Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 49(4): 333-345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355393

RESUMO

Plasma membranes utilize free energy to maintain highly asymmetric, non-equilibrium distributions of lipids and proteins between their two leaflets. In this review we discuss recent progress in quantitative research enabled by using compositionally controlled asymmetric model membranes. Both experimental and computational studies have shed light on the nuanced mechanisms that govern the structural and dynamic coupling between compositionally distinct bilayer leaflets. This coupling can increase the membrane bending rigidity and induce order - or lipid domains - across the membrane. Furthermore, emerging evidence indicates that integral membrane proteins not only respond to asymmetric lipid distributions but also exhibit intriguing asymmetric properties themselves. We propose strategies to advance experimental research, aiming for a deeper, quantitative understanding of membrane asymmetry, which carries profound implications for cellular physiology.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Bicamadas Lipídicas/química , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo
2.
J Biol Chem ; 300(5): 107213, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522519

RESUMO

Ebola virus (EBOV) is a filamentous negative-sense RNA virus, which causes severe hemorrhagic fever. There are limited vaccines or therapeutics for prevention and treatment of EBOV, so it is important to get a detailed understanding of the virus lifecycle to illuminate new drug targets. EBOV encodes for the matrix protein, VP40, which regulates assembly and budding of new virions from the inner leaflet of the host cell plasma membrane (PM). In this work, we determine the effects of VP40 mutations altering electrostatics on PM interactions and subsequent budding. VP40 mutations that modify surface electrostatics affect viral assembly and budding by altering VP40 membrane-binding capabilities. Mutations that increase VP40 net positive charge by one (e.g., Gly to Arg or Asp to Ala) increase VP40 affinity for phosphatidylserine and phosphatidylinositol 4,5-bisphosphate in the host cell PM. This increased affinity enhances PM association and budding efficiency leading to more effective formation of virus-like particles. In contrast, mutations that decrease net positive charge by one (e.g., Gly to Asp) lead to a decrease in assembly and budding because of decreased interactions with the anionic PM. Taken together, our results highlight the sensitivity of slight electrostatic changes on the VP40 surface for assembly and budding. Understanding the effects of single amino acid substitutions on viral budding and assembly will be useful for explaining changes in the infectivity and virulence of different EBOV strains, VP40 variants that occur in nature, and for long-term drug discovery endeavors aimed at EBOV assembly and budding.


Assuntos
Membrana Celular , Ebolavirus , Montagem de Vírus , Liberação de Vírus , Humanos , Substituição de Aminoácidos , Membrana Celular/metabolismo , Ebolavirus/metabolismo , Ebolavirus/genética , Células HEK293 , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Mutação , Nucleoproteínas , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Ligação Proteica , Eletricidade Estática , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/química , Proteínas do Core Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/química , Vírion/metabolismo , Vírion/genética
3.
J Lipid Res ; 65(8): 100596, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39019344

RESUMO

Membrane lipids extensively modulate the activation gating of voltage-gated potassium channels (KV), however, much less is known about the mechanisms of ceramide and glucosylceramide actions including which structural element is the main intramolecular target and whether there is any contribution of indirect, membrane biophysics-related mechanisms to their actions. We used two-electrode voltage-clamp fluorometry capable of recording currents and fluorescence signals to simultaneously monitor movements of the pore domain (PD) and the voltage sensor domain (VSD) of the KV1.3 ion channel after attaching an MTS-TAMRA fluorophore to a cysteine introduced into the extracellular S3-S4 loop of the VSD. We observed rightward shifts in the conductance-voltage (G-V) relationship, slower current activation kinetics, and reduced current amplitudes in response to loading the membrane with C16-ceramide (Cer) or C16-glucosylceramide (GlcCer). When analyzing VSD movements, only Cer induced a rightward shift in the fluorescence signal-voltage (F-V) relationship and slowed fluorescence activation kinetics, whereas GlcCer exerted no such effects. These results point at a distinctive mechanism of action with Cer primarily targeting the VSD, while GlcCer only the PD of KV1.3. Using environment-sensitive probes and fluorescence-based approaches, we show that Cer and GlcCer similarly increase molecular order in the inner, hydrophobic regions of bilayers, however, Cer induces a robust molecular reorganization at the membrane-water interface. We propose that this unique ordering effect in the outermost membrane layer in which the main VSD rearrangement involving an outward sliding of the top of S4 occurs can explain the VSD targeting mechanism of Cer, which is unavailable for GlcCer.


Assuntos
Ceramidas , Ativação do Canal Iônico , Canal de Potássio Kv1.3 , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/química , Ceramidas/metabolismo , Ceramidas/química , Humanos , Animais , Cinética
4.
EMBO Rep ; 23(7): e54276, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604352

RESUMO

Coordination of lipids within transient receptor potential canonical channels (TRPCs) is essential for their Ca2+ signaling function. Single particle cryo-EM studies identified two lipid interaction sites, designated L1 and L2, which are proposed to accommodate diacylglycerols (DAGs). To explore the role of L1 and L2 in TRPC3 function, we combined structure-guided mutagenesis and electrophysiological recording with molecular dynamics (MD) simulations. MD simulations indicate rapid DAG accumulation within both L1 and L2 upon its availability within the plasma membrane. Electrophysiological experiments using a photoswitchable DAG-probe reveal potentiation of TRPC3 currents during repetitive activation by DAG. Importantly, initial DAG exposure generates a subsequently sensitized channel state that is associated with significantly faster activation kinetics. TRPC3 sensitization is specifically promoted by mutations within L2, with G652A exhibiting sensitization at very low levels of active DAG. We demonstrate the ability of TRPC3 to adopt a closed state conformation that features partial lipidation of L2 sites by DAG and enables fast activation of the channel by the phospholipase C-DAG pathway.


Assuntos
Diglicerídeos , Canais de Potencial de Receptor Transitório , Cálcio/metabolismo , Diglicerídeos/farmacologia , Transdução de Sinais , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Fosfolipases Tipo C/metabolismo
5.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542105

RESUMO

RTX toxins are important virulence factors produced by a wide range of Gram-negative bacteria. They are secreted as water-soluble proteins that are able to bind to the host cell membrane and insert hydrophobic segments into the lipid bilayer that ultimately contribute to the formation of transmembrane pores. Ion diffusion through these pores leads then to cytotoxic and cytolytic effects on the hosts. Several reports have evidenced that the binding of several RTX toxins to the target cell membrane may take place through a high-affinity interaction with integrins of the ß2 family that is highly expressed in immune cells of the myeloid lineage. However, at higher toxin doses, cytotoxicity by most RTX toxins has been observed also on ß2-deficient cells in which toxin binding to the cell membrane has been proposed to occur through interaction with glycans of glycosylated lipids or proteins present in the membrane. More recently, cumulative pieces of evidence show that membrane cholesterol is essential for the mechanism of action of several RTX toxins. Here, we summarize the most important aspects of the RTX toxin interaction with the target cell membrane, including the cholesterol dependence, the recent identification in the sequences of several RTX toxins of linear motifs coined as the Cholesterol Recognition/interaction Amino acid Consensus (CRAC), and the reverse or mirror CARC motif, which is involved in the toxin-cholesterol interaction.


Assuntos
Toxinas Bacterianas , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Exotoxinas/metabolismo , Colesterol/metabolismo
6.
Molecules ; 29(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38398572

RESUMO

Professor Carlos Gutiérrez-Merino, a prominent scientist working in the complex realm of biological membranes, has made significant theoretical and experimental contributions to the field. Contemporaneous with the development of the fluid-mosaic model of Singer and Nicolson, the Förster resonance energy transfer (FRET) approach has become an invaluable tool for studying molecular interactions in membranes, providing structural insights on a scale of 1-10 nm and remaining important alongside evolving perspectives on membrane structures. In the last few decades, Gutiérrez-Merino's work has covered multiple facets in the field of FRET, with his contributions producing significant advances in quantitative membrane biology. His more recent experimental work expanded the ground concepts of FRET to high-resolution cell imaging. Commencing in the late 1980s, a series of collaborations between Gutiérrez-Merino and the authors involved research visits and joint investigations focused on the nicotinic acetylcholine receptor and its relation to membrane lipids, fostering a lasting friendship.


Assuntos
Lipídeos de Membrana , Receptores Nicotínicos , Membrana Celular/metabolismo , Lipídeos de Membrana/química , Transferência Ressonante de Energia de Fluorescência , Membranas/metabolismo , Receptores Nicotínicos/metabolismo
7.
J Biol Chem ; 298(7): 102104, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35679899

RESUMO

The outermost lipid-exposed α-helix (M4) in each of the homologous α, ß, δ, and γ/ε subunits of the muscle nicotinic acetylcholine receptor (nAChR) has previously been proposed to act as a lipid sensor. However, the mechanism by which this sensor would function is not clear. To explore how the M4 α-helix from each subunit in human adult muscle nAChR influences function, and thus explore its putative role in lipid sensing, we functionally characterized alanine mutations at every residue in αM4, ßM4, δM4, and εM4, along with both alanine and deletion mutations in the post-M4 region of each subunit. Although no critical interactions involving residues on M4 or in post-M4 were identified, we found that numerous mutations at the M4-M1/M3 interface altered the agonist-induced response. In addition, homologous mutations in M4 in different subunits were found to have different effects on channel function. The functional effects of multiple mutations either along M4 in one subunit or at homologous positions of M4 in different subunits were also found to be additive. Finally, when characterized in both Xenopus oocytes and human embryonic kidney 293T cells, select αM4 mutations displayed cell-specific phenotypes, possibly because of the different membrane lipid environments. Collectively, our data suggest different functional roles for the M4 α-helix in each heteromeric nAChR subunit and predict that lipid sensing involving M4 occurs primarily through the cumulative interactions at the M4-M1/M3 interface, as opposed to the alteration of specific interactions that are critical to channel function.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Receptores Nicotínicos , Adulto , Alanina , Humanos , Canais Iônicos de Abertura Ativada por Ligante/química , Lipídeos de Membrana/química , Conformação Proteica em alfa-Hélice , Receptores Nicotínicos/metabolismo
8.
J Membr Biol ; 255(4-5): 563-574, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35534578

RESUMO

Erwin London dedicated considerable effort to understanding lipid interactions with membrane-resident proteins and how these interactions shaped the formation and maintenance of lipid phases and domains. In this endeavor, he developed ad hoc techniques that greatly contributed to advancements in the field. We have employed and/or modified/extended some of his methodological approaches and applied them to investigate lipid interaction with the nicotinic acetylcholine receptor (nAChR) protein, the paradigm member of the superfamily of rapid pentameric ligand-gated ion channels (pLGIC). Our experimental systems ranged from purified receptor protein reconstituted into synthetic lipid membranes having known effects on receptor function, to cellular systems subjected to modification of their lipid content, e.g., varying cholesterol levels. We have often employed fluorescence techniques, including fluorescence quenching of diphenylhexatriene (DPH) extrinsic fluorescence and of nAChR intrinsic fluorescence by nitroxide spin-labeled phospholipids, DPH anisotropy, excimer formation of pyrene-phosphatidylcholine, and Förster resonance energy transfer (FRET) from the protein moiety to the extrinsic probes Laurdan, DPH, or pyrene-phospholipid to characterize various biophysical properties of lipid-receptor interactions. Some of these strategies are revisited in this review. Special attention is devoted to the anionic phospholipid phosphatidic acid (PA), which stabilizes the functional resting form of the nAChR. The receptor protein was shown to organize its PA-containing immediate microenvironment into microdomains with high lateral packing density and rigidity. PA and cholesterol appear to compete for the same binding sites on the nAChR protein.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Receptores Nicotínicos , Animais , Receptores Nicotínicos/química , Torpedo/metabolismo , Difenilexatrieno , Londres , Fosfatidilcolinas/metabolismo , Colesterol/química , Ácidos Fosfatídicos/metabolismo , Pirenos
9.
BMC Biol ; 19(1): 4, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441107

RESUMO

BACKGROUND: Lipid-protein interactions stabilize protein oligomers, shape their structure, and modulate their function. Whereas in vitro experiments already account for the functional importance of lipids by using natural lipid extracts, in silico methods lack behind by embedding proteins in single component lipid bilayers. However, to accurately complement in vitro experiments with molecular details at very high spatio-temporal resolution, molecular dynamics simulations have to be performed in natural(-like) lipid environments. RESULTS: To enable more accurate MD simulations, we have prepared four membrane models of E. coli polar lipid extract, a typical model organism, each at all-atom (CHARMM36) and coarse-grained (Martini3) representations. These models contain all main lipid headgroup types of the E. coli inner membrane, i.e., phosphatidylethanolamines, phosphatidylglycerols, and cardiolipins, symmetrically distributed between the membrane leaflets. The lipid tail (un)saturation and propanylation stereochemistry represent the bacterial lipid tail composition of E. coli grown at 37∘C until 3/4 of the log growth phase. The comparison of the Simple three lipid component models to the complex 14-lipid component model Avanti over a broad range of physiologically relevant temperatures revealed that the balance of lipid tail unsaturation and propanylation in different positions and inclusion of lipid tails of various length maintain realistic values for lipid mobility, membrane area compressibility, lipid ordering, lipid volume and area, and the bilayer thickness. The only Simple model that was able to satisfactory reproduce most of the structural properties of the complex Avanti model showed worse agreement of the activation energy of basal water permeation with the here performed measurements. The Martini3 models reflect extremely well both experimental and atomistic behavior of the E. coli polar lipid extract membranes. Aquaporin-1 embedded in our native(-like) membranes causes partial lipid ordering and membrane thinning in its vicinity. Moreover, aquaporin-1 attracts and temporarily binds negatively charged lipids, mainly cardiolipins, with a distinct cardiolipin binding site in the crevice at the contact site between two monomers, most probably stabilizing the tetrameric protein assembly. CONCLUSIONS: The here prepared and validated membrane models of E. coli polar lipids extract revealed that lipid tail complexity, in terms of double bond and cyclopropane location and varying lipid tail length, is key to stabilize membrane properties over a broad temperature range. In addition, they build a solid basis for manifold future simulation studies on more realistic lipid membranes bridging the gap between simulations and experiments.


Assuntos
Cardiolipinas/química , Escherichia coli/química , Bicamadas Lipídicas/química , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Membrana Celular/química , Simulação de Dinâmica Molecular
10.
BMC Biol ; 19(1): 66, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832485

RESUMO

BACKGROUND: ESCRT-III proteins are involved in many membrane remodeling processes including multivesicular body biogenesis as first discovered in yeast. In humans, ESCRT-III CHMP2 exists as two isoforms, CHMP2A and CHMP2B, but their physical characteristics have not been compared yet. RESULTS: Here, we use a combination of techniques on biomimetic systems and purified proteins to study their affinity and effects on membranes. We establish that CHMP2B binding is enhanced in the presence of PI(4,5)P2 lipids. In contrast, CHMP2A does not display lipid specificity and requires CHMP3 for binding significantly to membranes. On the micrometer scale and at moderate bulk concentrations, CHMP2B forms a reticular structure on membranes whereas CHMP2A (+CHMP3) binds homogeneously. Thus, CHMP2A and CHMP2B unexpectedly induce different mechanical effects to membranes: CHMP2B strongly rigidifies them while CHMP2A (+CHMP3) has no significant effect. CONCLUSIONS: We therefore conclude that CHMP2B and CHMP2A exhibit different mechanical properties and might thus contribute differently to the diverse ESCRT-III-catalyzed membrane remodeling processes.


Assuntos
Membrana Celular/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Polimerização
11.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955837

RESUMO

Adenylate Cyclase Toxin (ACT or CyaA) is one of the important virulence factors secreted by Bordetella pertussis, the bacterium causative of whooping cough. ACT debilitates host defenses by production of unregulated levels of cAMP into the cell cytosol upon delivery of its N-terminal domain with adenylate cyclase activity (AC domain) and by forming pores in the plasma membrane of macrophages. Binding of soluble toxin monomers to the plasma membrane of target cells and conversion into membrane-integrated proteins are the first and last step for these toxin activities; however, the molecular determinants in the protein or the target membrane that govern this conversion to an active toxin form are fully unknown. It was previously reported that cytotoxic and cytolytic activities of ACT depend on membrane cholesterol. Here we show that ACT specifically interacts with membrane cholesterol, and find in two membrane-interacting ACT domains, four cholesterol-binding motifs that are essential for AC domain translocation and lytic activities. We hypothesize that direct ACT interaction with membrane cholesterol through those four cholesterol-binding motifs drives insertion and stabilizes the transmembrane topology of several helical elements that ultimately build the ACT structure for AC delivery and pore-formation, thereby explaining the cholesterol-dependence of the ACT activities. The requirement for lipid-mediated stabilization of transmembrane helices appears to be a unifying mechanism to modulate toxicity in pore-forming toxins.


Assuntos
Bordetella pertussis , Células Eucarióticas , Toxina Adenilato Ciclase/toxicidade , Bordetella pertussis/metabolismo , Colesterol/metabolismo , Eritrócitos/metabolismo , Células Eucarióticas/metabolismo
12.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499396

RESUMO

The ability to cope with and adapt to changes in the environment is essential for all organisms. Osmotic pressure is a universal threat when environmental changes result in an imbalance of osmolytes inside and outside the cell which causes a deviation from the normal turgor. Cells have developed a potent system to deal with this stress in the form of mechanosensitive ion channels. Channel opening releases solutes from the cell and relieves the stress immediately. In bacteria, these channels directly sense the increased membrane tension caused by the enhanced turgor levels upon hypoosmotic shock. The mechanosensitive channel of small conductance, MscS, from Escherichia coli is one of the most extensively studied examples of mechanically stimulated channels. Different conformational states of this channel were obtained in various detergents and membrane mimetics, highlighting an intimate connection between the channel and its lipidic environment. Associated lipids occupy distinct locations and determine the conformational states of MscS. Not all these features are preserved in the larger MscS-like homologues. Recent structures of homologues from bacteria and plants identify common features and differences. This review discusses the current structural and functional models for MscS opening, as well as the influence of certain membrane characteristics on gating.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Pressão Osmótica , Membranas/metabolismo , Bactérias/metabolismo , Mecanotransdução Celular
13.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805918

RESUMO

S-TGA-1 and PGP-Me are native archaeal lipids associated with the bacteriorhodopsin (bR) trimer and contribute to protein stabilization and native dynamics for proton transfer. However, little is known about the underlying molecular mechanism of how these lipids regulate bR trimerization and efficient photocycling. Here, we explored the specific binding of S-TGA-1 and PGP-Me with the bR trimer and elucidated how specific interactions modulate the bR trimeric structure and proton release and uptake using long-term atomistic molecular dynamic simulations. Our results showed that S-TGA-1 and PGP-Me are essential for stabilizing the bR trimer and maintaining the coherent conformational dynamics necessary for proton transfer. The specific binding of S-TGA-1 with W80 and K129 regulates proton release on the extracellular surface by forming a "Glu-shared" model. The interaction of PGP-Me with K40 ensures proton uptake by accommodating the conformation of the helices to recruit enough water molecules on the cytoplasmic side. The present study results could fill in the theoretical gaps of studies on the functional role of archaeal lipids and could provide a reference for other membrane proteins containing similar archaeal lipids.


Assuntos
Bacteriorodopsinas , Archaea/metabolismo , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Lipídeos/química , Estrutura Secundária de Proteína , Prótons
14.
J Biol Chem ; 295(32): 11056-11067, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32527728

RESUMO

The activity of the muscle-type Torpedo nicotinic acetylcholine receptor (nAChR) is highly sensitive to lipids, but the underlying mechanisms remain poorly understood. The nAChR transmembrane α-helix, M4, is positioned at the perimeter of each subunit in direct contact with lipids and likely plays a central role in lipid sensing. To gain insight into the mechanisms underlying nAChR lipid sensing, we used homology modeling, coevolutionary analyses, site-directed mutagenesis, and electrophysiology to examine the role of the α-subunit M4 (αM4) in the function of the adult muscle nAChR. Ala substitutions for most αM4 residues, including those in clusters of polar residues at both the N and C termini, and deletion of up to 11 C-terminal residues had little impact on the agonist-induced response. Even Ala substitutions for coevolved pairs of residues at the interface between αM4 and the adjacent helices, αM1 and αM3, had little effect, although some impaired nAChR expression. On the other hand, Ala substitutions for Thr422 and Arg429 caused relatively large losses of function, suggesting functional roles for these specific residues. Ala substitutions for aromatic residues at the αM4-αM1/αM3 interface generally led to gains of function, as previously reported for the prokaryotic homolog, the Erwinia chrysanthemi ligand-gated ion channel (ELIC). The functional effects of individual Ala substitutions in αM4 were found to be additive, although not in a completely independent manner. Our results provide insight into the structural features of αM4 that are important. They also suggest how lipid-dependent changes in αM4 structure ultimately modify nAChR function.


Assuntos
Evolução Biológica , Músculos/metabolismo , Receptores Nicotínicos/metabolismo , Substituição de Aminoácidos , Animais , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico , Lipídeos/análise , Modelos Moleculares , Mutagênese , Conformação Proteica , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Torpedo
15.
J Biol Chem ; 294(15): 5956-5969, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30770471

RESUMO

Cholesterol's effects on Na+,K+-ATPase reconstituted in phospholipid vesicles have been extensively studied. However, previous studies have reported both cholesterol-mediated stimulation and inhibition of Na+,K+-ATPase activity. Here, using partial reaction kinetics determined via stopped-flow experiments, we studied cholesterol's effect on Na+,K+-ATPase in a near-native environment in which purified membrane fragments were depleted of cholesterol with methyl-ß-cyclodextrin (mßCD). The mßCD-treated Na+,K+-ATPase had significantly reduced overall activity and exhibited decreased observed rate constants for ATP phosphorylation (ENa3+ → E2P, i.e. phosphorylation by ATP and Na+ occlusion from the cytoplasm) and K+ deocclusion with subsequent intracellular Na+ binding (E2K2+ → E1Na3+). However, cholesterol depletion did not affect the observed rate constant for K+ occlusion by phosphorylated Na+,K+-ATPase on the extracellular face and subsequent dephosphorylation (E2P → E2K2+). Thus, partial reactions involving cation binding and release at the protein's intracellular side were most dependent on cholesterol. Fluorescence measurements with the probe eosin indicated that cholesterol depletion stabilizes the unphosphorylated E2 state relative to E1, and the cholesterol depletion-induced slowing of ATP phosphorylation kinetics was consistent with partial conversion of Na+,K+-ATPase into the E2 state, requiring a slow E2 → E1 transition before the phosphorylation. Molecular dynamics simulations of Na+,K+-ATPase in membranes with 40 mol % cholesterol revealed cholesterol interaction sites that differ markedly among protein conformations. They further indicated state-dependent effects on membrane shape, with the E2 state being likely disfavored in cholesterol-rich bilayers relative to the E1P state because of a greater hydrophobic mismatch. In summary, cholesterol extraction from membranes significantly decreases Na+,K+-ATPase steady-state activity.


Assuntos
Membrana Celular/enzimologia , Colesterol , Simulação de Dinâmica Molecular , ATPase Trocadora de Sódio-Potássio , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Colesterol/química , Colesterol/metabolismo , Estabilidade Enzimática , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos , beta-Ciclodextrinas/química
16.
Int J Mol Sci ; 21(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272616

RESUMO

KcsA, a prokaryote tetrameric potassium channel, was the first ion channel ever to be structurally solved at high resolution. This, along with the ease of its expression and purification, made KcsA an experimental system of choice to study structure-function relationships in ion channels. In fact, much of our current understanding on how the different channel families operate arises from earlier KcsA information. Being an integral membrane protein, KcsA is also an excellent model to study how lipid-protein and protein-protein interactions within membranes, modulate its activity and structure. In regard to the later, a variety of equilibrium and non-equilibrium methods have been used in a truly multidisciplinary effort to study the effects of lipids on the KcsA channel. Remarkably, both experimental and "in silico" data point to the relevance of specific lipid binding to two key arginine residues. These residues are at non-annular lipid binding sites on the protein and act as a common element to trigger many of the lipid effects on this channel. Thus, processes as different as the inactivation of channel currents or the assembly of clusters from individual KcsA channels, depend upon such lipid binding.


Assuntos
Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico/fisiologia , Bicamadas Lipídicas/metabolismo , Canais de Potássio/metabolismo , Animais , Sítios de Ligação/fisiologia , Análise por Conglomerados , Ligação Proteica/fisiologia , Mapas de Interação de Proteínas/fisiologia
17.
Proteins ; 87(7): 561-568, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30803020

RESUMO

Bin/Amphyphysin/Rvs (BAR) domain proteins form a key link between membrane remodeling and cytoskeleton dynamics. They are dimers that bind to membranes via electrostatic interactions with different preferences toward negatively charged lipids. In the present article, we examine the interactions of the F-BAR domain of nervous wreck (Nwk) with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 )-containing membranes using coarse-grained molecular dynamics. We demonstrated PI(4,5)P2 concentration effects, identified the sequence of events that underlies the protein binding and identified amino acids involved in protein-lipid interactions. Our simulations point out the primary role of the basic stretch at the tips of the dimer, which anchors the protein to the membrane and initiates the binding process. When the PI(4,5)P2 concentration is high, the protein stably associates with the membrane by its concave surface or by the opposite side. At low PI(4,5)P2 concentration, the former orientation becomes more favorable; also a state with only one tip bound is observed, due to the weaker attachment and more pronounced association/dissociation events. Our results provide a theoretical model that describes the lipid-binding behavior of Nwk observed in vitro.


Assuntos
Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Proteínas de Drosophila/química , Drosophila melanogaster/química , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/química , Ligação Proteica , Domínios Proteicos
18.
J Membr Biol ; 252(4-5): 213-226, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31435696

RESUMO

Biological membranes display a staggering complexity of lipids and proteins orchestrating cellular functions. Superior analytical tools coupled with numerous functional cellular screens have enabled us to query their role in cellular signalling, trafficking, guiding protein structure and function-all of which rely on the dynamic membrane lipid properties indispensable for proper cellular functions. Alteration of these has led to emergence of various pathological conditions, thus opening an area of lipid-centric therapeutic approaches. This perspective is a short summary of the dynamic properties of membranes essential for proper cellular functions, dictating both protein and lipid functions, and mis-regulated in diseases. Towards the end, we focus on some challenges lying ahead and potential means to tackle the same, mainly underscored by multi-disciplinary approaches.


Assuntos
Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Animais , Membrana Celular/patologia , Humanos , Transporte Proteico
19.
J Membr Biol ; 252(4-5): 385-396, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31321460

RESUMO

At the neuromuscular junction (NMJ), the nicotinic acetylcholine receptor (nAChR) self-associates to give rise to rapid muscle movement. While lipid domains have maintained nAChR aggregates in vitro, their specific roles in nAChR clustering are currently unknown. In the present study, we carried out coarse-grained molecular dynamics simulations (CG-MD) of 1-4 nAChR molecules in two membrane environments: one mixture containing domain-forming, homoacidic lipids, and a second mixture consisting of heteroacidic lipids. Spontaneous dimerization of nAChRs was up to ten times more likely in domain-forming membranes; however, the effect was not significant in four-protein systems, suggesting that lipid domains are less critical to nAChR oligomerization when protein concentration is higher. With regard to lipid preferences, nAChRs consistently partitioned into liquid-disordered domains occupied by the omega-3 ([Formula: see text]-3) fatty acid, docosahexaenoic acid (DHA); enrichment of DHA boundary lipids increased with protein concentration, particularly in homoacidic membranes. This result suggests dimer formation blocks access of saturated chains and cholesterol, but not polyunsaturated chains, to boundary lipid sites.


Assuntos
Ácidos Docosa-Hexaenoicos/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Multimerização Proteica , Receptores Nicotínicos/química , Humanos
20.
Adv Exp Med Biol ; 1135: 47-66, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31098810

RESUMO

Cholesterol-protein interactions play a critical role in lipid metabolism and maintenance of cell integrity. To elucidate the molecular mechanisms underlying these interactions, a growing number of studies have focused on determining the crystal structures of a variety of proteins complexed with cholesterol. These include structures in which cholesterol binds to transmembrane domains, and structures in which cholesterol interacts with soluble ones. However, it remains unknown whether there are differences in the prerequisites for cholesterol binding to these two types of domains. Thus, to define the molecular determinants that characterize the binding of cholesterol to these two distinct protein domains, we employed the database of crystal structures of proteins complexed with cholesterol. Our analysis suggests that cholesterol may bind more strongly to soluble domains than to transmembrane domains. The interactions between cholesterol and the protein in both cases critically depends on hydrophobic and aromatic residues. In addition, cholesterol binding sites in both types of domains involve polar and/or charged residues. However, the percentage of appearance of the different types of polar/charged residues in cholesterol binding sites differs between soluble and transmembrane domains. No differences were observed in the conformational characteristics of the cholesterol molecules bound to soluble versus transmembrane protein domains suggesting that cholesterol is insensitive to the environment provided by the different protein domains.


Assuntos
Colesterol/química , Domínios Proteicos , Proteínas/química , Sítios de Ligação , Transporte Biológico , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA