Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.385
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(2): 474-489.e17, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035451

RESUMO

Mg2+ is the most abundant divalent cation in metazoans and an essential cofactor for ATP, nucleic acids, and countless metabolic enzymes. To understand how the spatio-temporal dynamics of intracellular Mg2+ (iMg2+) are integrated into cellular signaling, we implemented a comprehensive screen to discover regulators of iMg2+ dynamics. Lactate emerged as an activator of rapid release of Mg2+ from endoplasmic reticulum (ER) stores, which facilitates mitochondrial Mg2+ (mMg2+) uptake in multiple cell types. We demonstrate that this process is remarkably temperature sensitive and mediated through intracellular but not extracellular signals. The ER-mitochondrial Mg2+ dynamics is selectively stimulated by L-lactate. Further, we show that lactate-mediated mMg2+ entry is facilitated by Mrs2, and point mutations in the intermembrane space loop limits mMg2+ uptake. Intriguingly, suppression of mMg2+ surge alleviates inflammation-induced multi-organ failure. Together, these findings reveal that lactate mobilizes iMg2+ and links the mMg2+ transport machinery with major metabolic feedback circuits and mitochondrial bioenergetics.


Assuntos
Retículo Endoplasmático/metabolismo , Ácido Láctico/metabolismo , Magnésio/metabolismo , Animais , Células COS , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Chlorocebus aethiops , Retículo Endoplasmático/fisiologia , Feminino , Células HeLa , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo
2.
J Neurosci ; 44(36)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39134417

RESUMO

Cognitive flexibility represents the capacity to switch among different mental schemes, providing an adaptive advantage to a changing environment. The neural underpinnings of this executive function have been deeply studied in humans through fMRI, showing that the left inferior frontal cortex (IFC) and the left inferior parietal lobule (IPL) are crucial. Here, we investigated the inhibitory-excitatory balance in these regions by means of γ-aminobutyric acid (GABA+) and glutamate + glutamine (Glx), measured with magnetic resonance spectroscopy, during a cognitive flexibility task and its relationship with the performance level and the local task-induced blood oxygenation level-dependent (BOLD) response in 40 young (18-35 years; 26 female) and 40 older (18-35 years; 21 female) human adults. As the IFC and the IPL are richly connected regions, we also examined whole-brain effects associated with their local metabolic activity. Results did not show absolute metabolic modulations associated with flexibility performance, but the performance level was related to the direction of metabolic modulation in the IPL with opposite patterns in young and older individuals. The individual inhibitory-excitatory balance modulation showed an inverse relationship with the local BOLD response in the IPL. Finally, the modulation of inhibitory-excitatory balance in IPL was related to whole-brain effects only in older individuals. These findings show disparities in the metabolic mechanisms underlying cognitive flexibility in young and older adults and their association with the performance level and BOLD response. Such metabolic differences are likely to play a role in executive functioning during aging and specifically in cognitive flexibility.


Assuntos
Envelhecimento , Cognição , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Adulto , Adulto Jovem , Adolescente , Cognição/fisiologia , Envelhecimento/fisiologia , Encéfalo/fisiologia , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Função Executiva/fisiologia , Mapeamento Encefálico , Ácido gama-Aminobutírico/metabolismo , Espectroscopia de Ressonância Magnética , Ácido Glutâmico/metabolismo
3.
J Neurosci ; 44(21)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38531634

RESUMO

Methods of cognitive enhancement for humans are most impactful when they generalize across tasks. However, the extent to which such "transfer" is possible via interventions is widely debated. In addition, the contribution of excitatory and inhibitory processes to such transfer is unknown. Here, in a large-scale neuroimaging individual differences study with humans (both sexes), we paired multitasking training and noninvasive brain stimulation (transcranial direct current stimulation, tDCS) over multiple days and assessed performance across a range of paradigms. In addition, we varied tDCS dosage (1.0 and 2.0 mA), electrode montage (left or right prefrontal regions), and training task (multitasking vs a control task) and assessed GABA and glutamate concentrations via ultrahigh field 7T magnetic resonance spectroscopy. Generalized benefits were observed in spatial attention, indexed by visual search performance, when multitasking training was combined with 1.0 mA stimulation targeting either the left or right prefrontal cortex (PFC). This transfer effect persisted for ∼30 d post intervention. Critically, the transferred benefits associated with right prefrontal tDCS were predicted by pretraining concentrations of glutamate in the PFC. Thus, the effects of this combined stimulation and training protocol appear to be linked predominantly to excitatory brain processes.


Assuntos
Ácido Glutâmico , Aprendizagem , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Feminino , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/metabolismo , Adulto Jovem , Aprendizagem/fisiologia , Ácido gama-Aminobutírico/metabolismo , Atenção/fisiologia , Espectroscopia de Ressonância Magnética/métodos
4.
Hum Mol Genet ; 32(24): 3353-3360, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721533

RESUMO

Barth syndrome (BTHS) is a debilitating X-linked cardio-skeletal myopathy caused by loss-of-function mutations in TAFAZZIN, a cardiolipin (CL)-remodeling enzyme required for the maintenance of normal levels of CL species in mitochondrial membranes. At present, how perturbations in CL abundance and composition lead to many debilitating clinical presentations in BTHS patients have not been fully elucidated. Inspired by our recent findings that CL is essential for optimal mitochondrial calcium uptake, we measured the levels of other biologically important metal ions in BTHS mitochondria and found that in addition to calcium, magnesium levels are significantly reduced. Consistent with this observation, we report a decreased abundance of the mitochondrial magnesium influx channel MRS2 in multiple models of BTHS including yeast, murine myoblast, and BTHS patient cells and cardiac tissue. Mechanistically, we attribute reduced steady-state levels of MRS2 to its increased turnover in CL-deficient BTHS models. By expressing Mrs2 in well-characterized yeast mutants of the phospholipid biosynthetic pathways, we demonstrate a specific requirement of CL for Mrs2 abundance and assembly. Finally, we provide in vitro evidence for the direct binding of CL with human MRS2. Together, our study has identified a critical requirement of CL for MRS2 stability and suggests perturbation of mitochondrial magnesium homeostasis as a novel contributing factor to BTHS pathology.


Assuntos
Síndrome de Barth , Humanos , Animais , Camundongos , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Síndrome de Barth/patologia , Cardiolipinas/genética , Cardiolipinas/metabolismo , Magnésio/metabolismo , Saccharomyces cerevisiae/metabolismo , Cálcio/metabolismo , Fatores de Transcrição/genética , Mitocôndrias/metabolismo , Aciltransferases/genética
5.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430105

RESUMO

Human brain development is ongoing throughout childhood, with for example, myelination of nerve fibers and refinement of synaptic connections continuing until early adulthood. 1H-Magnetic Resonance Spectroscopy (1H-MRS) can be used to quantify the concentrations of endogenous metabolites (e.g. glutamate and γ -aminobutyric acid (GABA)) in the human brain in vivo and so can provide valuable, tractable insight into the biochemical processes that support postnatal neurodevelopment. This can feasibly provide new insight into and aid the management of neurodevelopmental disorders by providing chemical markers of atypical development. This study aims to characterize the normative developmental trajectory of various brain metabolites, as measured by 1H-MRS from a midline posterior parietal voxel. We find significant non-linear trajectories for GABA+ (GABA plus macromolecules), Glx (glutamate + glutamine), total choline (tCho) and total creatine (tCr) concentrations. Glx and GABA+ concentrations steeply decrease across childhood, with more stable trajectories across early adulthood. tCr and tCho concentrations increase from childhood to early adulthood. Total N-acetyl aspartate (tNAA) and Myo-Inositol (mI) concentrations are relatively stable across development. Trajectories likely reflect fundamental neurodevelopmental processes (including local circuit refinement) which occur from childhood to early adulthood and can be associated with cognitive development; we find GABA+ concentrations significantly positively correlate with recognition memory scores.


Assuntos
Ácido Glutâmico , Glutamina , Criança , Humanos , Adolescente , Adulto Jovem , Glutamina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Ácido Glutâmico/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Colina/metabolismo , Creatina/metabolismo , Inositol/metabolismo , Ácido gama-Aminobutírico/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Ácido Aspártico/metabolismo
6.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38511722

RESUMO

Neurovascular decoupling plays a significant role in dysfunction following an ischemic stroke. This study aimed to explore the effect of low- and high-frequency repetitive transcranial magnetic stimulation on neurovascular remodeling after ischemic stroke. To achieve this goal, we compared functional hyperemia, cerebral blood flow regulatory factors, and neurochemical transmitters in the peri-infract cortex 21 days after a photothrombotic stroke. Our findings revealed that low- and high-frequency repetitive transcranial magnetic stimulation increased the real-time cerebral blood flow in healthy mice and improved neurobehavioral outcomes after stroke. Furthermore, high-frequency (5-Hz) repetitive transcranial magnetic stimulation revealed stronger functional hyperemia recovery and increased the levels of post-synaptic density 95, neuronal nitric oxide synthase, phosphorylated-endothelial nitric oxide synthase, and vascular endothelial growth factor in the peri-infract cortex compared with low-frequency (1-Hz) repetitive transcranial magnetic stimulation. The magnetic resonance spectroscopy data showed that low- and high-frequency repetitive transcranial magnetic stimulation reduced neuronal injury and maintained excitation/inhibition balance. However, 5-Hz repetitive transcranial magnetic stimulation showed more significant regulation of excitatory and inhibitory neurotransmitters after stroke than 1-Hz repetitive transcranial magnetic stimulation. These results indicated that high-frequency repetitive transcranial magnetic stimulation could more effectively promote neurovascular remodeling after stroke, and specific repetitive transcranial magnetic stimulation frequencies might be used to selectively regulate the neurovascular unit.


Assuntos
Hiperemia , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Estimulação Magnética Transcraniana/métodos , Fator A de Crescimento do Endotélio Vascular , Resultado do Tratamento
7.
Cell Mol Life Sci ; 81(1): 186, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632116

RESUMO

Pathogenic variants in SLC6A8, the gene which encodes creatine transporter SLC6A8, prevent creatine uptake in the brain and result in a variable degree of intellectual disability, behavioral disorders (e.g., autism spectrum disorder), epilepsy, and severe speech and language delay. There are no treatments to improve neurodevelopmental outcomes for creatine transporter deficiency (CTD). In this spotlight, we summarize recent advances in innovative molecules to treat CTD, with a focus on dodecyl creatine ester, the most promising drug candidate.


Assuntos
Transtorno do Espectro Autista , Encefalopatias Metabólicas Congênitas , Creatina/deficiência , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Humanos , Creatina/genética , Creatina/uso terapêutico , Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Encefalopatias Metabólicas Congênitas/genética , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/tratamento farmacológico , Deficiência Intelectual Ligada ao Cromossomo X/genética
8.
J Neurosci ; 43(42): 7006-7015, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37657932

RESUMO

The speed-accuracy trade-off (SAT), whereby faster decisions increase the likelihood of an error, reflects a cognitive strategy humans must engage in during the performance of almost all daily tasks. To date, computational modeling has implicated the latent decision variable of response caution (thresholds), the amount of evidence required for a decision to be made, in the SAT. Previous imaging has associated frontal regions, notably the left prefrontal cortex and the presupplementary motor area (pre-SMA), with the setting of such caution levels. In addition, causal brain stimulation studies, using transcranial direct current stimulation (tDCS), have indicated that while both of these regions are involved in the SAT, their role appears to be dissociable. tDCS efficacy to impact decision-making processes has previously been linked with neurochemical concentrations and cortical thickness of stimulated regions. However, to date, it is unknown whether these neurophysiological measures predict individual differences in the SAT, and brain stimulation effects on the SAT. Using ultra-high field (7T) imaging, here we report that instruction-based adjustments in caution are associated with both neurochemical excitability (the balance between GABA+ and glutamate) and cortical thickness across a range of frontal regions in both sexes. In addition, cortical thickness, but not neurochemical concentrations, was associated with the efficacy of left prefrontal and superior medial frontal cortex (SMFC) stimulation to modulate performance. Overall, our findings elucidate key neurophysiological predictors, frontal neural excitation, of individual differences in latent psychological processes and the efficacy of stimulation to modulate these.SIGNIFICANCE STATEMENT The speed-accuracy trade-off (SAT), faster decisions increase the likelihood of an error, reflects a cognitive strategy humans must engage in during most daily tasks. The SAT is often investigated by explicitly instructing participants to prioritize speed or accuracy when responding to stimuli. Using ultra-high field (7T) magnetic resonance imaging (MRI), we found that individual differences in the extent to which participants adjust their decision strategies with instruction related to neurochemical excitability (ratio of GABA+ to glutamate) and cortical thickness in the frontal cortex. Moreover, brain stimulation to the left prefrontal cortex and the superior medial frontal cortex (SMFC) modulated performance, with the efficacy specifically related to cortical thickness. This work sheds new light on the neurophysiological basis of decision strategies and brain stimulation.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Masculino , Feminino , Humanos , Individualidade , Córtex Motor/fisiologia , Ácido Glutâmico , Ácido gama-Aminobutírico
9.
Neuroimage ; 293: 120619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679186

RESUMO

Catecholamines and amino acid transmitter systems are known to interact, the exact links and their impact on cognitive control functions have however remained unclear. Using a multi-modal imaging approach combining EEG and proton-magnetic resonance spectroscopy (1H-MRS), we investigated the effect of different degrees of pharmacological catecholaminergic enhancement onto theta band activity (TBA) as a measure of interference control during response inhibition and execution. It was central to our study to evaluate the predictive impact of in-vivo baseline GABA+ concentrations in the striatum, the anterior cingulate cortex (ACC) and the supplemental motor area (SMA) of healthy adults under varying degrees of methylphenidate (MPH) stimulation. We provide evidence for a predictive interrelation of baseline GABA+ concentrations in cognitive control relevant brain areas onto task-induced TBA during response control stimulated with MPH. Baseline GABA+ concentrations in the ACC, the striatum, and the SMA had a differential impact on predicting interference control-related TBA in response execution trials. GABA+ concentrations in the ACC appeared to be specifically important for TBA modulations when the cognitive effort needed for interference control was high - that is when no prior task experience exists, or in the absence of catecholaminergic enhancement with MPH. The study highlights the predictive role of baseline GABA+ concentrations in key brain areas influencing cognitive control and responsiveness to catecholaminergic enhancement, particularly in high-effort scenarios.


Assuntos
Catecolaminas , Cognição , Eletroencefalografia , Metilfenidato , Espectroscopia de Prótons por Ressonância Magnética , Ácido gama-Aminobutírico , Humanos , Ácido gama-Aminobutírico/metabolismo , Masculino , Adulto , Feminino , Adulto Jovem , Espectroscopia de Prótons por Ressonância Magnética/métodos , Catecolaminas/metabolismo , Metilfenidato/farmacologia , Eletroencefalografia/métodos , Cognição/fisiologia , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/efeitos dos fármacos , Ritmo Teta/fisiologia , Ritmo Teta/efeitos dos fármacos , Função Executiva/fisiologia , Função Executiva/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia
10.
Hum Brain Mapp ; 45(1): e26537, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38140712

RESUMO

Synaptic plasticity relies on the balance between excitation and inhibition in the brain. As the primary inhibitory and excitatory neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate (Glu), play critical roles in synaptic plasticity and learning. However, the role of these neurometabolites in motor learning is still unclear. Furthermore, it remains to be investigated which neurometabolite levels from the regions composing the sensorimotor network predict future learning outcome. Here, we studied the role of baseline neurometabolite levels in four task-related brain areas during different stages of motor skill learning under two different feedback (FB) conditions. Fifty-one healthy participants were trained on a bimanual motor task over 5 days while receiving either concurrent augmented visual FB (CA-VFB group, N = 25) or terminal intrinsic visual FB (TA-VFB group, N = 26) of their performance. Additionally, MRS-measured baseline GABA+ (GABA + macromolecules) and Glx (Glu + glutamine) levels were measured in the primary motor cortex (M1), primary somatosensory cortex (S1), dorsolateral prefrontal cortex (DLPFC), and medial temporal cortex (MT/V5). Behaviorally, our results revealed that the CA-VFB group outperformed the TA-VFB group during task performance in the presence of augmented VFB, while the TA-VFB group outperformed the CA-VFB group in the absence of augmented FB. Moreover, baseline M1 GABA+ levels positively predicted and DLPFC GABA+ levels negatively predicted both initial and long-term motor learning progress in the TA-VFB group. In contrast, baseline S1 GABA+ levels positively predicted initial and long-term motor learning progress in the CA-VFB group. Glx levels did not predict learning progress. Together, these findings suggest that baseline GABA+ levels predict motor learning capability, yet depending on the FB training conditions afforded to the participants.


Assuntos
Ácido Glutâmico , Aprendizagem , Humanos , Aprendizagem/fisiologia , Inibição Psicológica , Destreza Motora , Ácido gama-Aminobutírico
11.
J Transl Med ; 22(1): 622, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965536

RESUMO

BACKGROUND: Inhibition of kinases is the ever-expanding therapeutic approach to various types of cancer. Typically, assessment of the treatment response is accomplished by standard, volumetric imaging procedures, performed weeks to months after the onset of treatment, given the predominantly cytostatic nature of the kinase inhibitors, at least when used as single agents. Therefore, there is a great clinical need to develop new monitoring approaches to detect the response to kinase inhibition much more promptly. Noninvasive 1H magnetic resonance spectroscopy (MRS) can measure in vitro and in vivo concentration of key metabolites which may potentially serve as biomarkers of response to kinase inhibition. METHODS: We employed mantle cell lymphoma (MCL) cell lines demonstrating markedly diverse sensitivity of inhibition of Bruton's tyrosine kinase (BTK) regarding their growth and studied in-depth effects of the inhibition on various aspects of cell metabolism including metabolite synthesis using metabolomics, glucose and oxidative metabolism by Seahorse XF technology, and concentration of index metabolites lactate, alanine, total choline and taurine by 1H MRS. RESULTS: Effective BTK inhibition profoundly suppressed key cell metabolic pathways, foremost pyrimidine and purine synthesis, the citrate (TCA) cycle, glycolysis, and pyruvate and glutamine/alanine metabolism. It also inhibited glycolysis and amino acid-related oxidative metabolism. Finally, it profoundly and quickly decreased concentration of lactate (a product of mainly glycolysis) and alanine (an indicator of amino acid metabolism) and, less universally total choline both in vitro and in vivo, in the MCL xenotransplant model. The decrease correlated directly with the degree of inhibition of lymphoma cell expansion and tumor growth. CONCLUSIONS: Our results indicate that BTK inhibition exerts a broad and profound suppressive effect on cell metabolism and that the affected index metabolites such as lactate, alanine may serve as early, sensitive, and reliable biomarkers of inhibition in lymphoma patients detectable by noninvasive MRS-based imaging method. This kind of imaging-based detection may also be applicable to other kinase inhibitors, as well as diverse lymphoid and non-lymphoid malignancies.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Linfoma de Célula do Manto , Inibidores de Proteínas Quinases , Humanos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Animais , Tirosina Quinase da Agamaglobulinemia/metabolismo , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Biomarcadores/metabolismo
12.
Magn Reson Med ; 91(6): 2229-2246, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38265152

RESUMO

PURPOSE: Dynamic (2D) MRS is a collection of techniques where acquisitions of spectra are repeated under varying experimental or physiological conditions. Dynamic MRS comprises a rich set of contrasts, including diffusion-weighted, relaxation-weighted, functional, edited, or hyperpolarized spectroscopy, leading to quantitative insights into multiple physiological or microstructural processes. Conventional approaches to dynamic MRS analysis ignore the shared information between spectra, and instead proceed by independently fitting noisy individual spectra before modeling temporal changes in the parameters. Here, we propose a universal dynamic MRS toolbox which allows simultaneous fitting of dynamic spectra of arbitrary type. METHODS: A simple user-interface allows information to be shared and precisely modeled across spectra to make inferences on both spectral and dynamic processes. We demonstrate and thoroughly evaluate our approach in three types of dynamic MRS techniques. Simulations of functional and edited MRS are used to demonstrate the advantages of dynamic fitting. RESULTS: Analysis of synthetic functional 1H-MRS data shows a marked decrease in parameter uncertainty as predicted by prior work. Analysis with our tool replicates the results of two previously published studies using the original in vivo functional and diffusion-weighted data. Finally, joint spectral fitting with diffusion orientation models is demonstrated in synthetic data. CONCLUSION: A toolbox for generalized and universal fitting of dynamic, interrelated MR spectra has been released and validated. The toolbox is shared as a fully open-source software with comprehensive documentation, example data, and tutorials.


Assuntos
Meios de Contraste , Software , Espectroscopia de Ressonância Magnética/métodos , Difusão , Incerteza
13.
Magn Reson Med ; 91(2): 681-686, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849055

RESUMO

PURPOSE: Tail-vein catheterization and subsequent in-magnet infusion is a common route of administration of deuterium (2 H)-labeled substrates in small-animal deuterium (D) MR studies. With mice, because of the tail vein's small diameter, this procedure is challenging. It requires considerable personnel training and practice, is prone to failure, and may preclude serial studies. Motivated by the need for an alternative, the time courses for common small-molecule deuterated substrates and downstream metabolites in brain following subcutaneous infusion were determined in mice and are presented herein. METHODS: Three 2 H-labeled substrates-[6,6-2 H2 ]glucose, [2 H3 ]acetate, and [3,4,4,4-2 H4 ]beta-hydroxybutyrate-and 2 H2 O were administered to mice in-magnet via subcutaneous catheter. Brain time courses of the substrates and downstream metabolites (and semi-heavy water) were determined via single-voxel DMRS. RESULTS: Subcutaneous catheter placement and substrate administration was readily accomplished with limited personnel training. Substrates reached pseudo-steady state in brain within ∼30-40 min of bolus infusion. Time constants characterizing the appearance in brain of deuterated substrates or semi-heavy water following 2 H2 O administration were similar (∼15 min). CONCLUSION: Administration of deuterated substrates via subcutaneous catheter for in vivo DMRS experiments with mice is robust, requires limited personnel training, and enables substantial dosing. It is suitable for metabolic studies where pseudo-steady state substrate administration/accumulation is sufficient. It is particularly advantageous for serial longitudinal studies over an extended period because it avoids inevitable damage to the tail vein following multiple catheterizations.


Assuntos
Encéfalo , Cauda , Camundongos , Animais , Óxido de Deutério , Deutério , Cauda/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
14.
Magn Reson Med ; 92(6): 2284-2293, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39044608

RESUMO

PURPOSE: The purpose of this study was to determine the effect of acute nicotinamide riboside (NR) supplementation on cerebral nicotinamide adenine dinucleotide (NAD+) levels in the human brain in vivo by means of downfield proton MRS (DF 1H MRS). METHODS: DF 1H MRS was performed on 10 healthy volunteers in a 7.0 T MRI scanner with spectrally selective excitation and spatially selective localization to determine cerebral NAD+ levels on two back-to-back days: once after an overnight fast (baseline) and once 4 h after oral ingestion of nicotinamide riboside (900 mg). Additionally, two more baseline scans were performed following the same paradigm to assess test-retest reliability of the NAD+ levels in the absence of NR. RESULTS: NR supplementation increased mean NAD+ concentration compared to the baseline (0.458 ± 0.053 vs. 0.392 ± 0.058 mM; p < 0.001). The additional two baseline scans demonstrated no differences in mean NAD+ concentrations (0.425 ± 0.118 vs. 0.405 ± 0.082 mM; p = 0.45), and no difference from the first baseline scan (F(2, 16) = 0.907; p = 0.424). CONCLUSION: These preliminary results confirm that acute NR supplementation increases cerebral NAD+ levels in healthy human volunteers and shows the promise of DF 1H MRS utility for robust detection of NAD+ in humans in vivo.


Assuntos
Encéfalo , Suplementos Nutricionais , NAD , Niacinamida , Compostos de Piridínio , Humanos , Niacinamida/análogos & derivados , NAD/metabolismo , Masculino , Compostos de Piridínio/farmacocinética , Adulto , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Reprodutibilidade dos Testes , Adulto Jovem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
15.
Magn Reson Med ; 92(3): 916-925, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38649977

RESUMO

PURPOSE: The interest in applying and modeling dynamic MRS has recently grown. Two-dimensional modeling yields advantages for the precision of metabolite estimation in interrelated MRS data. However, it is unknown whether including all transients simultaneously in a 2D model without averaging (presuming a stable signal) performs similarly to one-dimensional (1D) modeling of the averaged spectrum. Therefore, we systematically investigated the accuracy, precision, and uncertainty estimation of both described model approaches. METHODS: Monte Carlo simulations of synthetic MRS data were used to compare the accuracy and uncertainty estimation of simultaneous 2D multitransient linear-combination modeling (LCM) with 1D-LCM of the average. A total of 2,500 data sets per condition with different noise representations of a 64-transient MRS experiment at six signal-to-noise levels for two separate spin systems (scyllo-inositol and gamma-aminobutyric acid) were analyzed. Additional data sets with different levels of noise correlation were also analyzed. Modeling accuracy was assessed by determining the relative bias of the estimated amplitudes against the ground truth, and modeling precision was determined by SDs and Cramér-Rao lower bounds (CRLBs). RESULTS: Amplitude estimates for 1D- and 2D-LCM agreed well and showed a similar level of bias compared with the ground truth. Estimated CRLBs agreed well between both models and with ground-truth CRLBs. For correlated noise, the estimated CRLBs increased with the correlation strength for the 1D-LCM but remained stable for the 2D-LCM. CONCLUSION: Our results indicate that the model performance of 2D multitransient LCM is similar to averaged 1D-LCM. This validation on a simplified scenario serves as a necessary basis for further applications of 2D modeling.


Assuntos
Algoritmos , Simulação por Computador , Espectroscopia de Ressonância Magnética , Método de Monte Carlo , Espectroscopia de Ressonância Magnética/métodos , Humanos , Reprodutibilidade dos Testes , Modelos Lineares , Sensibilidade e Especificidade , Razão Sinal-Ruído , Ácido gama-Aminobutírico/metabolismo , Modelos Estatísticos
16.
Magn Reson Med ; 92(1): 4-14, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38441257

RESUMO

PURPOSE: To understand how macromolecular content varies in the human brain with age in a large cohort of healthy subjects. METHODS: In-vivo 1H-MR spectra were acquired using ultra-short TE STEAM at 7T in the posterior cingulate cortex. Macromolecular content was studied in 147 datasets from a cohort ranging in age from 19 to 89 y. Three fitting approaches were used to evaluate the macromolecular content: (1) a macromolecular resonances model developed for this study; (2) LCModel-simulated macromolecules; and (3) a combination of measured and LCModel-simulated macromolecules. The effect of age on the macromolecular content was investigated by considering age both as a continuous variable (i.e., linear regressions) and as a categorical variable (i.e., multiple comparisons among sub-groups obtained by stratifying data according to age by decade). RESULTS: While weak age-related effects were observed for macromolecular peaks at ˜0.9 (MM09), ˜1.2 (MM12), and ˜1.4 (MM14) ppm, moderate to strong effects were observed for peaks at ˜1.7 (MM17), and ˜2.0 (MM20) ppm. Significantly higher MM17 and MM20 content started from 30 to 40 y of age, while for MM09, MM12, and MM14, significantly higher content started from 60 to 70 y of age. CONCLUSIONS: Our findings provide insights into age-related differences in macromolecular contents and strengthen the necessity of using age-matched measured macromolecules during quantification.


Assuntos
Envelhecimento , Substâncias Macromoleculares , Humanos , Idoso , Pessoa de Meia-Idade , Adulto , Masculino , Feminino , Idoso de 80 Anos ou mais , Substâncias Macromoleculares/química , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/química
17.
Magn Reson Med ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39444343

RESUMO

PURPOSE: Relaxation correction is crucial for accurately estimating metabolite concentrations measured using in vivo MRS. However, the majority of MRS quantification routines assume that relaxation values remain constant across the lifespan, despite prior evidence of T2 changes with aging for multiple of the major metabolites. Here, we comprehensively investigate correlations between T2 and age in a large, multi-site cohort. METHODS: We recruited approximately 10 male and 10 female participants from each decade of life: 18-29, 30-39, 40-49, 50-59, and 60+ y old (n = 101 total). We collected PRESS data at eight TEs (30, 50, 74, 101, 135, 179, 241, and 350 ms) from voxels placed in white-matter-rich centrum semiovale (CSO) and gray-matter-rich posterior cingulate cortex (PCC). We quantified metabolite amplitudes using Osprey and fit exponential decay curves to estimate T2. RESULTS: Older age was correlated with shorter T2 for tNAA2.0, tCr3.0, tCr3.9, tCho, and tissue water (CSO and PCC), as well as mI and Glx (PCC only); rs = -0.22 to -0.63, all p < 0.05, false discovery rate (FDR)-corrected. These associations largely remained statistically significant when controlling for cortical atrophy. By region, T2 values were longer in the CSO for tNAA2.0, tCr3.9, Glx, and tissue water and longer in the PCC for tCho and mI. T2 did not differ by region for tCr3.0. CONCLUSION: These findings underscore the importance of considering metabolite T2 differences with aging in MRS quantification. We suggest that future 3T work utilize the equations presented here to estimate age-specific T2 values instead of relying on uniform default values.

18.
Magn Reson Med ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365949

RESUMO

PURPOSE: Phosphorus MRS (31P MRS) enables noninvasive assessment of energy metabolism, yet its application is hindered by sensitivity limitations. To overcome this, often high magnetic fields are used, leading to challenges such as spatial B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneity and therefore the need for accurate flip-angle determination in accelerated acquisitions with short TRs. In response to these challenges, we propose a novel short TR and look-up table-based double-angle method for fast 3D 31P B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping (fDAM). METHODS: Our method incorporates 3D weighted stack-of-spiral gradient-echo acquisitions and a frequency-selective pulse to enable efficient B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping based on the phosphocreatine signal at 7 T. Protocols were optimized using simulations and validated through phantom experiments. The method was validated in the human brain using a 31P 1Ch-trasmit/32Ch-receive coil and skeletal muscle using a birdcage 1H/31P volume coil. RESULTS: The results of fDAM were compared with the classical DAM. A good correlation (r = 0.95) was obtained between the two B 1 + $$ {\mathrm{B}}_1^{+} $$ maps. A 3D 31P B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping in the human calf muscle was achieved in about 10:50 min using a birdcage volume coil, with a 20% extended coverage (number of voxels with SNR > 3) relative to that of the classical DAM (24 min). fDAM also enabled the first full-brain coverage 31P 3D B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping in approximately 10:15 min using a 1Ch-transmit/32Ch-receive coil. CONCLUSION: fDAM is an efficient method for 31P 3D B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping, showing promise for future applications in rapid 31P MRSI.

19.
Magn Reson Med ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449296

RESUMO

PURPOSE: To develop a CEST quantification model to map glutamate concentration in the mouse brain at 11.7 T, overcoming the limitations of conventional glutamate-weighted CEST (gluCEST) contrast (magnetization transfer ratio with asymmetric analysis). METHODS: 1H-MRS was used as a gold standard for glutamate quantification to calibrate a CEST-based quantitative pipeline. Joint localized measurements of Z-spectra at B1 = 5 µT and quantitative 1H-MRS were carried out in two voxels of interest in the mouse brain. A six-pool Bloch-McConnell model was found appropriate to fit experimental data. Glutamate exchange rate was estimated in both regions with this dedicated multi-pool fitting model and using glutamate concentration determined by 1H-MRS. RESULTS: Glutamate exchange rate was estimated to be ˜1300 Hz in the mouse brain. Using this calibrated value, maps of glutamate concentration in the mouse brain were obtained by pixel-by-pixel fitting of Z-spectra at B1 = 5 µT. A complementary study of simulations, however, showed that the quantitative model has high sensitivity to noise, and therefore, requires high-SNR acquisitions. Interestingly, fitted [Glu] seemed to be overestimated compared to 1H-MRS measurements, although it was estimated with simulations that the model has no intrinsic fitting bias with our experimental level of noise. The hypothesis of an unknown proton-exchanging pool contributing to gluCEST signal is discussed. CONCLUSION: High-resolution mapping of glutamate in the brain was made possible using the proposed calibrated quantification model of gluCEST data. Further studying of the in vivo molecular contributions to gluCEST signal could improve modeling.

20.
Magn Reson Med ; 91(4): 1694-1706, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38181180

RESUMO

PURPOSE: Water removal is one of the computational bottlenecks in the processing of high-resolution MRSI data. The purpose of this work is to propose an approach to reduce the computing time required for water removal in large MRS data. METHODS: In this work, we describe a singular value decomposition-based approach that uses the partial position-time separability and the time-domain linear predictability of MRSI data to reduce the computational time required for water removal. Our approach arranges MRS signals in a Casorati matrix form, applies low-rank approximations utilizing singular value decomposition, removes residual water from the most prominent left-singular vectors, and finally reconstructs the water-free matrix using the processed left-singular vectors. RESULTS: We have demonstrated the effectiveness of our proposed algorithm for water removal using both simulated and in vivo data. The proposed algorithm encompasses a pip-installable tool ( https://pypi.org/project/CSVD/), available on GitHub ( https://github.com/amirshamaei/CSVD), empowering researchers to use it in future studies. Additionally, to further promote transparency and reproducibility, we provide comprehensive code for result replication. CONCLUSIONS: The findings of this study suggest that the proposed method is a promising alternative to existing water removal methods due to its low processing time and good performance in removing water signals.


Assuntos
Imageamento por Ressonância Magnética , Água , Água/química , Reprodutibilidade dos Testes , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA