Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180253

RESUMO

Marine heatwaves (MHWs) are extreme weather events that have major impacts on the structure and functioning of marine ecosystems worldwide. Due to anthropogenic climate change, the occurrence of MHWs is predicted to increase in future. There is already evidence linking MHWs with reductions in biodiversity and incidence of mass mortality events in coastal ecosystems. However, because MHWs are unpredictable, the quantification of their effects on communities is challenging. Here, we use the Helgoland Roads long-term time series (German Bight, North Sea), one of the richest marine time series in the world, and implement a modified before-after control-impact (BACI) design to evaluate MHW effect on mesozooplankton communities. Mesozooplankton play an essential role in connecting primary producers to higher trophic levels, and any changes in their community structure could have far-reaching impacts on the entire ecosystem. The responses of mesozooplankton community to MHWs in terms of community structure and densities occurred mainly in spring and autumn. Abundances of seven taxa, including some of the most abundant groups (e.g. copepods), were affected either positively or negatively in response to MHWs. In contrast, we observed no clear evidence of an impact of summer and winter MHWs; instead, the density of the most common taxa remained unchanged. Our results highlight the seasonally dependent impacts of MHWs on mesozooplankton communities and the challenges in evaluating those impacts. Long-term monitoring is an important contributor to the quantification of effects of MHWs on natural populations.

2.
Conserv Biol ; : e14292, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752470

RESUMO

To achieve sustainable shark fisheries, it is key to understand not only the biological drivers and environmental consequences of overfishing, but also the social and economic drivers of fisher behavior. The extinction risk of sharks is highest in coastal tropical waters, where small-scale fisheries are most prevalent. Small-scale fisheries provide a critical source of economic and nutritional security to coastal communities, and these fishers are among the most vulnerable social and economic groups. We used Kenya's and Zanzibar's small-scale shark fisheries, which are illustrative of the many data-poor, small-scale shark fisheries worldwide, as case studies to explore the relationship between extinction risk and the economic and nutritional value of sharks. To achieve this, we combined existing data on shark landings, extinction risk, and nutritional value with sales data at 16 key landing sites and information from interviews with 476 fishers. Shark fisheries were an important source of economic and nutritional security, valued at >US$4 million annually and providing enough nutrition for tens of thousands of people. Economically and nutritionally, catches were dominated by threatened species (72.7% and 64.6-89.7%, respectively). The most economically valuable species were large and slow to reproduce (e.g. mobulid rays, wedgefish, and bull, silky, and mako sharks) and therefore more likely to be threatened with extinction. Given the financial incentive and intensive fishing pressure, small-scale fisheries are undoubtedly major contributors to the decline of threatened coastal shark species. In the absence of effective fisheries management and enforcement, we argue that within small-scale fisheries the conditions exist for an economically incentivized feedback loop in which vulnerable fishers are driven to persistently overfish vulnerable and declining shark species. To protect these species from extinction, this feedback loop must be broken.


Conexión entre el riesgo de extinción y el valor nutricional de los tiburones en las pesquerías a pequeña escala Resumen Para lograr la sustentabilidad de las pesquerías de tiburones se deben entender los factores ecológicos y las consecuencias ambientales de la sobrepesca, así como los factores sociales y económicos del comportamiento del pescador. El riesgo de extinción de los tiburones es mucho mayor en las aguas tropicales costeras, en donde son más frecuentes las pesquerías a pequeña escala. Las pesquerías a pequeña escala, que además se encuentran entre los grupos con mayor vulnerabilidad social y económica, proporcionan una fuente importante de seguridad económica y nutricional para las comunidades costeras. Usamos las pesquerías de Kenia y Zanzíbar, las cuales representan muy bien a muchas de las pequeñas pesquerías de tiburones con deficiencia de datos, como estudios de caso para explorar la relación entre el riesgo de extinción y el valor económico y nutricional de los tiburones. Para lograr esto, combinamos los datos ya existentes de desembarques de tiburones, riesgo de extinción y valor nutricional con la información de ventas en 16 sitios clave de desembarque e información de las entrevistas a 476 pescadores. Las pesquerías de tiburones son una fuente importante de seguridad alimentaria y económica, valorada en más de US$4 millones anuales y que proporciona suficiente alimentación para miles de personas. En cuanto a la economía y la alimentación, las capturas estuvieron dominadas por especies amenazadas (72.7% y 64.6­89.7%, respectivamente). Las especies con mayor valor económico eran aquellas de gran tamaño y lenta reproducción, y, por lo tanto, con mayor probabilidad de estar en peligro de extinción. A causa del incentivo económico y la presión intensa de pesca, las pesquerías pequeñas sin duda son uno de los principales contribuyentes a la declinación de especies amenazadas de tiburones en las costas. Ya que no hay una aplicación ni un manejo efectivos de las pesquerías, argumentamos que en las pequeñas pesquerías existen las condiciones para un bucle de retroalimentación con incentivación económica en el que los pescadores vulnerables con frecuencia necesitan sobre pescar las especies de tiburones vulnerables y en declinación. Para proteger a estas especies de la extinción, este bucle de retroalimentación debe romperse.

3.
Environ Res ; 250: 118487, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365055

RESUMO

With the increasing population worldwide more wastewater is created by human activities and discharged into the waterbodies. This is causing the contamination of aquatic bodies, thus disturbing the marine ecosystems. The rising population is also posing a challenge to meet the demands of fresh drinking water in the water-scarce regions of the world, where drinking water is made available to people by desalination process. The fouling of composite membranes remains a major challenge in water desalination. In this innovative study, we present a novel probabilistic approach to analyse and anticipate the predominant fouling mechanisms in the filtration process. Our establishment of a robust theoretical framework hinges upon the utilization of both the geometric law and the Hermia model, elucidating the concept of resistance in series (RIS). By manipulating the transmembrane pressure, we demonstrate effective management of permeate flux rate and overall product quality. Our investigations reveal a decrease in permeate flux in three distinct phases over time, with the final stage marked by a significant reduction due to the accumulation of a denser cake layer. Additionally, an increase in transmembrane pressure leads to a correlative rise in permeate flux, while also exerting negative effects such as membrane ruptures. Our study highlights the minimal immediate impact of the intermediate blocking mechanism (n = 1) on permeate flux, necessitating continuous monitoring for potential long-term effects. Additionally, we note a reduced membrane selectivity across all three fouling types (n = 0, n = 1.5, n = 2). Ultimately, our findings indicate that the membrane undergoes complete fouling with a probability of P = 0.9 in the presence of all three fouling mechanisms. This situation renders the membrane unable to produce water at its previous flow rate, resulting in a significant reduction in the desalination plant's productivity. I have demonstrated that higher pressure values notably correlate with increased permeate flux across all four membrane types. This correlation highlights the significant role of TMP in enhancing the production rate of purified water or desired substances through membrane filtration systems. Our innovative approach opens new perspectives for water desalination management and optimization, providing crucial insights into fouling mechanisms and proposing potential strategies to address associated challenges.


Assuntos
Filtração , Membranas Artificiais , Purificação da Água , Purificação da Água/métodos , Purificação da Água/instrumentação , Filtração/métodos , Filtração/instrumentação , Incrustação Biológica/prevenção & controle
4.
Glob Chang Biol ; 29(18): 5250-5260, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409536

RESUMO

Climate change scenarios suggest that large-scale carbon dioxide removal (CDR) will be required to maintain global warming below 2°C, leading to renewed attention on ocean iron fertilization (OIF). Previous OIF modelling has found that while carbon export increases, nutrient transport to lower latitude ecosystems declines, resulting in a modest impact on atmospheric CO2 . However, the interaction of these CDR responses with ongoing climate change is unknown. Here, we combine global ocean biogeochemistry and ecosystem models to show that, while stimulating carbon sequestration, OIF may amplify climate-induced declines in tropical ocean productivity and ecosystem biomass under a high-emission scenario, with very limited potential atmospheric CO2 drawdown. The 'biogeochemical fingerprint' of climate change, that leads to depletion of upper ocean major nutrients due to upper ocean stratification, is reinforced by OIF due to greater major nutrient consumption. Our simulations show that reductions in upper trophic level animal biomass in tropical regions due to climate change would be exacerbated by OIF within ~20 years, especially in coastal exclusive economic zones (EEZs), with potential implications for fisheries that underpin the livelihoods and economies of coastal communities. Any fertilization-based CDR should therefore consider its interaction with ongoing climate-driven changes and the ensuing ecosystem impacts in national EEZs.


Assuntos
Mudança Climática , Ecossistema , Animais , Biomassa , Ferro , Dióxido de Carbono/análise , Oceanos e Mares , Fertilização
5.
Conserv Biol ; 37(5): e14090, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37246556

RESUMO

To understand the scope and scale of the loss of biodiversity, tools are required that can be applied in a standardized manner to all species globally, spanning realms from land to the open ocean. We used data from the International Union for the Conservation of Nature Red List to provide a synthesis of the conservation status and extinction risk of cetaceans. One in 4 cetacean species (26% of 92 species) was threatened with extinction (i.e., critically endangered, endangered, or vulnerable) and 11% were near threatened. Ten percent of cetacean species were data deficient, and we predicted that 2-3 of these species may also be threatened. The proportion of threatened cetaceans has increased: 15% in 1991, 19% in 2008, and 26% in 2021. The assessed conservation status of 20% of species has worsened from 2008 to 2021, and only 3 moved into categories of lesser threat. Cetacean species with small geographic ranges were more likely to be listed as threatened than those with large ranges, and those that occur in freshwater (100% of species) and coastal (60% of species) habitats were under the greatest threat. Analysis of odontocete species distributions revealed a global hotspot of threatened small cetaceans in Southeast Asia, in an area encompassing the Coral Triangle and extending through nearshore waters of the Bay of Bengal, northern Australia, and Papua New Guinea and into the coastal waters of China. Improved management of fisheries to limit overfishing and reduce bycatch is urgently needed to avoid extinctions or further declines, especially in coastal areas of Asia, Africa, and South America.


Estado en la lista roja y riesgo de extinción de las ballenas, delfines y marsopas del mundo Resumen Para comprender el alcance y la escala de la pérdida de biodiversidad, se necesitan herramientas que puedan aplicarse de forma estandarizada a todas las especies a nivel mundial y que abarquen todos los ámbitos desde la tierra hasta el océano. Utilizamos datos de la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza para proporcionar una síntesis del estado de conservación y el riesgo de extinción de los cetáceos. Una de cada 4 especies de cetáceos (26% de 92 especies) se encuentra amenazada (es decir, en peligro crítico, en peligro o vulnerable) y el 11% de las especies está clasificado como casi amenazada. El 10% de las especies de cetáceos carecía de datos, por lo que predijimos que 2-3 de estas especies también podrían estar amenazadas. La proporción de cetáceos amenazados ha aumentado: 15% en 1991, 19% en 2008 y 26% en 2021. El estado de conservación evaluado del 20% de las especies ha empeorado de 2008 a 2021, pues sólo 3 pasaron a categorías de menor amenaza. Las especies de cetáceos con áreas de distribución geográficas pequeñas tenían más probabilidades de ser catalogadas como amenazadas que aquellas con áreas de distribución extensas, y aquellas que ocurren en hábitats de agua dulce (100% de las especies) y costeros (60% de las especies) eran las que se encontraban bajo mayor amenaza. La superposición de los mapas de distribución de las especies reveló la existencia de puntos calientes de pequeños cetáceos amenazados en el sudeste asiático y en una zona que abarca el Triángulo de Coral y se extiende por las aguas cercanas a la costa de la Bahía de Bengala, el norte de Australia, Papúa Nueva Guinea y las aguas costeras de China. Urge mejorar la gestión de las pesquerías para limitar la sobrepesca y reducir la captura accesoria con el fin de evitar extinciones o mayores descensos, especialmente en las zonas costeras de Asia, África y Sudamérica.


Assuntos
Golfinhos , Toninhas , Animais , Conservação dos Recursos Naturais , Extinção Biológica , Baleias , Pesqueiros , Biodiversidade , Espécies em Perigo de Extinção
6.
Environ Sci Technol ; 57(16): 6455-6464, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058594

RESUMO

Large-scale offshore wind energy developments represent a major player in the energy transition but are likely to have (negative or positive) impacts on marine biodiversity. Wind turbine foundations and sour protection often replace soft sediment with hard substrates, creating artificial reefs for sessile dwellers. Offshore wind farm (OWF) furthermore leads to a decrease in (and even a cessation of) bottom trawling, as this activity is prohibited in many OWFs. The long-term cumulative impacts of these changes on marine biodiversity remain largely unknown. This study integrates such impacts into characterization factors for life cycle assessment based on the North Sea and illustrates its application. Our results suggest that there are no net adverse impacts during OWF operation on benthic communities inhabiting the original sand bottom within OWFs. Artificial reefs could lead to a doubling of species richness and a two-order-of-magnitude increase of species abundance. Seabed occupation will also incur in minor biodiversity losses in the soft sediment. Our results were not conclusive concerning the trawling avoidance benefits. The developed characterization factors quantifying biodiversity-related impacts from OWF operation provide a stepping stone toward a better representation of biodiversity in life cycle assessment.


Assuntos
Biodiversidade , Estágios do Ciclo de Vida , Animais , Mar do Norte , Ecossistema
7.
Environ Res ; 229: 116004, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116673

RESUMO

Anthropogenic-mediated climate change severely affects the oceans. The most common definition of a Marine heatwave (MHW) considers that water temperatures rise above the 90th percentile threshold values, based on the last 30 years' average of temperature records for a particular location, and remains this high for five or more days. The current review addresses the evolution of definitions used, as well as the current understanding of the driving mechanisms of MHWs. The collected information shows that the study of MHW is recent and there is a growing interest among the scientific community on this topic, motivated largely by the impacts that pose to marine ecosystems. Further, a more in-depth analysis was carried out, addressing the impacts of MHW events on marine decapod crustacean species. The investigation of such impacts has been carried out using three main methodological approaches: the analysis of in situ records, observed in 33 studies; simulating MHW events through mesocosm experiments, found in 6 studies; and using computational predictive models, detected in 1 study. From the literature available it has been demonstrated that consequences are serious for these species, from altered expansion ranges to alterations of assemblages' abundances. Still, studies addressing the impacts of these extreme events on the decapod communities are scarce, often only limited to adult life forms of commercially relevant species, neglecting non-commercial ones and meroplanktonic life stages. Despite the severe impacts on the health of ecosystems, repercussions on socioeconomic human activities, like fisheries and aquaculture, are also a reality. Overall, this review aims to raise scientific and public awareness of these marine events, which are projected to increase in intensity and frequency in the coming decades. Therefore, there is a growing need to better understand and predict the mechanisms responsible for these extreme events and the impacts on key species, like decapod crustaceans.


Assuntos
Decápodes , Ecossistema , Humanos , Animais , Oceanos e Mares , Temperatura , Mudança Climática
8.
BMC Public Health ; 23(1): 2436, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057746

RESUMO

BACKGROUND: As a part of the decontamination process after the Fukushima Daiichi Nuclear Power Plant accident of 2011, 1.32 million tonnes of tritium-containing water will be discharged from the power plant into the Pacific Ocean. Although radiobiological impacts of the treated water discharge on the public and the environment were reported to be minimal, Tomioka and Okuma locals expressed unease regarding the long-term recovery of their towns, which are economically dependent on the agricultural, fishery, and tourism sectors. This study presents thoughts, perceptions and concerns of Tomioka and Okuma locals regarding the discharge of FDNPP-treated water containing tritium into the Pacific Ocean to facilitate a more inclusive decision-making process that respects local stakeholder interests. METHODS: Conducted from November to December 2022, surveys were mailed to current residents and evacuees aged 20 years or older registered with the town councils. RESULTS: Out of 1268 included responses, 71.5% were from those > 65 years. 65.6% were unemployed, 76.2% routinely visited hospitals, and 85.5% did not live with children. 61% did not want to return to Okuma/Tomioka. Anxiety about radiation-related health effects (38.7%), consuming food produced in Okuma/Tomioka (48.0%) and genetic effects (45.3%) were low. >50% reported poor physical and mental health. 40% were acceptive, 31.4% were unsure, and 29.7% objected to the discharge plans. Multinomial regression analysis revealed that, compared to acceptive responders, those who objected were more likely to be female, unemployed, and have anxiety about radiation-related genetic effects and poor mental health. Unsure responders were similarly more likely to be female, anxious about radiation-related genetic effects and have poor mental health. CONCLUSION: The poor mental health of the locals, connected to high levels of risk perception and anxiety about the loss of economic opportunities related to the discharge plans, must be addressed. The 30-year discharge process could handicap local industries and hamper post-disaster socioeconomic recovery due to the circulation of false rumours among consumers. These results highlight the need to actively involve residents in the towns' recovery process to address local concerns. The focus should be on the judicious combination of transparent science with the human aspect of recovery and narratives highlighting dialogues between local stakeholders and experts to enable the locals and the general public to make informed decisions about their protection and future.


Assuntos
Acidente Nuclear de Fukushima , Criança , Humanos , Trítio , Centrais Nucleares , Oceano Pacífico , Saúde Mental , Japão
9.
Ecol Lett ; 25(11): 2435-2447, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36197736

RESUMO

Trophic transfer of energy through marine food webs is strongly influenced by prey aggregation and its exploitation by predators. Rapid aggregation of some marine fish and crustacean forage species during wind-driven coastal upwelling has recently been discovered, motivating the hypothesis that predators of these forage species track the upwelling circulation in which prey aggregation occurs. We examine this hypothesis in the central California Current Ecosystem using integrative observations of upwelling dynamics, forage species' aggregation, and blue whale movement. Directional origins of blue whale calls repeatedly tracked upwelling plume circulation when wind-driven upwelling intensified and aggregation of forage species was heightened. Our findings illustrate a resource tracking strategy by which blue whales may maximize energy gain amid ephemeral foraging opportunities. These findings have implications for the ecology and conservation of diverse predators that are sustained by forage populations whose behaviour is responsive to episodic environmental dynamics.


Assuntos
Balaenoptera , Animais , Ecossistema , Vento , Oceanos e Mares , Cadeia Alimentar , Comportamento Predatório
10.
Ecol Appl ; 32(6): e2617, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35368128

RESUMO

Understanding factors controlling primary production is fundamental for the protection, management, and restoration of ecosystems. Tropical seagrass ecosystems are among the most productive ecosystems worldwide, yielding tremendous services for society. Yet they are also among the most impaired from anthropogenic stressors, prompting calls for ecosystem-based restoration approaches. Artificial reefs (ARs) are commonly applied in coastal marine ecosystems to rebuild failing fisheries and have recently gained attention for their potential to promote carbon sequestration. Nutrient hotspots formed via excretion from aggregating fishes have been empirically shown to enhance local primary production around ARs in seagrass systems. Yet, if and how increased local production affects primary production at ecosystem scale remains unclear, and empirical tests are challenging. We used a spatially explicit individual-based simulation model that combined a data-rich single-nutrient primary production model for seagrass and bioenergetics models for fish to test how aggregating fish on ARs affect seagrass primary production at patch and ecosystem scales. Specifically, we tested how the aggregation of fish alters (i) ecosystem seagrass primary production at varying fish densities and levels of ambient nutrient availability and (ii) the spatial distribution of seagrass primary production. Comparing model ecosystems with equivalent nutrient levels, we found that when fish aggregate around ARs, ecosystem-scale primary production is enhanced synergistically. This synergistic increase in production was caused by nonlinear dynamics associated with nutrient uptake and biomass allocation that enhances aboveground primary production more than belowground production. Seagrass production increased near the AR and decreased in areas away from the AR, despite marginal reductions in seagrass biomass at the ecosystem level. Our simulation's findings that ARs can increase ecosystem production provide novel support for ARs in seagrass ecosystems as an effective means to promote (i) fishery restoration (increased primary production can increase energy input to the food web) and (ii) carbon sequestration, via higher rates of primary production. Although our model represents a simplified, closed seagrass system without complex trophic interactions, it nonetheless provides an important first step in quantifying ecosystem-level implications of ARs as a tool for ecological restoration.


Assuntos
Ecossistema , Pesqueiros , Animais , Biomassa , Peixes , Cadeia Alimentar
11.
Bull Environ Contam Toxicol ; 109(2): 239-240, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34424377

RESUMO

In this letter, we formally replied to the comments on our recently published paper "A scientometric analysis of recent literature on arsenic bioaccumulation and biotransformation in marine ecosystems" with evidence and facts.


Assuntos
Arsênio , Poluentes Químicos da Água , Arsênio/metabolismo , Bioacumulação , Biotransformação , Ecossistema , Poluentes Químicos da Água/análise
12.
J Theor Biol ; 517: 110631, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33600827

RESUMO

Size-spectrum models are a recent class of models describing the dynamics of a whole community based on a description of individual organisms. The models are motivated by marine ecosystems where they cover the size range from multicellular plankton to the largest fish. We propose to extend the size-spectrum model with spatial components. The spatial dynamics is governed by a random motion and a directed movement in the direction of increased fitness, which we call 'fitness-taxis'. We use the model to explore whether spatial irregularities of marine communities can occur due to the internal dynamics of predator-prey interactions and spatial movements. This corresponds to a pattern-formation analysis generalized to an entire ecosystem but is not limited to one prey and one predator population. The analyses take the form of Fourier analysis and numerical experiments. Results show that diffusion always stabilizes the equilibrium but fitness-taxis destabilizes it, leading to non-stationary spatially inhomogeneous population densities, which are travelling in size. However, there is a strong asymmetry between fitness-induced destabilizing effects and diffusion-induced stabilizing effects with the latter dominating over the former. These findings reveal that fitness taxis acts as a possible mechanism behind pattern formations in ecosystems with high diversity of organism sizes, which can drive the emergence of spatial heterogeneity even in a spatially homogeneous environment.


Assuntos
Ecossistema , Modelos Biológicos , Animais , Difusão , Cadeia Alimentar , Plâncton , Dinâmica Populacional , Comportamento Predatório
13.
Environ Res ; 201: 111648, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242676

RESUMO

The emerging threat posed by COVID-19 pandemic has strongly modified our lifestyle, making urgent to re-consider the humans-environment relationships and stimulating towards more sustainable choices in our daily behavior. Scientific evidences showed that the onset of new viral pathogens with a high epidemic-pandemic potential is often the result of complex interactions between animals, humans and environment. In this context, the interest of the scientific community has also been attracted towards the potential interactions of SARS-CoV-2 with environmental compartments. Many issues, ranging from the epidemiology and persistence of SARS-CoV-2 in water bodies to the potential implications of lockdown measures on environmental quality status are here reviewed, with a special reference to marine ecosystems. Due to current sanitary emergence, the relevance of pilot studies regarding the interactions between SARS-CoV-2 spread and the direct and indirect environmental impacts of the COVID-19 pandemic, that are still a matter of scientific debate, is underlined.


Assuntos
COVID-19 , Pandemias , Animais , Controle de Doenças Transmissíveis , Ecossistema , Humanos , SARS-CoV-2
14.
Environ Monit Assess ; 193(12): 859, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855014

RESUMO

There is always an adamant need to comprehend and draw the complex challenges of sustainability in order to help organize studies, due to the increasing human-related pressures on coastal zones. Hence, by formulating such a comprehensive framework, it could be possible to anticipate changes and support managerial decisions, as well as the degree of resilience of the region's environment. One of the approaches utilized in littoral or coastal zones is the conceptual framework of drivers, pressure, status, impact, and responses (DPSIR)..Qeshm Island, the largest island in the Persian Gulf, is accounted for being the most vital and strategic areas of the mentioned region. In recent decades, Qeshm has become one of the major cultural, natural, geological, and tourism hubs of the country due to its unique regional characteristics, along with its biodiversity and environmental sensitivity. Thereby, in the present research, a combined approach shall be followed to explore the resilience of the marine environment on the northern coast of Qeshm Island by taking advantage of the socioeconomic criterion. In this respect, the conceptual framework of the DPSIR model is utilized in combination with the structural equation model (SEM-PLS) (or partial least squares), which is one of the nonexperimental techniques, to quantify the results in the best manner possible. On the basis of the fuzzy cognitive map (FCM), the regional economic index bearing the weights of 0.62, 0.62, and 0.5, along with an institutional-managerial and biological index, respectively, denotes a two-way positive correlation, whereas this factor has a two-way, but adverse correlation, relationship with a weight of 0.65 in terms of the sociocultural index. Similarly, there is also a one-way and negative relationship, as to the economic index, with a weight of 0.69 which is in relevance with the physio-chemical index.


Assuntos
Ecossistema , Monitoramento Ambiental , Biodiversidade , Humanos , Oceano Índico
15.
Proc Biol Sci ; 287(1933): 20200889, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32811304

RESUMO

Overexploitation is recognized as one of the main threats to global biodiversity. Here, we report a widespread change in the functional diversity of fisheries catches from the large marine ecosystems (LMEs) of the world over the past 65 years (1950 to 2014). The spatial and temporal trends of functional diversity exploited from the LMEs were calculated using global reconstructed marine fisheries catch data provided by the Sea Around Us initiative (including subsistence, artisanal, recreational, industrial fisheries, and discards) and functional trait data available in FishBase. Our analyses uncovered a substantial increase in the functional richness of both ray-finned fishes (80% of LMEs) and cartilaginous species (sharks and rays) (75% of LMESs), in line with an increase in the taxonomic richness, extracted from these ecosystems. The functional evenness and functional divergence of these catches have also altered substantially over the time span of this study, with considerable geographic variation in the patterns detected. These trends show that global fisheries are increasingly targeting species that play diverse roles within the marine ecosystem and underline the importance of incorporating functional diversity in ecosystem management.


Assuntos
Biodiversidade , Pesqueiros/estatística & dados numéricos , Animais , Organismos Aquáticos , Biomassa , Conservação dos Recursos Naturais , Ecossistema , Peixes , Tubarões
16.
Glob Chang Biol ; 26(11): 6168-6179, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32970390

RESUMO

Earth System Models project that global climate change will reduce ocean net primary production (NPP), upper trophic level biota biomass and potential fisheries catches in the future, especially in the eastern equatorial Pacific. However, projections from Earth System Models are undermined by poorly constrained assumptions regarding the biological cycling of iron, which is the main limiting resource for NPP over large parts of the ocean. In this study, we show that the climate change trends in NPP and the biomass of upper trophic levels are strongly affected by modifying assumptions associated with phytoplankton iron uptake. Using a suite of model experiments, we find 21st century climate change impacts on regional NPP range from -12.3% to +2.4% under a high emissions climate change scenario. This wide range arises from variations in the efficiency of iron retention in the upper ocean in the eastern equatorial Pacific across different scenarios of biological iron uptake, which affect the strength of regional iron limitation. Those scenarios where nitrogen limitation replaced iron limitation showed the largest projected NPP declines, while those where iron limitation was more resilient displayed little future change. All model scenarios have similar skill in reproducing past inter-annual variations in regional ocean NPP, largely due to limited change in the historical period. Ultimately, projections of end of century upper trophic level biomass change are altered by 50%-80% across all plausible scenarios. Overall, we find that uncertainties in the biological iron cycle cascade through open ocean pelagic ecosystems, from plankton to fish, affecting their evolution under climate change. This highlights additional challenges to developing effective conservation and fisheries management policies under climate change.


Assuntos
Mudança Climática , Ecossistema , Animais , Biomassa , Pesqueiros , Ferro
17.
Glob Chang Biol ; 26(4): 2181-2202, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32077217

RESUMO

The deep sea plays a critical role in global climate regulation through uptake and storage of heat and carbon dioxide. However, this regulating service causes warming, acidification and deoxygenation of deep waters, leading to decreased food availability at the seafloor. These changes and their projections are likely to affect productivity, biodiversity and distributions of deep-sea fauna, thereby compromising key ecosystem services. Understanding how climate change can lead to shifts in deep-sea species distributions is critically important in developing management measures. We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold-water coral and commercially important deep-sea fish species under present-day (1951-2000) environmental conditions and to project changes under severe, high emissions future (2081-2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean. Our models projected a decrease of 28%-100% in suitable habitat for cold-water corals and a shift in suitable habitat for deep-sea fishes of 2.0°-9.9° towards higher latitudes. The largest reductions in suitable habitat were projected for the scleractinian coral Lophelia pertusa and the octocoral Paragorgia arborea, with declines of at least 79% and 99% respectively. We projected the expansion of suitable habitat by 2100 only for the fishes Helicolenus dactylopterus and Sebastes mentella (20%-30%), mostly through northern latitudinal range expansion. Our results projected limited climate refugia locations in the North Atlantic by 2100 for scleractinian corals (30%-42% of present-day suitable habitat), even smaller refugia locations for the octocorals Acanella arbuscula and Acanthogorgia armata (6%-14%), and almost no refugia for P. arborea. Our results emphasize the need to understand how anticipated climate change will affect the distribution of deep-sea species including commercially important fishes and foundation species, and highlight the importance of identifying and preserving climate refugia for a range of area-based planning and management tools.

18.
Glob Chang Biol ; 26(11): 6424-6444, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32777119

RESUMO

Anthropogenic climate change is causing our oceans to lose oxygen and become more acidic at an unprecedented rate, threatening marine ecosystems and their associated animals. In deep-sea environments, where conditions have typically changed over geological timescales, the associated animals, adapted to these stable conditions, are expected to be highly vulnerable to any change or direct human impact. Our study coalesces one of the longest deep-sea observational oceanographic time series, reaching back to the 1960s, with a modern visual survey that characterizes almost two vertical kilometers of benthic seamount ecosystems. Based on our new and rigorous analysis of the Line P oceanographic monitoring data, the upper 3,000 m of the Northeast Pacific (NEP) has lost 15% of its oxygen in the last 60 years. Over that time, the oxygen minimum zone (OMZ), ranging between approximately 480 and 1,700 m, has expanded at a rate of 3.0 ± 0.7 m/year (due to deepening at the bottom). Additionally, carbonate saturation horizons above the OMZ have been shoaling at a rate of 1-2 m/year since the 1980s. Based on our visual surveys of four NEP seamounts, these deep-sea features support ecologically important taxa typified by long life spans, slow growth rates, and limited mobility, including habitat-forming cold water corals and sponges, echinoderms, and fish. By examining the changing conditions within the narrow realized bathymetric niches for a subset of vulnerable populations, we resolve chemical trends that are rapid in comparison to the life span of the taxa and detrimental to their survival. If these trends continue as they have over the last three to six decades, they threaten to diminish regional seamount ecosystem diversity and cause local extinctions. This study highlights the importance of mitigating direct human impacts as species continue to suffer environmental changes beyond our immediate control.


Assuntos
Mudança Climática , Ecossistema , Animais , Peixes , Humanos , Concentração de Íons de Hidrogênio , Oceanos e Mares
19.
Proc Natl Acad Sci U S A ; 114(46): 12202-12207, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087943

RESUMO

Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions.


Assuntos
Distribuição Animal , Mudança Climática , Peixes/fisiologia , Modelos Estatísticos , Adaptação Biológica , Animais , Regiões Árticas , Ecossistema , Temperatura
20.
Bull Environ Contam Toxicol ; 104(5): 551-558, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32285138

RESUMO

Arsenic (As) bioaccumulation and biotransformation in marine ecosystems involve a number of fields and disciplines such as Environmental Sciences & Ecology, Marine & Freshwater Biology, and Toxicology. Arsenic research in these areas has been developing rapidly in recent years. It is crucial to keep up with the emerging trends and critical development of the collective knowledge. Therefore, a progressively synthesized network was achieved from 6396 original publications that cited 500 articles obtained from an initial topic search between 2010 and 2019. CiteSpace was used to analyze the progress and emerging trends. Results showed that these publications were divided into 13 different but closely related clusters. A major ongoing trend was identified in Cluster #3 and #5, concerning As and other heavy metals as heterogeneous complexants and assessing their overall impacts on human health. Other new emerging trends include evaluating the As profile in estuarial ecosystems and assessing its bioaccumulation and biotransformation along the food chain. Overall, the scientometric analytics of targeting literature performed in this review has offered a valuable and timely approach to evaluate the new emerging trends, providing researchers with up-to-date and critical information in research areas relevant to the searching topic.


Assuntos
Organismos Aquáticos/metabolismo , Arsênio/metabolismo , Bioacumulação , Metais Pesados/metabolismo , Poluentes Químicos da Água/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Arsênio/análise , Biotransformação , Ecossistema , Cadeia Alimentar , Água Doce/química , Humanos , Metais Pesados/análise , Água do Mar/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA