary T cells. METHODS: To make the detection of gene delivery more convenient, we constructed another set of RB-340-1 constructs containing fluorescent labels named RB-340-1F. We incorporated BX795 treatment into the human primary T cell transduction procedure that was optimized for RB-340-1F. We tested BX795 with T cells collected from multiple donors, and detected the effect of BX795 on T cell transduction, phenotype, cell growth and cell function. RESULTS: We found that BX795 promotes RB-340-1F lentiviral transduction of human primary T cells, without dramatic change in cell growth and T cell functions. Meanwhile, BX795 treatment increased CD8+ T cell ratios in transduced T cells. CONCLUSIONS: These results indicate that BX795 treatment is effective, and might be a safe approach to promote RB-340-1F lentiviral transduction of human primary T cells. This approach might also be helpful for other T cell therapy products that need delivery of complicated platform via large payload lentiviral vectors.


Assuntos
Vetores Genéticos , Lentivirus , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Lentivirus/genética , Proteínas Serina-Treonina Quinases , Pirimidinas , Tiofenos , Transdução Genética
13.
Int J Mol Sci ; 20(10)2019 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-31130693

RESUMO

The core components of regenerative medicine are stem cells with high self-renewal and tissue regeneration potentials. Adult stem cells can be obtained from many organs and tissues. NANOG, SOX2 and OCT4 represent the core regulatory network that suppresses differentiation-associated genes, maintaining the pluripotency of mesenchymal stem cells. The roles of NANOG in maintaining self-renewal and undifferentiated status of adult stem cells are still not perfectly established. In this study we define the effects of downregulation of NANOG in maintaining self-renewal and undifferentiated state in mesenchymal stem cells (MSCs) derived from subcutaneous adipose tissue (hASCs). hASCs were expanded and transfected in vitro with short hairpin Lentivirus targeting NANOG. Gene suppressions were achieved at both transcript and proteome levels. The effect of NANOG knockdown on proliferation after 10 passages and on the cell cycle was evaluated by proliferation assay, colony forming unit (CFU), qRT-PCR and cell cycle analysis by flow-cytometry. Moreover, NANOG involvement in differentiation ability was evaluated. We report that downregulation of NANOG revealed a decrease in the proliferation and differentiation rate, inducing cell cycle arrest by increasing p27/CDKN1B (Cyclin-dependent kinase inhibitor 1B) and p21/CDKN1A (Cyclin-dependent kinase inhibitor 1A) through p53 and regulate DLK1/PREF1. Furthermore, NANOG induced downregulation of DNMT1, a major DNA methyltransferase responsible for maintaining methylation status during DNA replication probably involved in cell cycle regulation. Our study confirms that NANOG regulates the complex transcription network of plasticity of the cells, inducing cell cycle arrest and reducing differentiation potential.


Assuntos
Proliferação de Células , Pontos de Checagem da Fase G1 do Ciclo Celular , Células-Tronco Mesenquimais/citologia , Proteína Homeobox Nanog/genética , Adulto , Diferenciação Celular , Autorrenovação Celular , Células Cultivadas , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade
14.
Mol Biol (Mosk) ; 53(2): 311-323, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31099781

RESUMO

The CRISPR/Cas9 nuclease system can effectively suppress the replication of the hepatitis B virus (HBV), while covalently closed circular DNA (cccDNA), a highly resistant form of the virus, persists in the nuclei of infected cells. The most common outcome of DNA double-strand breaks (DSBs) in cccDNA caused by CRISPR/Cas9 is double-strand break repair by nonhomologous end-joining, which results in insertion/deletion mutations. Modulation of the DNA double-strand break repair pathways by small molecules was shown to stimulate CRISPR/Cas9 activity and may potentially be utilized to enhance the elimination of HBV cccDNA. In this work, we used inhibitors of homologous (RI-1) and nonhomologous (NU7026) end-joining and their combination to stimulate antiviral activity of CRISPR/Cas9 on two cell models of HBV in vitro, i.e., the HepG2-1.1merHBV cells containing the HBV genome under the tet-on regulated cytomegalovirus promoter and the HepG2-1.5merHBV cells containing constitutive expression of HBV RNA under the wild-type promoter. The treatment of the cells with RI-1 or NU7026 after lentiviral transduction of CRISPR/Cas9 drops the levels of cccDNA compared to the DMSO-treated control. RI-1 and NU7026 resulted in 5.0-6.5 times more significant reduction in the HBV cccDNA level compared to the mock-control. In conclusion, the inhibition of both homologous and nonhomologous DNA double-strand break repair pathways increases the elimination of HBV cccDNA by CRISPR/Cas9 system in vitro, which may potentially be utilized as a therapeutic approach to treat chronic hepatitis B.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/efeitos dos fármacos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , DNA Viral/metabolismo , Vírus da Hepatite B , Sistemas CRISPR-Cas/genética , DNA Circular/genética , DNA Circular/metabolismo , DNA Viral/genética
15.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275182

RESUMO

The antiviral effects of hepatitis C virus (HCV)-specific CD8 T cells have been shown in an HCV replicon system but not in an authentic infectious HCV cell culture (HCVcc) system. Here, we developed tools to examine the antigenicity of HCV-infected HLA-A2-positive Huh7.5 hepatoma cells (Huh7.5A2 cells) in activating HCV-specific CD8 T cells and the downstream antiviral effects. Infectious HCV epitope mutants encoding the well-defined genotype 1a-derived HLA-A2-restricted HCV NS3-1073 or NS5-2594 epitope were generated from a genotype 2a-derived HCV clone (Jc1Gluc2A) by site-directed mutagenesis. CD8 T-cell lines specific for NS3-1073 and NS5-2594 were expanded from HCV-seropositive persons by peptide stimulation in vitro or engineered from HCV-seronegative donor T cells by transduction of a lentiviral vector expressing HCV-specific T-cell receptors. HCV-specific CD8 T cells were cocultured with Huh7.5 cells that were pulsed with titrating doses of HCV epitope peptides or infected with HCV epitope mutants. HCV-specific CD8 T-cell activation (CD107a, gamma interferon, macrophage inflammatory protein 1ß, tumor necrosis factor alpha) was dependent on the peptide concentrations and the relative percentages of HCV-infected Huh7.5A2 cells. HCV-infected Huh7.5A2 cells activated HCV-specific CD8 T cells at levels comparable to those achieved with 0.1 to 2 µM pulsed peptides, providing a novel estimate of the level at which endogenously processed HCV epitopes are presented on HCV-infected cells. While HCV-specific CD8 T-cell activation with cytolytic and antiviral effects was blunted by PD-L1 expression on HCV-infected Huh7.5A2 cells, resulting in the improved viability of Huh7.5A2 cells, PD-1 blockade reversed this effect, producing enhanced cytolytic elimination of HCV-infected Huh7.5A2 cells. Our findings, obtained using an infectious HCVcc system, show that the HCV-specific CD8 T-cell function is modulated by antigen expression levels, the percentage of HCV-infected cells, and the PD-1/PD-L1 pathways and has antiviral and cytotoxic effects.IMPORTANCE We developed several novel molecular and immunological tools to study the interactions among HCV, HCV-infected hepatocytes, and HCV-specific CD8 T cells. Using these tools, we show the level at which HCV-infected hepatoma cells present endogenously processed HCV epitopes to HCV-specific CD8 T cells with antiviral and cytotoxic effects. We also show the marked protective effect of PD-L1 expression on HCV-infected hepatoma cells against HCV-specific CD8 T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Hepacivirus/imunologia , Hepatócitos/virologia , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Quimiocina CCL4/genética , Técnicas de Cocultura , Testes Imunológicos de Citotoxicidade , Antígeno HLA-A2/imunologia , Hepacivirus/genética , Hepatócitos/imunologia , Humanos , Interferon gama/genética , Ativação Linfocitária , Proteína 1 de Membrana Associada ao Lisossomo/genética , Mutagênese Sítio-Dirigida , Peptídeos/farmacologia , Receptores de Antígenos de Linfócitos T/genética , Transdução Genética , Fator de Necrose Tumoral alfa/genética
16.
Stem Cells ; 35(5): 1365-1377, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28100034

RESUMO

Autosomal recessive osteopetrosis (ARO) is a severe bone disease characterized by increased bone density due to impairment in osteoclast resorptive function or differentiation. Hematopoietic stem cell transplantation is the only available treatment; however, this therapy is not effective in RANKL-dependent ARO, since in bone this gene is mainly expressed by cells of mesenchymal origin. Of note, whether lack of RANKL production might cause a defect also in the bone marrow (BM) stromal compartment, possibly contributing to the pathology, is unknown. To verify this possibility, we generated and characterized BM mesenchymal stromal cell (BM-MSC) lines from wild type and Rankl-/- mice, and found that Rankl-/- BM-MSCs displayed reduced clonogenicity and osteogenic capacity. The differentiation defect was significantly improved by lentiviral transduction of Rankl-/- BM-MSCs with a vector stably expressing human soluble RANKL (hsRANKL). Expression of Rankl receptor, Rank, on the cytoplasmic membrane of BM-MSCs pointed to the existence of an autocrine loop possibly activated by the secreted cytokine. Based on the close resemblance of RANKL-defective osteopetrosis in humans and mice, we expect that our results are also relevant for RANKL-dependent ARO patients. Data obtained in vitro after transduction with a lentiviral vector expressing hsRANKL would suggest that restoration of RANKL production might not only rescue the defective osteoclastogenesis of this ARO form, but also improve a less obvious defect in the osteoblast lineage, thus possibly achieving higher benefit for the patients, when the approach is translated to clinics. Stem Cells 2017;35:1365-1377.


Assuntos
Diferenciação Celular , Vetores Genéticos/metabolismo , Lentivirus/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Ligante RANK/deficiência , Animais , Biomarcadores/metabolismo , Células Clonais , Imunofenotipagem , Camundongos Endogâmicos C57BL , Ligante RANK/metabolismo , Transdução de Sinais , Transdução Genética
17.
Pharmacology ; 102(3-4): 169-179, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30099452

RESUMO

In this study, rat and human 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) have been cloned by lentiviral transduction and expressed by CHO-K1 cells. The results showed that recombinant plasmids contained R11bhsd1 or H11bhsd1 have been constructed, which is consistent with the gene bank respectively. A clone cell was selected with G418 and cultivated to express 11ß-HSD1. 11ß-HSD1 catalytic activity of rat and human were 99.5 and 98.7%, respectively, determined by scanning radiometer. And the cloned CHO-K1 cells expressed the protein of 11ß-HSD1 in a long-term and stable manner, which makes it suitable for screening 11ß-HSD1 inhibitor. The three-dimensional structure of 11ß-HSD1 was used for studying the interaction between inhibitor and enzyme by the binding poses predicted by AutoDock and LeDock software. The docking results revealed that compound 8 forms 2 hydrogen bonds with the residues of Gly-216 and Ile-218 in 11ß-HSD1, that is to say compound 8 maybe a good 11ß-HSD1 inhibitor. Moreover, C57BL/6 mice with R11bHsd1 overexpression had a higher body weight, glucose, total cholesterol, and triglyceride levels compared to the mice treated with an empty viral vector. The results might provide a beneficial foundation for selecting inhibitors of 11ß-HSD1 or for researching drug candidate mechanisms.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Curcumina/análogos & derivados , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Células CHO , Clonagem Molecular , Cricetinae , Cricetulus , Curcumina/síntese química , Curcumina/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/síntese química , Lentivirus/genética , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Transdução Genética
18.
Mol Biol (Mosk) ; 52(2): 294-305, 2018.
Artigo em Russo | MEDLINE | ID: mdl-29695698

RESUMO

Gene therapy is considered a promising approach to treating infections caused by human immunodeficiency virus (HIV). One strategy is to introduce antiviral genes into cells in order to impart resistance to HIV. In this work, the antiviral activity of new anti-HIV lentiviral vector pT has been studied. The vector carries a combination that consists of two identical artificial miRNA mic13lg and the TRIM5α-HRH gene. Two mic13lg microRNAs suppress the expression of the CCR5 gene, which encodes the HIV coreceptor and, thus, prevents the penetration of R5-tropic HIV strains into the cell. It has been shown that pT effectively inhibits the expression of CCR5 in both the HT1080 CCR5-EGFP model cell line and in human primary lymphocytes. The second line of protection against R5- and X4-tropic HIV is provided by the TRIM5α-HRH protein, which binds virus capsids after the virus enters the cell. Indeed, when infecting cells of the SupT1 line, which contains four copies of the vector per cell, with the X-4 tropic HIV, more than 1000-fold suppression of viral replication has been observed. The process of generation of the pT vector and conditions of transduction of CD4^(+) lymphocytes were optimized for testing the antiviral activity of the vector on primary human lymphocytes. As a result, the transduction efficiency for the pT vector was 28%. After infection with the R5-tropic strain of the virus, the survival of cells in the culture of lymphocytes with the vector was significantly higher than in the control. However, the complete suppression of HIV replication was not achieved, presumably due to the inadequate fraction of cells that carry the vector in culture. In the future, it is planned to find the best way to enrich the lymphocyte culture with modified cells to increase resistance to HIV.


Assuntos
Linfócitos T CD4-Positivos , Vetores Genéticos , Infecções por HIV , HIV-1/fisiologia , MicroRNAs , Receptores CCR5 , Proteínas Recombinantes de Fusão , Replicação Viral , Fatores de Restrição Antivirais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/terapia , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Receptores CCR5/biossíntese , Receptores CCR5/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
19.
Cytotherapy ; 19(2): 311-326, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28088294

RESUMO

BACKGROUND AIMS: Primary hematopoietic stem and progenitor cells (HSPCs) are key components of cell-based therapies for blood disorders and are thus the authentic substrate for related research. We propose that ubiquitous small-volume diagnostic samples represent a readily available and as yet untapped resource of primary patient-derived cells for cell- and gene-therapy studies. METHODS: In the present study we compare isolation and storage methods for HSPCs from normal and thalassemic small-volume blood samples, considering genotype, density-gradient versus lysis-based cell isolation and cryostorage media with different serum contents. Downstream analyses include viability, recovery, differentiation in semi-solid media and performance in liquid cultures and viral transductions. RESULTS: We demonstrate that HSPCs isolated either by ammonium-chloride potassium (ACK)-based lysis or by gradient isolation are suitable for functional analyses in clonogenic assays, high-level HSPC expansion and efficient lentiviral transduction. For cryostorage of cells, gradient isolation is superior to ACK lysis, and cryostorage in freezing media containing 50% fetal bovine serum demonstrated good results across all tested criteria. For assays on freshly isolated cells, ACK lysis performed similar to, and for thalassemic samples better than, gradient isolation, at a fraction of the cost and hands-on time. All isolation and storage methods show considerable variation within sample groups, but this is particularly acute for density gradient isolation of thalassemic samples. DISCUSSION: This study demonstrates the suitability of small-volume blood samples for storage and preclinical studies, opening up the research field of HSPC and gene therapy to any blood diagnostic laboratory with corresponding bioethics approval for experimental use of surplus material.


Assuntos
Coleta de Amostras Sanguíneas/métodos , Coleta de Amostras Sanguíneas/normas , Separação Celular/métodos , Separação Celular/normas , Terapia Baseada em Transplante de Células e Tecidos/métodos , Leucócitos/patologia , Talassemia/sangue , Preservação de Sangue/métodos , Preservação de Sangue/normas , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Criopreservação , Estudos de Viabilidade , Congelamento , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Contagem de Leucócitos , Leucócitos/fisiologia , Testes Sorológicos , Talassemia/patologia
20.
Eur J Haematol ; 98(5): 517-526, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28160330

RESUMO

OBJECTIVES: Here, we tested the hypothesis that human M-CSF (hM-CSF) overexpressed in cord blood (CB) CD34+ cells would induce differentiation and survival of monocytes and osteoclasts in vitro and in vivo. METHODS: Human M-CSF was overexpressed in cord blood CD34+ cells using a lentiviral vector. RESULTS: We show that LV-hM-CSF-transduced CB CD34+ cells expand 3.6- and 8.5-fold more with one or two exposures to the hM-CSF-expressing vector, respectively, when compared to control cells. Likewise, LV-hM-CSF-transduced CB CD34+ cells show significantly higher levels of monocytes. In addition, these cells produced high levels of hM-CSF. Furthermore, they are able to differentiate into functional bone-resorbing osteoclasts in vitro. However, osteoclast differentiation and bone resorption were blunted compared to control CD34+ cells receiving exogenous hM-CSF. NSG mice engrafted with LV-hM-CSF-transduced CB CD34+ cells have physiological levels of hM-CSF production that result in an increase in the percentage of human monocytes in peripheral blood and bone marrow as well as in the spleen, lung and liver. CONCLUSION: In summary, ectopic production of human M-CSF in CD34+ cells promotes cellular expansion and monocyte differentiation in vitro and in vivo and allows for the formation of functional osteoclasts, albeit at reduced levels, without an exogenous source of M-CSF, in vitro.


Assuntos
Diferenciação Celular/genética , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Monócitos/citologia , Monócitos/metabolismo , Animais , Antígenos CD34/metabolismo , Reabsorção Óssea/genética , Sangue Fetal/citologia , Vetores Genéticos , Hematopoese/genética , Humanos , Lentivirus/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/genética , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA