RESUMO
Biological membranes are highly complex supramolecular assemblies, which play central roles in biology. However, their complexity makes them challenging to study their nanoscale structures. To overcome this challenge, model membranes assembled using reduced sets of membrane-associated biomolecules have been found to be both excellent and tractable proxies for biological membranes. Due to their relative simplicity, they have been studied using a range of biophysical characterization techniques. In this review article, we will briefly detail the use of fluorescence and electron microscopies, and X-ray and neutron scattering techniques used over the past few decades to study the nanostructure of biological membranes.
Assuntos
Microscopia , Nêutrons , Biofísica , Membrana Celular , LipídeosRESUMO
The rapid increase and spread of Gram-negative bacteria resistant to many or all existing treatments threaten a return to the preantibiotic era. The presence of bacterial polysaccharides that impede the penetration of many antimicrobials and protect them from the innate immune system contributes to resistance and pathogenicity. No currently approved antibiotics target the polysaccharide regions of microbes. Here, describe monolaurin-based niosomes, the first lipid nanoparticles that can eliminate bacterial polysaccharides from hypervirulent Klebsiella pneumoniae, are described. Their combination with polymyxin B shows no cytotoxicity in vitro and is highly effective in combating K. pneumoniae infection in vivo. Comprehensive mechanistic studies have revealed that antimicrobial activity proceeds via a multimodal mechanism. Initially, lipid nanoparticles disrupt polysaccharides, then outer and inner membranes are destabilized and destroyed by polymyxin B, resulting in synergistic cell lysis. This novel lipidic nanoparticle system shows tremendous promise as a highly effective antimicrobial treatment targeting multidrug-resistant Gram-negative pathogens.
Assuntos
Nanopartículas , Polimixina B , Polimixina B/farmacologia , Lipossomos/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Klebsiella pneumoniae , Polissacarídeos Bacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana MúltiplaRESUMO
The high complexity of biological membranes has driven the development and application of a wide range of model membrane systems. Among these models, liposomes are extensively used because of their versatility in mimicking cellular membranes with a wide range of lipid compositions. However, the accurate quantification of lipid components, such as sterols, within these models remains a critical requirement for validation, data interpretation, and comparison. Here, we present a reliable and sensitive colorimetric assay using the Zak color reaction, which we have specifically adapted for the quantification of sterols at the micro-scale level. The assay was evaluated using cholesterol, ergosterol, and sitosterol standards, reflecting the diversity of sterol species across organisms. The reaction mechanism involves the dehydration of sterols to form carbonium ions, which are oxidized to form various enylic carbonium ions with specific absorption peaks. Due to the different chemical structures of cholesterol, ergosterol, and sitosterol, the resulting spectra show that the colored reaction products are formed in different proportions. The stability and interconversion of these species over time were analyzed. Cholesterol and sitosterol showed a clear peak at 555 nm, while ergosterol had prominent peaks at shorter wavelengths. Sterol assays on liposomal preparations showed accurate sterol incorporation with minimal loss during processing steps. These results demonstrate that this assay provides a robust and accurate measurement of sterol content in large unilamellar vesicles, making it a valuable tool for liposomal studies.
RESUMO
The presented studies were aimed at determining the interactions in model membranes (Langmuir monolayers) created of phospholipids (PL) isolated from Legionella gormanii bacteria cultured with (PL + choline) or without (PL - choline) choline and to describe the impact of an antimicrobial peptide, human cathelicidin LL-37, on PL's monolayer behavior. The addition of choline to the growth medium influenced the mutual proportions of phospholipids extracted from L. gormanii. Four classes of phospholipids-phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), cardiolipin (CL), and their mixtures-were used to register compression isotherms with or without the LL-37 peptide in the subphase. Based on them the excess area (Ae), excess (ΔGe), and total (ΔGm) Gibbs energy of mixing were determined. The thermodynamic analyses revealed that the PL - choline monolayer showed greater repulsive forces between molecules in comparison to the ideal system, while the PL + choline monolayer was characterized by greater attraction. The LL-37 peptide affected the strength of interactions between phospholipids' molecules and reduced the monolayers stability. Accordingly, the changes in interactions in the model membranes allowed us to determine the difference in their susceptibility to the LL-37 peptide depending on the choline supplementation of bacterial culture.
Assuntos
Legionella , Fosfolipídeos , Termodinâmica , Legionella/efeitos dos fármacos , Fosfolipídeos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/química , Colina/química , Colina/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Catelicidinas , Fosfatidiletanolaminas/química , Humanos , BiomiméticaRESUMO
We have studied the effect of relative composition of γ-Oryzanol (γ-Or) on the liquid expanded-liquid condensed phase coexistence region in the mixed Langmuir monolayer of γ-Or and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) molecules at air-water interface. The surface manometry studies at a fixed temperature show that the mixture of γ-Or and DPPC forms a stable monolayer at air-water interface. As the relative composition of γ-Or increases the range of area per molecule over which the coexistence of liquid expanded (LE)-liquid condensed (LC) phases exists reduces. Although the LE-LC phase coexistence corresponds to the first-order phase transition, the slope of the surface pressure-area per molecule isotherm is non-zero. Earlier studies have attributed the non-zero slope in LE-LC phase coexistence region to the influence of the strain between the ordered LC phase and disordered LE phase. The effect of strain on the coexistence of LE-LC phases can be studied in terms of molecular density-strain coupling. Our analysis of the liquid condensed-liquid expanded coexistence region in the isotherms of mixed monolayers of DPPC and γ-Or shows that with the increase in the mole fraction of sterol in the mixed monolayer the molecular lateral density-strain coupling increases. However, at 0.6 mole fraction of γ-Or in the mixed monolayer the coupling decreases. This is corroborated by the observation of minimum Gibb's free energy of the mixed monolayer at this relative composition of γ-Or indicating better packing of molecules.
Assuntos
Fenilpropionatos , Glicerilfosforilcolina , Esteróis , Água , 1,2-Dipalmitoilfosfatidilcolina , Propriedades de SuperfícieRESUMO
In this work the cosmetic preservative based on a Ribes Nigrum (blackcurrant) plant extract (PhytoCide Black Currant Powder abbr. BCE) was investigated to evaluate its antibacterial effect and to gain an insight into its mechanism of action. The influence of this commercially available formulation on model Escherichia coli and Staphylococcus aureus lipid membranes was studied to analyze its interactions with membrane lipids at a molecular level. The mixed lipid monolayers and one component bacteria lipid films were used to investigate the effect of BCE on condensation and morphology of model systems and to study the ability of BCE components to penetrate into the lipid environment. The in vitro tests were also done on different bacteria species (E. coli, Enterococcus faecalis, S. aureus, Salmonella enterica, Pseudomonas aeruginosa) to compare antimicrobial potency of the studied formulation. As evidenced the in vitro studies BCE formulation exerts very similar antibacterial activity against E. coli and S. aureus. Moreover, based on the collected data it is impossible to indicate which bacteria: Gram-positive or Gram-negative are more susceptible to this formulation. Model membrane experiments evidenced that the studied preservative affects organization of both E. coli and S. aureus model system by decreasing their condensation and altering their morphology. BCE components are able to penetrate into the lipid systems. However, all these effects depend on the lipid composition and monolayer organization. The collected results were analyzed from the point of view of the mechanism of action of blackcurrant extract and the factors, which may determine the activity of this formulation.
Assuntos
Extratos Vegetais , Ribes , Extratos Vegetais/farmacologia , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Lipídeos , Testes de Sensibilidade MicrobianaRESUMO
Unilamellar vesicles of the biologically relevant lipids phosphatidic acid (PA) and phosphatidylserine (PS) with fully saturated (DM-) or partly unsaturated (PO-) acyl side chains were exposed to Ca, Mn and Mg in single metal additions; in equimolar mixtures or by sequential additions of one metal at a time. Laurdan generalized polarization measured the membrane fluidity, while dynamic light scattering reported liposome size changes complemented by zeta potential. All metals induced membrane rigidity and increased liposome sizes across all systems. Mn had the strongest effect overall, but Mg was comparable for DMPS. Lipid side chain architecture was important as GP values for binary mixtures were higher than expected from the sum of values for single additions added to POPS but smaller for DMPS. Sequential additions were predominantly different for Ca:Mg mixtures. Mn induced the strongest increase of liposome size in saturated lipids whereas Ca effects dominated unsaturated matrices. Binary additions induced larger sizes than the sum of single additions for POPS, but much lower changes in DMPA. The order of addition was relevant for PS systems. Thus, lipid structure determines metal effects, but their impact is modulated by other ions. Thus, metal effects may differ with the local lipid architecture and metal concentrations within cells.
Assuntos
Cálcio , Lipossomos , Lipossomos/química , Cálcio/farmacologia , Magnésio/farmacologia , Manganês/farmacologia , Fluidez de Membrana , Cálcio da Dieta/farmacologia , Lipídeos/químicaRESUMO
The behavior of four drugs from the family of nucleoside analog reverse-transcriptase inhibitors (zalcitabine, stavudine, didanosine, and apricitabine) in a membrane environment was traced using molecular dynamics simulations. The simulation models included bilayers and monolayers composed of POPC and POPG phospholipids. It was demonstrated that the drugs have a higher affinity towards POPG membranes than POPC membranes due to attractive long-range electrostatic interactions. The results obtained for monolayers were consistent with those obtained for bilayers. The drugs accumulated in the phospholipid polar headgroup region. Two adsorption modes were distinguished. They differed in the degree of penetration of the hydrophilic headgroup region. Hydrogen bonds between drug molecules and phospholipid heads were responsible for adsorption. It was shown that apricitabine penetrated the hydrophilic part of the POPC and POPG membranes more effectively than the other drugs. Van der Waals interactions between S atoms and lipids were responsible for this.
Assuntos
Simulação de Dinâmica Molecular , Inibidores da Transcriptase Reversa , Estavudina , Fosfolipídeos , RNA Polimerases Dirigidas por DNARESUMO
Epidermal omega-O-acylceramides (ω-O-acylCers) are essential components of a competent skin barrier. These unusual sphingolipids with ultralong N-acyl chains contain linoleic acid esterified to the terminal hydroxyl of the N-acyl, the formation of which requires the transacylase activity of patatin-like phospholipase domain containing 1 (PNPLA1). In ichthyosis with dysfunctional PNPLA1, ω-O-acylCer levels are significantly decreased, and ω-hydroxylated Cers (ω-OHCers) accumulate. Here, we explore the role of the linoleate moiety in ω-O-acylCers in the assembly of the skin lipid barrier. Ultrastructural studies of skin samples from neonatal Pnpla1+/+ and Pnpla1-/- mice showed that the linoleate moiety in ω-O-acylCers is essential for lamellar pairing in lamellar bodies, as well as for stratum corneum lipid assembly into the long periodicity lamellar phase. To further study the molecular details of ω-O-acylCer deficiency on skin barrier lipid assembly, we built in vitro lipid models composed of major stratum corneum lipid subclasses containing either ω-O-acylCer (healthy skin model), ω-OHCer (Pnpla1-/- model), or combination of the two. X-ray diffraction, infrared spectroscopy, and permeability studies indicated that ω-OHCers could not substitute for ω-O-acylCers, although in favorable conditions, they form a medium lamellar phase with a 10.8 nm-repeat distance and permeability barrier properties similar to long periodicity lamellar phase. In the absence of ω-O-acylCers, skin lipids were prone to separation into two phases with diminished barrier properties. The models combining ω-OHCers with ω-O-acylCers indicated that accumulation of ω-OHCers does not prevent ω-O-acylCer-driven lamellar stacking. These data suggest that ω-O-acylCer supplementation may be a viable therapeutic option in patients with PNPLA1 deficiency.
Assuntos
Ceramidas , Pele , Aciltransferases , Animais , Ceramidas/química , Epiderme , Ictiose , Ácido Linoleico , Lipase , CamundongosRESUMO
The outer membrane (OM) of gram-negative bacteria is highly asymmetric. The outer leaflet comprises lipopolysaccharides (LPS) and the inner leaflet phospholipids. Here, it is shown that the outer membrane lipid bilayer (OMLB) of Escherichia coli can be reconstructed as a droplet interface bilayer (DIB), which separates two aqueous droplets in oil. The trimeric porin OmpF is inserted into the model OMLB and the translocation of the bacteriocin colicin E9 (colE9) through it is monitored. By contrast with LPS-free bilayers, it is found that colE9 made multiple failed attempts to engage with OmpF in an OMLB before successful translocation occurred. In addition, the observed rate for the second step of colE9 translocation is 3-times smaller than that in LPS-free bilayers, and further, the colE9 dissociates when the membrane potential is reversed. The findings demonstrate the utility of the DIB approach for constructing model OMLBs from physiologically realistic lipids and that the properties of the model OMLBs differ from those of a simple lipid bilayer. The model OMLB offers a credible platform for screening the properties of antibiotics.
Assuntos
Colicinas , Proteínas de Escherichia coli , Proteínas da Membrana Bacteriana Externa/metabolismo , Colicinas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Bicamadas Lipídicas , Lipopolissacarídeos , PorinasRESUMO
Venom mixtures from insects, reptiles, and mollusks have long been a source of bioactive peptides which often have alternative uses as therapeutics. While these molecules act in numerous capacities, there have been many venom components that act on the target cells through membrane disruptive mechanisms. These peptides have long been of interest as potential antimicrobial peptide platforms, but the inherent cytotoxicity of venom peptides often results in poor therapeutic potential. Despite this, efforts are ongoing to identify and characterize venom peptide which exhibit high antimicrobial activity with low cytotoxicity and modify these to further enhance the efficacy while reducing toxicity. One example is ponericin L1 from Neoponera goeldii which has been demonstrated to have good antimicrobial activity and low in vitro cytotoxicity. The L1 sequence was modified by uniformly replacing the native hydrophobic residues with either Leu, Ile, Phe, Ala, or Val. Spectroscopic and microbiological approaches were employed to investigate how the amino acid sequence changes impacted membrane interaction, secondary structure, and antimicrobial efficacy. The L1 derivatives showed varying degrees of bilayer interaction, in some cases driven by bilayer composition. Several of the variants exhibited enhanced antimicrobial activity compared to the parent strain, while others lost all activity. Interestingly, the variant containing Val lost all antimicrobial activity and ability to interact with bilayers. Taken together the results indicate that peptide secondary structure, amino acid composition, and hydrophobicity all play a role in peptide activity, although this is a delicate balance that can result in non-specific binding or complete loss of activity if specific amino acids are incorporated.
Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peçonhas , Aminoácidos , Peptídeos Antimicrobianos , Relação Estrutura-Atividade , Interações Hidrofóbicas e Hidrofílicas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologiaRESUMO
Host defense peptides are found primarily as natural antimicrobial agents among all lifeforms. These peptides and their synthetic derivatives have been extensively studied for their potential use as therapeutic agents. The most accepted mechanism of action of these peptides is related to a nonspecific mechanism associated with their interaction with the negatively charged groups present in membranes, inducing bilayer destabilization and cell death through several routes. Among the most recently reported peptides, LTX-315 has emerged as an important oncolytic peptide that is currently in several clinical trials against different cancer types. However, there is a lack of biophysical studies regarding LTX-315 and its interaction with membranes. This research focuses primarily on the understanding of the molecular bases of LTX-315's interaction with eukaryotic lipids, based on two artificial systems representative of non-tumoral and tumoral membranes. Additionally, the interaction with individual lipids was studied by differential scanning calorimetry and Fourier-transformed infrared spectroscopy. The results showed a strong interaction of LTX-315 with the negatively charged phosphatidylserine. The results are important for understanding and facilitating the design and development of improved peptides with anticancer activity.
Assuntos
Anti-Infecciosos , Neoplasias , Humanos , Membranas Artificiais , Peptídeos Catiônicos Antimicrobianos , Neoplasias/tratamento farmacológico , Lipídeos , Bicamadas Lipídicas/químicaRESUMO
Bicelles are disk-shaped models of cellular membranes used to study lipid-protein interactions, as well as for structural and functional studies on transmembrane proteins. One challenge for the incorporation of transmembrane proteins in bicelles is the limited range of detergent and lipid combinations available for the successful reconstitution of proteins in model membranes. This is important, as the function and stability of transmembrane proteins are very closely linked to the detergents used for their purification and to the lipids that the proteins are embedded in. Here, we expand the toolkit of lipid and detergent combinations that allow the formation of stable bicelles. We use a combination of dynamic light scattering, small-angle X-ray scattering and cryogenic electron microscopy to perform a systematic sample characterization, thus providing a set of conditions under which bicelles can be successfully formed.
Assuntos
Bicamadas Lipídicas , Surfactantes Pulmonares , Bicamadas Lipídicas/química , Tensoativos , Detergentes/química , Espectroscopia de Ressonância Magnética , Micelas , Proteínas de Membrana/químicaRESUMO
The ultimate goal of bottom-up synthetic biology is recreating life in its simplest form. However, in its quest to find the minimal functional units of life, this field contributes more than its main aim by also offering a range of tools for asking, and experimentally approaching, biological questions. This Review focusses on how bottom-up reconstitution has furthered our understanding of cell biology. Studying cell biological processes in vitro has a long tradition, but only recent technological advances have enabled researchers to reconstitute increasingly complex biomolecular systems by controlling their multi-component composition and their spatiotemporal arrangements. We illustrate this progress using the example of cytoskeletal processes. Our understanding of these has been greatly enhanced by reconstitution experiments, from the first in vitro experiments 70â years ago to recent work on minimal cytoskeleton systems (including this Special Issue of Journal of Cell Science). Importantly, reconstitution approaches are not limited to the cytoskeleton field. Thus, we also discuss progress in other areas, such as the shaping of biomembranes and cellular signalling, and prompt the reader to add their subfield of cell biology to this list in the future.
Assuntos
Células Artificiais/ultraestrutura , Citoesqueleto/ultraestrutura , Transdução de Sinais , Biologia Sintética/métodos , Lipossomas Unilamelares/química , Actinas/metabolismo , Actinas/ultraestrutura , Células Artificiais/metabolismo , Compartimento Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Citoesqueleto/metabolismo , Cinética , Microfluídica/métodos , Microtecnologia/métodos , Modelos Biológicos , Miosinas/metabolismo , Miosinas/ultraestrutura , Biologia Sintética/instrumentação , Termodinâmica , Lipossomas Unilamelares/metabolismoRESUMO
Antibiotic resistance is a significant threat to human health, with natural products remaining the best source for new antimicrobial compounds. Antimicrobial peptides (AMPs) are natural products with great potential for clinical use as they are small, amenable to customization, and show broad-spectrum activities. Lynronne-1 is a promising AMP identified in the rumen microbiome that shows broad-spectrum activity against pathogens such as methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii. Here we investigated the structure of Lynronne-1 using solution NMR spectroscopy and identified a 13-residue amphipathic helix containing all six cationic residues. We used biophysical approaches to observe folding, membrane partitioning and membrane lysis selective to the presence of anionic lipids. We translated our understanding of Lynronne-1 structure to design peptides which varied in the size of their hydrophobic helical face. These peptides displayed the predicted continuum of membrane-lysis activities inâ vitro and inâ vivo, and yielded a new AMP with 4-fold improved activity against A. baumannii and 32-fold improved activity against S. aureus.
Assuntos
Peptídeos AntimicrobianosRESUMO
The C2 domain of novel protein kinases C (nPKC) binds to membranes in a Ca2+-independent way contributing to the activation of these enzymes. We have studied the C2 domain of one of these nPKCs, namely PKCε, and confirmed that it establishes a strong interaction with POPA, which is clearly visible through changes in chemical shifts detected through 31P-MAS-NMR and the protection that it exerts on the domain against thermal denaturation seen through DSC and FT-IR. In this study, using two-dimensional correlation analysis (2D-COS) applied to infrared spectra, we determined the sequence of events that occur during the thermal unfolding of the domain and highlighted some differences when phosphatidic acid or cardiolipin are present. Finally, by means of FRET and DLS experiments, we wanted to determine the effect of membrane curvature on the domain/membrane interaction by using lysophosphatidylcholine to introduce positive curvature as a control and we observed that the effect of these phospholipids on the protein binding is not exerted through the change of membrane curvature.
Assuntos
Membrana Celular/metabolismo , Proteína Quinase C-épsilon/química , Proteína Quinase C-épsilon/metabolismo , Desdobramento de Proteína , Cardiolipinas/metabolismo , Membrana Celular/química , Modelos Moleculares , Ácidos Fosfatídicos/metabolismo , Ligação Proteica , Domínios ProteicosRESUMO
Gb3 glycosphingolipids are the specific receptors for bacterial Shiga toxin. Whereas the trisaccharidic head group of Gb3 defines the specificity of Shiga toxin binding, the lipophilic part composed of sphingosine and different fatty acids is suggested to determine its localization within membranes impacting membrane organisation and protein binding eventually leading to protein internalisation. While most studies use Gb3 extracts, chemical synthesis provides a unique tool to access different tailor-made Gb3 glycosphingolipids. In this review, strategies to synthesize these complex glycosphingolipids are presented. Special emphasis is put on the preparation of Gb3 molecules differing only in their fatty acid part (saturated, unsaturated, α-hydroxylated and both, unsaturated and α-hydroxylated). With these molecules in hand, it became possible to investigate the phase behaviour of liquid ordered/liquid disordered supported membranes doped with the Gb3 species by means of fluorescence and atomic force microscopy. The results clearly highlight the influence of the different fatty acids of the Gb3 sphingolipids on the phase behaviour and the binding properties of Shiga toxin B subunits, even though the membranes were only doped with 5 mol% of the receptor lipid. To obtain fluorescent Gb3 derivatives, either fatty acid labelled Gb3 molecules or head group labelled ones were synthesized. These molecules enabled us to address the question, where the Gb3 sphingolipids are localized prior protein binding by means of fluorescence microscopy on giant unilamellar vesicles. The results again demonstrate that the fatty acid of Gb3 plays a pivotal role for the overall membrane organisation.
Assuntos
Membrana Celular/metabolismo , Glicoesfingolipídeos/metabolismo , Lipossomas Unilamelares/químicaRESUMO
Neuronal fusion mediated by soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) is a fundamental cellular process by which two initially distinct membranes merge resulting in one interconnected structure to release neurotransmitters into the presynaptic cleft. To get access to the different stages of the fusion process, several in vitro assays have been developed. In this review, we provide a short overview of the current in vitro single vesicle fusion assays. Among those assays, we developed a single vesicle assay based on pore-spanning membranes (PSMs) on micrometre-sized pores in silicon, which might overcome some of the drawbacks associated with the other membrane architectures used for investigating fusion processes. Prepared by spreading of giant unilamellar vesicles with reconstituted t-SNAREs, PSMs provide an alternative tool to supported lipid bilayers to measure single vesicle fusion events by means of fluorescence microscopy. Here, we discuss the diffusive behaviour of the reconstituted membrane components as well as that of the fusing synthetic vesicles with reconstituted synaptobrevin 2 (v-SNARE). We compare our results with those obtained if the synthetic vesicles are replaced by natural chromaffin granules under otherwise identical conditions. The fusion efficiency as well as the different fusion states observable in this assay by means of both lipid mixing and content release are illuminated.
Assuntos
Membrana Celular/metabolismo , Fusão de Membrana , Difusão , Bicamadas Lipídicas/química , Microscopia de Fluorescência , Lipossomas Unilamelares/químicaRESUMO
The cellular membrane is central to the development of single-and multicellular life, as it separates the delicate cellular interior from the hostile environment. It exerts tight control over entry and exit of substances, is responsible for signaling with other cells in multicellular organisms and prevents pathogens from entering the cell. In the case of bacteria and viruses, the cellular membrane also hosts the proteins enabling invasion of the host organism. In a very real sense therefore, the cellular membrane is central to all life. The study of the cell membrane and membrane proteins in particular has therefore attracted significant attention. Due to the enormous variety of tasks performed by the membrane, it is a highly complex and challenging structure to study. Ideally, membrane components would be studied in isolation from this environment, but unlike water soluble proteins, the amphiphilic environment provided by the cellular membrane is key to the structure and function of the cell membrane. Therefore, model membranes have been developed to provide an environment in which a membrane protein can be studied. This review presents a set of tools that enable the comprehensive characterization of membrane proteins: electrochemical tools, surface plasmon resonance, neutron scattering, the surface forces apparatus and atomic force microscopy are discussed, with a particular focus on experimental technique and data evaluation.
Assuntos
Espectroscopia Dielétrica/métodos , Eletroquímica/métodos , Canais Iônicos/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Microscopia de Força Atômica/métodos , Ressonância de Plasmônio de Superfície/métodos , Membranas Artificiais , Nêutrons , Ressonância de Plasmônio de Superfície/instrumentaçãoRESUMO
The development of nanotechnology has led to the increased production of zinc oxide nanoparticles (ZnO-NPs) and their application in a wide variety of everyday products. It creates the need for a full assessment of their safety for humans. The aim of the study was to assess the toxic effects of ZnO-NPs on model human cells of the immune system: U-937, HL-60, HUT-78, and COLO-720L. Particular attention was paid to the direct interaction of the nanoparticles with membrane lipids and the role of zinc ions in the mechanism of their toxicity. Cell viability, lipid peroxidation, cell membrane integrity, and the amount of zinc ions released from nanoparticles were tested. Disruption in cell metabolism was noted for ZnO-NPs concentrations from 6.25 mg/L. Contact with ZnO-NPs caused lipid peroxidation of all cells and correlated with membrane disruption of HL-60, HUT-78, and COLO-720L cells. Model monolayers (Langmuir technique) were used to assess the interaction of the nanoparticles with the studied lipids. Physicochemical parameters, such as the area per molecule at maximal layer compression, the pressure at which the monolayer collapses, and the static compression modulus, were calculated. The models of the HL-60 and U-937 cell membranes under ZnO-NPs treatment reacted in a different way. It has also been shown that Zn2+ are not the main causative factor of ZnO-NPs toxicity. Investigating the early stages of mechanism of nanoparticles toxicity will allow for a more complete risk assessment and development of methods for a safer synthesis of engineering nanomaterials.