Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 38, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532494

RESUMO

A novel variant of rabbit haemorrhagic disease virus, designated RHDV2/b/GI.2, was first discovered in France in 2010. Subsequently, RHDV2 rapidly spread to Africa, North America, Australia, and Asia. RHDV2 outbreaks have resulted in significant economic losses in the global rabbit industry and disrupted the balance of natural ecosystems. Our study investigated the seasonal characteristics of RHDV2 outbreaks using seasonal indices. RHDV2 is prone to causing significant outbreaks within domestic and wild rabbit populations during the spring season and is more likely to induce outbreaks within wild rabbit populations during late autumn in the Southern Hemisphere. Furthermore, based on outbreak data for domestic and wild rabbits and environmental variables, our study established two MaxEnt models to explore the relationship between RHDV2 outbreaks and the environmental factors and conducted outbreak risk predictions for RHDV2 in global domestic and wild rabbit populations. Both models demonstrated good predictive performance, with AUC values of 0.960 and 0.974, respectively. Road density, isothermality, and population density were identified as important variables in the outbreak of RHDV2 in domestic rabbits, while road density, normalized difference vegetation index, and mean annual solar radiation were considered key variables in the outbreak of RHDV2 in wild rabbits. The environmental factors associated with RHDV2 outbreaks identified in our study and the outbreak risk prediction maps generated in our study will aid in the formulation of appropriate RHDV2 control measures to reduce the risk of morbidity in domestic and wild rabbits.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Animais , Coelhos , Filogenia , Ecossistema , Infecções por Caliciviridae/veterinária , Medição de Risco
2.
Environ Res ; 263(Pt 1): 120050, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39322057

RESUMO

The Yangtze Finless Porpoise (YFP) is one of the 13 global flagship species identified by the World Wildlife Fund and is classified as "Critically Endangered." It is also the only extant aquatic mammal in the Yangtze River. In this study, 44 sampling points were deployed across the middle and lower reaches of the Yangtze River, with vertical sampling sections established in four key areas. Using environmental DNA (eDNA) and species distribution model(SDM), we explored the spatiotemporal distribution of YFPs and predicted their potential suitable habitats. The results indicate that the YFP has a relatively wide distribution during the flood season but exhibits clustering behavior during the dry season, showing a patchy distribution and a migratory trend from the midstream to downstream of the main channel. Predictions using the MAXENT model reveal varying trends in suitable habitat under different scenarios. Overall, YFP's potential habitat is expected to expand by 2050, but due to rising temperatures, it will contract by 2070. Elevation (dem, 65.4%), human footprint index (hfp, 8.8%), and isothermality (bio3, 8%) are key factors influencing habitat suitability. These findings demonstrate that eDNA is an effective tool for monitoring large aquatic organisms and provide scientific evidence for the conservation of the YFP.

3.
Bull Entomol Res ; : 1-9, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39354873

RESUMO

As global warming increases with the frequency of extreme weather, the distribution of species is inevitably affected. Among them, highly damaging invasive species are of particular concern. Being able to effectively predict the geographic distribution of invasive species and future distribution trends is a key entry point for their control. Opisina arenosella Walker is an invasive species, and its ability to live on the backs of foliage and generate canals to hide adds to the difficulty of control. In this paper, the current and future distributions of O. arenosella under three typical emission scenarios in 2050 and 2090 are projected based on the MaxEnt model combining 19 bioclimatic variables. Filter through the variables to find the four key environment variables: BIO 1, BIO 6, BIO 11 and BIO 4. The results show that O. arenosella is distributed only in the eight provinces of Tibet, Yunnan, Fujian, Guangxi, Taiwan, Guangdong, Hong Kong and Hainan in the southeastern region. Its high suitability area is concentrated in Taiwan and Hainan. In the long run, highly suitable areas will continue to increase in size, while moderately suitable areas and poorly suitable areas will decrease to varying degrees. This paper aims to provide theoretical references for the control of O. arenosella.

4.
Bull Entomol Res ; 114(3): 317-326, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38699862

RESUMO

Trilocha varians is one of the major pests of Ficus spp. Based on 19 bioclimatic variables provided by the Worldclim, our study analysed the suitable distribution areas of T. varians under current and future climate changes (SSP1-2.6, SSP2-4.5, SSP5-8.5) for two periods (the 2050s and 2090s) using the maximum entropy algorithm (MaxEnt) model. Key environmental variables affecting the geographic distribution of T. varians were also identified, and the changes in the area of suitable range under current and future climate changes were compared. The results showed that the key environmental variables affecting the distribution of T. varians were temperature and precipitation, comprising annual mean temperature (bio1), temperature seasonality (standard deviation × 100) (bio4), precipitation of driest month (bio14), and precipitation of driest quarter (bio17). Under the current climatic conditions, the suitable distribution area of T. varians is within the range of 92°13'E-122°08'E, 18°17'N-31°55'N. The current high, medium, and low suitable areas for T. varians predicted by the MaxEnt model are 14.00 × 104, 21.50 × 104, and 71.95 × 104 km2, of which the high suitable areas are mainly distributed in southern Guangdong, southwestern Guangxi, western Taiwan, Hong Kong, and Hainan. Under different future climatic conditions, some of the high, medium, and low suitability zones for T. varians increased and some decreased, but the mass centre did not migrate significantly. The Pearl River Basin is predicted to remain the main distribution area of T. varians.


Assuntos
Distribuição Animal , Mudança Climática , Mariposas , Animais , China , Mariposas/fisiologia
5.
Bull Entomol Res ; 114(4): 524-533, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295445

RESUMO

Changes in the distribution of species due to global climate change have a critically significant impact on the increase in the spread of invasive species. An in-depth study of the distribution patterns of invasive species and the factors influencing them can help to better predict and combat invasive alien species. Rhynchophorus ferrugineus Olivier is an invasive species that primarily harms plants of Trachycarpus H. Wendl. The pest invades trees in three main ways: by laying eggs and incubating them in the crown of the plant, on roots at the surface and at the base of the trunk or petiole. Most of the plants in the genus Trachycarpus are taller, and the damage is concentrated in the middle and upper parts of the plant, making control more difficult. In this paper, we combine 19 bioclimatic variables based on the MaxEnt model to project the current and future distributions of R. ferrugineus under three typical emission scenarios (2.6 W m-2 (SSP1-2.6), 4.5 W m-2 (SSP2-4.5) and 8.5 W m-2 (SSP5-8.5)) in the 2050s and 2090s. Among the 19 bioclimatic variables, five variables were screened out by contribution rates, namely annual mean temperature (BIO 1), precipitation of driest quarter (BIO 17), minimum temperature of coldest month (BIO 6), mean diurnal range (BIO 2) and precipitation of wettest quarter (BIO 16). These five variables are key environmental variables that influence habitat suitability for R. ferrugineus and are representative in reflecting its potential habitat. The results showed that R. ferrugineus is now widely distributed in the southeastern coastal area of China (high suitability zone), concentrating in the provinces of Hainan, Guangdong, Fujian, Guangxi and Taiwan. In the future, the area of high and low suitability zones will increase and the area of medium suitability zones will decrease. The area of low suitability zone will still be in the largest proportion. This study aims to provide a theoretical reference for the future control of R. ferrugineus from the perspective of geographic distribution.


Assuntos
Mudança Climática , Ecossistema , Espécies Introduzidas , China , Animais , Distribuição Animal
6.
Int J Biometeorol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158720

RESUMO

Rice is one of the major food crops, and the study of suitable planting areas for rice plays an important role in improving rice yield and optimizing the production layout. This study used Maximum Entropy (MaxEnt) model to simulate and predict the distribution of suitable rice planting areas in China from 1981 to 2020 by combining the climate, soil, and human activities, analyzed the spatial and temporal changes of suitable rice planting areas in China, and determined the main factors affecting rice planting suitability. The results indicated that the main factors influencing the distribution of suitable planting areas for rice in China were gross domestic product (GDP), population density (Pop), and annual sunshine duration (Sun), with human activities playing a dominant role. The high suitable planting areas of rice were mainly distributed in Hubei, Hunan, Jiangxi, Anhui, Guangdong, southeastern Sichuan and western Guizhou. The total suitable planting areas for rice were 346.00 × 104 km2, 345.66 × 104 km2, 347.01 × 104 km2, and 355.57 × 104 km2 from 1981 to 1990, 1991 to 2000, 2001 to 2010 and 2011 to 2020, respectively. With the passage of time, the area of unsuitable areas for rice gradually decreased, and the area of medium suitable areas increased, with large changes in the area of high- and low-suitable areas. Moreover, due to the transfer of a large number of rural laborers to the cities in recent years, the tension between people and land caused by the population explosion has led to the increasing impact of Pop on rice suitable areas and the relatively weakening of the impact of GDP on rice production interventions. The results can be used to provide scientific evidence for the management of rice cultivation and food production safety, with a view to reducing the impacts of climate change on agricultural production in the context of global climate change.

7.
J Environ Manage ; 353: 120257, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38330843

RESUMO

The typical lake wetlands in the middle and lower reaches of the Yangtze River are important wintering sites of cranes in China. The spatiotemporal evolution of crane populations and their habitats has great value in clarifying the pivotal role of regional lake wetlands in biodiversity conservation. Therefore, 2562 data points of four crane species were selected in this study. The data reflected the distributional position of the cranes over the period 2000-2020. Twelve surrounding environmental factors were selected to investigate the spatiotemporal evolution in the study area by using the MaxEnt model. The Jackknife method was used to identify the main environmental factors affecting the choice of crane habitats. The results indicated that: (1) Developed land in the study area increased by 42,795.81 hm2. The crane populations were mainly distributed in the farmland and mudflat, and their number decreased yearly. (2) From 2000 to 2020, the area of suitable crane habitat experienced an overall decrease. Specifically, the mid-suitable area dwindled by 6234.23 hm2, marking a substantial reduction of 52.05 %. Similarly, the most suitable area saw a decline of 786.41 hm2, representing a noteworthy decrease of 71.09 %. (3) The findings from the analysis of influencing factors revealed a dynamic pattern over the years. Habitat type, water density, and distance to water were the main influencing factors in the study area from 2000 to 2020. This study provides a new perspective on the conservation and structural habitat restoration of crane populations in the middle and lower reaches of the Yangtze River.


Assuntos
Lagos , Áreas Alagadas , Animais , Ecossistema , Biodiversidade , Aves , China , Água
8.
J Environ Manage ; 357: 120841, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581898

RESUMO

Quercus gilva, an evergreen tree species in Quercus section Cyclobalanopsis, is an ecologically and economically valuable species in subtropical regions of East Asia. Predicting the impact of climate change on potential distribution of Q. gilva can provide a scientific basis for the conservation and utilization of its genetic resources, as well as for afforestation. In this study, 74 distribution records of Q. gilva and nine climate variables were obtained after data collection and processing. Current climate data downloaded from WorldClim and future climate data predicted by four future climate scenarios (2040s SSP1-2.6, 2040s SSP5-8.5, 2060s SSP1-2.6, and 2060s SSP5-8.5) mainly based on greenhouse gases emissions of distribution sites were used in MaxEnt model with optimized parameters to predict distribution dynamics of Q. gilva and its response to climate change. The results showed that the predicted current distribution was consistent with natural distribution of Q. gilva, which was mainly located in Hunan, Jiangxi, Zhejiang, Fujian, Guizhou, and Taiwan provinces of China, as well as Japan and Jeju Island of South Korea. Under current climate conditions, precipitation factors played a more significant role than temperature factors on distribution of Q. gilva, and precipitation of driest quarter (BIO17) is the most important restriction factor for its current distribution (contribution rate of 57.35%). Under future climate conditions, mean temperature of driest quarter (BIO9) was the essential climate factor affecting future change in potential distribution of Q. gilva. As the degree of climatic anomaly increased in the future, the total area of predicted distribution of Q. gilva showed a shrinking trend (decreased by 12.24%-45.21%) and Q. gilva would migrate to high altitudes and latitudes. The research results illustrated potential distribution range and suitable climate conditions of Q. gilva, which can provide essential theoretical references for the conservation, development, and utilization of Q. gilva and other related species.


Assuntos
Gases de Efeito Estufa , Quercus , Mudança Climática , China , Taiwan , Ecossistema
9.
Environ Monit Assess ; 196(4): 371, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489120

RESUMO

Crop cultivation suitability plays a vital role in determining the distribution, quality, and production of crop and can be greatly affected by climate change. Therefore, evaluating crop cultivation suitability under climate change and identifying the factors influencing it can optimize crop cultivation layout and improve production and quality. Based on comprehensive datasets including geographical distribution points, climate data, soil characteristics, and topography, our study employed the MaxEnt model to simulate the potential distribution of Pu'er tea (Camellia sinensis var. assamica) cultivation suitability in Yunnan Province from 1961 to 2020. Furthermore, we assessed the consistency between the simulated suitable areas and the actual production of Pu'er tea. The results showed that precipitation of the warmest quarter, precipitation of the driest month, and average temperature in January were the three dominant environmental variables affecting the cultivation distribution of Pu'er tea. The high suitable areas for Pu'er tea cultivation in Yunnan Province were mainly distributed in the western and southern regions, accounting for 13.89% of the total area of Yunnan Province. The medium suitable areas are mainly distributed in the central and western regions of Yunnan Province, accounting for 20.07% of the total area of Yunnan Province. Over the past 60 years, the unsuitable area for Pu'er tea has increased, while the suitable area has shown a trend of migration to the southwest. Changes in precipitation and temperature were found to be the main drivers of the changes in the distribution of suitable areas for Pu'er tea. We also found a mismatch between the cultivation suitability and the actual production of Pu'er tea. Our study provides an accurate assessment and zoning analysis of the suitability of Pu'er tea cultivation in Yunnan Province, which can help optimize the layout of Pu'er tea cultivation and reduce potential climate risks.


Assuntos
Camellia sinensis , Chá , China , Monitoramento Ambiental , Temperatura
10.
Environ Monit Assess ; 196(7): 647, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907768

RESUMO

In this study, the current distribution probability of Ephedra gerardiana (Somalata), a medicinally potent species of the Himalayas, was assessed, and its spatial distribution change was forecasted until the year 2100 under three Shared Socioeconomic Pathways. Here, we used the maximum entropy model (MaxEnt) on 274 spatially filtered occurrence data points accessed from GBIF and other publications, and 19 bioclimatic variables were used as predictors against the probability assessment. The area under the curve, Continuous Boyce Index, True Skill Statistics, and kappa values were used to evaluate and validate the model. It was observed that the SSP5-8.5, a fossil fuel-fed scenario, saw a maximum habitat decline for E. gerardiana driving its niche towards higher altitudes. Nepal Himalayas witnessed a maximum decline in suitable habitat for the species, whereas it gained area in Bhutan. In India, regions of Himachal Pradesh, Uttarakhand, Jammu and Kashmir, and Sikkim saw a maximum negative response to climate change by the year 2100. Mean annual temperature, isothermality, diurnal temperature range, and precipitation seasonality are the most influential variables isolated by the model that contribute in defining the species' habitat. The results provide evidence of the effects of climate change on the distribution of endemic species in the study area under different scenarios of emissions and anthropogenic coupling. Certainly, the area of consideration encompasses several protected areas, which will become more vulnerable to increased variability of climate, and regulating their boundaries might become a necessary step to conserve the regions' biodiversity in the future.


Assuntos
Mudança Climática , Ecossistema , Nepal , Índia , Butão , Ephedra , Monitoramento Ambiental , Probabilidade , Fatores Socioeconômicos , Modelos Teóricos
11.
Am J Primatol ; 85(6): e23493, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37056028

RESUMO

Predicting the spatial distribution of species and suitable areas under global climate change could provide a reference for species conservation and long-term management strategies. Macaca thibetana and Macaca arctoides are two endangered species of Chinese macaques. However, limited information is available on their distribution, and their habitat needs lack proper assessment due to complicated taxonomy and less research attention. In recent years, scholars widely used the maximum entropy (MaxEnt) model to predict the impact of global climate and certain environmental factors on species distribution. Therefore, we used the MaxEnt model to predict the spatiotemporal distribution of both macaque species under six climate change scenarios using occurrence and high-resolution ecological data. We identified climatic factors, elevation, and land cover that shape their distribution range and determined shifts in their habitat range. The results demonstrated that temperature range, annual precipitation, forest land cover, and temperature seasonality, including the precipitation of the driest month are the main factors affecting their distribution. Currently, M. thibetana is mainly concentrated in central, eastern, southern, and southwestern China, and M. arctoides is mainly concentrated in three provinces (Yunnan, Guangxi, and Guangdong) in southern China. The MaxEnt model predicted that the suitable habitat for both species will increase with increased greenhouse emission scenarios. We also found that with the further increase in greenhouse emissions M. thibetana is expected to migrate to western China, and M. arctoides is expected to migrate to western or eastern China. This reinterpretation of the distribution of M. thibetana and M. arctoides in China, and predicted potential suitable habitat and possible migration direction, may provide new insights into the future conservation and management of these two species.


Assuntos
Mudança Climática , Macaca arctoides , Macaca , Animais , China , Ecossistema , Distribuição Animal
12.
Int J Biometeorol ; 67(5): 875-886, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37010576

RESUMO

As an important food crop in China, changes in suitable areas for rice planting are critical to agricultural production. In this study, the maximum entropy model (MaxEnt) was utilized to pick the main climatic factors affecting single-season rice planting distribution and project the potential changes under RCP4.5 and RCP8.5 scenarios. It was clear that rice planting distribution was significantly affected by annual total precipitation, the accumulated temperature during a period in which daily temperature was ≥ 10 °C, the moisture index, total precipitation during April-September, and continuous days during the period of daily temperature ≥ 18 °C, with their contribution being 97.6%. There was a continuous decrease in the area of good and high suitability for rice planting projected from 2021-2040 to 2061-2080, with a respective value ranging from 1.49 × 106 km2 to 0.93 × 106 km2 under the RCP4.5 scenario and from 1.42 × 106 km2 to 0.66 × 106 km2 under RCP8.5 scenarios. In 2081-2100, there was a bit increase in the area of good and high suitability under the RCP4.5 scenario. The most significant increases in good and high suitability were detected in Northeast China, while obvious decreases were demonstrated in the Yangtze River Basin which might be exposed to extreme temperature threat. The spatial potential planting center was characterized by the largest planting area in 25°N-37°N and 98°E-134°E. The north boundary and center of rice cultivation arose to 53.5°N and 37.52°N, respectively. These potential distributions for single-season rice under future climate change can provide a theoretical basis for optimizing rice planting layout, improving cultivation, and adjusting variety and management systems in response to climate change.


Assuntos
Oryza , Estações do Ano , Modelos Teóricos , Mudança Climática , China
13.
J Environ Manage ; 348: 119293, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827082

RESUMO

In the Yellow River Basin (YRB), there exists a rich biodiversity of species that has been shaped by its unique geography, climate, and human activities. However, the high speed of economic development has resulted in the fragmentation and loss of habitats that are crucial for the survival of these species. To address this problem, constructing ecological networks has emerged as a promising approach for biodiversity preservation. In the study, we centered on the YRB and employed bird communities as an indicator species to identify ecological sources by combining bioclimatic variables and land use data with the Maximum Entropy (MaxEnt) and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) models. We generated a resistance surface using various data such as Digital Elevation Model (DEM), the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), nighttime light, road density, railway density, and waterway density. So, we then simulated ecological corridors applying the Minimum Cumulative Resistance (MCR) model and constructed a bird diversity protection network. The results we found suggested that bird hotspots were predominantly clustered upstream and downstream in the YRB. We identified 475 sources covering a total area of 65,088 km2, 681 corridors with a total length of 11,495.05 km. This network served as a critical ecological facility to sustain and protect biodiversity. The bird ecological corridors in the YRB showed that a dense east-west pattern in the central area, with a short length in the west and east and a long length in the central area. Although the central region lacked ecological sources, the east and west were still connected as a tight whole. Two scenarios showed adding ecological stepping stones had a better optimization effect than enhancing ecological connectivity.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Humanos , Biodiversidade , China , Aves
14.
J Environ Manage ; 345: 118934, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690252

RESUMO

Soybean is an important source of oil and vegetable protein and plays a key role in agricultural production and economy. A suitability evaluation of soybean cultivation is important for identifying potential soybean planting areas. Based on the raster data of soybean harvest ratio (FSHA) and climate-soil-topography-socio-economy environmental factors, we used MaxEnt to simulate the soybean planting suitability and potential distribution in China and the future trends of soybean cultivation under climate change. Three shared socio-economic paths (SSPs) that set up in the future climate section were considered, including SSP126 (sustainable path), SSP245 (intermediate path), and SSP585 (fossil fuel dominated development path). The result shows that the suitability of soybean cultivation was primarily influenced by elevation, precipitation of warmest quarter, capacity of the clay fraction, slope, portion of primary industry, topsoil gravel content, mean diurnal temperature range and accumulated temperature ≥10 °C. High-suitability and moderate-suitability area are respectively 26.51 Mha and 41.93 Mha in China. High-suitability areas for soybean are mainly concentrated in the Northeast Plain, the North China Plain and the northern parts of the middle and lower Yangtze River plain. There were many provinces with high soybean planting potential but low development degrees, including Hebei, Henan, Shandong, Tianjin, Jilin, Liaoning, Jiangsu, Hubei and Shaanxi. From 2021 to 2060, the total area highly and moderately suitable for soybean cultivation is projected to increase first and then decrease under both SSP126 and SSP245 scenarios. However, it shows a continued upward trend under SSP585, the rising part accounting for more than 10% in the base of historical data. Specifically, under SSP585, the suitability grade in most parts of Northeast China (eastern Inner Mongolia, northern Heilongjiang and western Jilin and Liaoning) will have a general promotion, opposite to the result under SSP126. Moreover, parts of southwest China (Yunnan, Chongqing, northern Guizhou and eastern Sichuan) may be more suitable for soybean cultivation in both scenarios. This study provides a practical reference for current and future soybean planting layout and relative countermeasures.


Assuntos
Mudança Climática , Glycine max , China , Solo , Agricultura
15.
Environ Monit Assess ; 195(12): 1479, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966553

RESUMO

Pinellia ternata, a traditional Chinese medicine, is well-renowned for its effectiveness in treating sickness such as coughs with excessive phlegm, vomiting, and nausea. The nucleoside components of P. ternata have been shown to have antitumor activity. Identifying potential growth areas of high-quality P. ternata based on the content of five nucleoside components and the identification of climatic features suitable for the growth of P. ternata will help to conserve P. ternata resources with targeted bioactive compounds. Using high-performance liquid chromatography (HPLC), we determined five nucleoside components, uridine, guanosine, adenosine, inosine, and thymidine, at 27 sampling points of P. ternata collected from 21 municipalities of 11 provinces in China. We used ecological niche modeling to identify the major environmental factors associated with the high metabolite content of P. ternata, including precipitation of the warmest quarter, annual mean temperature, annual precipitation, and isothermality. Areas with high suitability for the five nucleosides were found in Hebei, Shandong, Shanxi, Gansu, Sichuan, Guizhou, and Hubei Provinces. Under the RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, the areas with a suitable distribution decreased and some areas with high suitability became areas with low suitability. Overall, our findings advance our knowledge of the ecological impacts of climate change and provide a valuable reference for conserving and sustainably developing high-quality P. ternata resources in the future.


Assuntos
Nucleosídeos , Pinellia , Monitoramento Ambiental , Ecossistema , China
16.
Environ Monit Assess ; 195(12): 1427, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938459

RESUMO

The shrub encroachment caused by Caragana species (mainly C. microphylla, C. korshinskii, C. tibetica, C. stenophylla, and C. pygmaea) in the north temperate zone has significant impacts on ecosystems. Understanding the distribution of Caragana species' responses to climate change is increasingly relevant to the dynamic of shrub encroachment. In this study, we gathered 1124 geographical distribution records for 5 Caragana species. Through principal component analysis and Pearson correlation analysis, 11 environmental variables were identified. We employed the maximum entropy (MaxEnt) model and utilized the current and future climate dataset from 2041 to 2060 based on two extreme climate scenarios (RCP2.6 and RCP8.5) and atmospheric circulation models (BCC_CSM1.1 and IPSLCM5A-LR) to assess the potential distribution patterns and dynamic change with global warming. The results showed the following: (1) Currently, the five Caragana species are mainly distributed in the central and western parts of the Inner Mongolia Autonomous Region, Mongolia, and the southern parts of Russia. (2) In the future, the habitable zone of C. microphylla and C. korshinskii will expand gradually, while the distribution probability of C. stenophylla, C. tibetica, and C. pygmaea will shrink significantly in 60-80% of the area, and the habitable area will fluctuate sharply. (3) The range of the five species of Caragana expansion area is projected to be 1229.43×106 km2-1412.32×106 km2, with the suitable habitats expected to extend northward in the future, primarily concentrated in central Mongolia and around Lake Baikal in Russia. This research provides guidance for protecting grassland resources and ensuring sustainable development under shrub encroachment.


Assuntos
Caragana , Ecossistema , Monitoramento Ambiental , Simulação por Computador , China
17.
BMC Public Health ; 22(1): 2315, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496362

RESUMO

BACKGROUND: Echinococcosis is a global enzootic disease influenced by different biological and environmental factors and causes a heavy financial burden on sick families and governments. Currently, government subsidies for the treatment of patients with echinococcosis are only a fixed number despite patients' finical income or cost of treatment, and health authorities are demanded to supply an annual summary of only endemic data. The risk to people in urban areas or non-endemic is increasing with climate, landscape, and lifestyle changes. METHODS: We conducted retrospective descriptive research on inpatients with human echinococcosis (HE) in Lanzhou hospitals and analyzed the healthcare expenditure on inpatient treatment and examined the financial inequalities relating to different levels of gross domestic product. The livestock losses were also estimated by infection ratio. The occurrence records of Echinococcus spp. composed of hospitalized patients and dogs infected in the Gansu province were collected for Ecological niche modeling (ENM) to estimate the current suitable spatial distribution for the parasite in Gansu province. Then, we imported the resulting current niche model into future global Shared Socioeconomic Pathways scenarios for estimation of future suitable habitat areas. RESULTS: Between 2000 to 2020, 625 hospitalized HE patients (51% men and 49% women) were identified, and 48.32 ± 15.62 years old. The average cost of hospitalization expenses per case of HE in Gansu Province was ï¿¥24,370.2 with an increasing trend during the study period and was negative with different counties' corresponding gross domestic product (GDP). The trend of livestock losses was similar to the average cost of hospitalization expenses from 2015 to 2017. The three factors with the strongest correlation to echinococcosis infection probability were (1) global land cover (GLC, 56.6%), (2) annual precipitation (Bio12, 21.2%), and (3) mean temperature of the Wettest Quarter (Bio12, 8.5% of variations). We obtained a robust model that provides detail on the distribution of suitable areas for Echinococcus spp. including areas that have not been reported for the parasite. An increasing tendency was observed in the highly suitable areas of Echinococcus spp. indicating that environmental changes would affect the distributions. CONCLUSION: This study may help in the development of policies for at-risk populations in geographically defined areas and monitor improvements in HE control strategies by allowing targeted allocation of resources, including spatial analyses of expenditure and the identification of non-endemic areas or risk for these parasites, and a better comprehension of the role of the environment in clarifying the transmission dynamics of Echinococcus spp. Raising healthcare workers' and travelers' disease awareness and preventive health habits is an urgent agenda. Due to unpredictable future land cover types, prediction of the future with only climatic variables involved needs to be treated cautiously.


Assuntos
Equinococose , Echinococcus , Masculino , Humanos , Feminino , Cães , Animais , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Equinococose/epidemiologia , Equinococose/parasitologia , Análise Espacial , Fatores de Risco , China/epidemiologia
18.
Environ Monit Assess ; 194(8): 552, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778652

RESUMO

In southern Iran, Sirik Estuary hosts the only two-species (Rhizophora mucronata and Avicennia marina) mangrove forest in the northwesternmost edge of the Indian Ocean mangrove distribution. Aiming to protect its forest reserve and compensate for inevitable losses, this study utilized habitat suitability modeling (the Maxent model) to identify suitable afforestation zones for each species, independently. The model was calibrated using the location of successfully established mangrove saplings as presence points and an array of physical and sediment physio-chemical layers as predictive variables. The model yielded an acceptable training AUC value of 0.963 for A.marina and 0.982 for R.mucronata. Moreover, physical variables had the highest contribution to predicting suitable habitats with different levels of importance for each species. The majority of A.marina suitable habitats were distributed along the in-estuary creek banks, creating mangrove-lined waterways while the R.mucronata suitable habitats were mostly distributed at the base of the main water creeks in the seaward reaches of the estuary. According to the Mann-Whitney U test results, there was a statistically significant spatial niche segregation (z = - 12.14, p = 0.000, sig ≤ .05, 2-tailed) between the species' suitable habitats. The results showed that white mangroves tend to create mangrove-line structures along the water creeks penetrating inside the estuary while red mangroves mostly prefer the seaward side of the existing mangrove patches which are in danger of sea level rise.


Assuntos
Fabaceae , Rhizophoraceae , Monitoramento Ambiental , Estuários , Florestas , Água
19.
Environ Monit Assess ; 194(3): 169, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35146574

RESUMO

Identifying the consequences of global warming on the potential distribution of plant taxa with high species diversity or a high proportion of endemic species is one of the critical steps in conservation biology. Here, present and future spatial distribution patterns of 20 Allium endemic species were predicted in Iran. In this regard, the maximum entropy model (MaxEnt) and seven environmental factors were applied. In addition, optimistic (RCP2.6) and pessimistic (RCP8.5) scenarios of 2050 and 2080 were also considered to predict the future spatial distributions. The results showed that annual mean temperature (BIO1), temperature annual range (P5-P6) (BIO7), soil organic carbon content, annual precipitation (BIO12), and depth of soil were the most important environmental variables affecting the distributions of the studied taxa. In total, the model predictions under the future scenarios represented that the suitable habitats for all Allium species endemic to Zagros except for A. saralicum and A. esfahanicum are most probably increased. In contrast, the suitable habitats for all species in Azerbaijan Plateau, Kopet Dagh-Khorassan region, and Alborz except for A. derderianum are most likely decreased under the future climate conditions. The present study indicates that the habitats of Alborz, Azarbaijan, and Kopet Dagh-Khorassan will be probably very fragile and vulnerable to climate change and most species will respond strongly negatively under applied scenarios, while Zagros species occupy new habitats by expanding their distributions. Therefore, determining conservation strategies for the species in these regions seems to be very important and high priority for decision makers.


Assuntos
Allium , Mudança Climática , Carbono , Ecossistema , Monitoramento Ambiental , Irã (Geográfico) , Solo
20.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1196-1204, 2022 Mar.
Artigo em Zh | MEDLINE | ID: mdl-35343145

RESUMO

Chuanxiong Rhizoma is a traditional Chinese medicinal material mainly produced in Sichuan and Chongqing of China. In recent years, the cadmium content in Chuanxiong Rhizoma produced in most of the genuine producing areas has exceeded the standard, which makes Chuanxiong Rhizoma difficult to be exported. To solve the problem of excessive cadmium content in soil, this study employed the MaxEnt model to simulate the potential geographic distribution of Ligusticum chuanxiong and evaluate important environmental factors, and re-plan its ecologically suitable areas based on the mineral distribution characteristics and soil cadmium pollution status. The results showed that the places suitable for L. chuanxiong growing covered an area of 335 523.69 km~2, mainly in central and eastern Sichuan, southern Shaanxi and most parts of Chongqing. Among them, the highly suitable areas of L. chuanxiong were mainly concentrated in Chengdu, Ya'an, Deyang, and Mianyang. Solar radiation, annual precipitation, and annual range of temperature were evaluated as important variables affecting the distribution of L. chuanxiong, with the contribution rates of 62.3%, 13.3%, and 6.8%, respectively. In addition, Qionglai county, Chongqing county, Mianyang city(Youxian district and Fucheng district), Qingchuan county, and Xinjin county were classified into the first-class ecologically suitable zone, covering a total area of 2 768.87 km~2. The se-cond-class ecologically suitable zone was even wider, involving such counties as Tongjiang county, Renshou county, Jianyang county, and Nanjiang county, and the total area reached 43 616.92 km~2. The re-planning of the ecologically suitable areas for L. chuanxiong has provided strong data support for the cultivation and resource development of L. chuanxiong and also new ideas for solving the problem of excessive cadmium content in L. chuanxiong.


Assuntos
Ligusticum , Cádmio/toxicidade , Poluição Ambiental , Rizoma , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA