Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402608, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853133

RESUMO

The atomic/molecular layer deposition (ALD/MLD) technique combining both inorganic and organic precursors is strongly emerging as a unique tool to design exciting new functional metal-organic thin-film materials. Here, this method is demonstrated to work even at low deposition temperatures and can produce highly stable and conformal thin films, fulfilling the indispensable prerequisites of today's 3D microelectronics and other potential industrial applications. This new ALD/MLD process is developed for Zn-organic thin films grown from non-pyrophoric bis-3-(N,N-dimethylamino)propyl zinc [Zn(DMP)2] and 1,4-benzene dithiol (BDT) precursors. This process yields air-stable Zn-BDT films with appreciably high growth per cycle (GPC) of 4.5 Å at 60 °C. The Zn/S ratio is determined at 0.5 with Rutherford backscattering spectrometry (RBS), in line with the anticipated (Zn─S─C6H6─S─)n bonding scheme. The high degree of conformality is shown using lateral high-aspect-ratio (LHAR) test substrates; scanning electron microscopy (SEM) analysis shows that the film penetration depth (PD) into the LHAR structure with cavity height of 500 nm is over 200 µm (i.e., aspect-ratio of 400). It is anticipated that the electrically insulating metal-organic Zn-BDT thin films grown via the solvent-free ALD/MLD technique, can be excellent barrier layers for temperature-sensitive and flexible electronic devices.

2.
Cerebellum ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850484

RESUMO

Spinocerebellar ataxia 34 (SCA34) is an autosomal dominant disease that arises from point mutations in the fatty acid elongase, Elongation of Very Long Chain Fatty Acids 4 (ELOVL4), which is essential for the synthesis of Very Long Chain-Saturated Fatty Acids (VLC-SFA) and Very Long Chain-Polyunsaturated Fatty Acids (VLC-PUFA) (28-34 carbons long). SCA34 is considered a neurodegenerative disease. However, a novel rat model of SCA34 (SCA34-KI rat) with knock-in of the W246G ELOVL4 mutation that causes human SCA34 shows early motor impairment and aberrant synaptic transmission and plasticity without overt neurodegeneration. ELOVL4 is expressed in neurogenic regions of the developing brain, is implicated in cell cycle regulation, and ELOVL4 mutations that cause neuroichthyosis lead to developmental brain malformation, suggesting that aberrant neuron generation due to ELOVL4 mutations might contribute to SCA34. To test whether W246G ELOVL4 altered neuronal generation or survival in the cerebellum, we compared the numbers of Purkinje cells, unipolar brush cells, molecular layer interneurons, granule and displaced granule cells in the cerebellum of wildtype, heterozygous, and homozygous SCA34-KI rats at four months of age, when motor impairment is already present. An unbiased, semi-automated method based on Cellpose 2.0 and ImageJ was used to quantify neuronal populations in cerebellar sections immunolabeled for known neuron-specific markers. Neuronal populations and cortical structure were unaffected by the W246G ELOVL4 mutation by four months of age, a time when synaptic and motor dysfunction are already present, suggesting that SCA34 pathology originates from synaptic dysfunction due to VLC-SFA deficiency, rather than aberrant neuronal production or neurodegeneration.

3.
Nanotechnology ; 35(40)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38981456

RESUMO

Low-k SiONC thin films with excellent thermal stabilities were deposited using plasma-assisted molecular layer deposition (PA-MLD) with a tetraisocyanatesilane (Si(NCO)4) precursor, N2plasma, and phloroglucinol (C6H3(OH)3). By adjusting the order of the N2plasma exposure steps within the PA-MLD process, we successfully developed a deposition technique that allows accurate control of thickness at the Ångström level via self-limiting reactions. The thicknesses of the thin films were measured through spectroscopic ellipsometry (SE). By tuning the N2plasma power, we facilitated the formation of -NH2sites for phloroglucinol adsorption, achieving a growth per cycle of 0.18 Å cycle-1with 300 W of N2plasma power. Consequently, the thickness of the films increased linearly with each additional cycle. Moreover, the organic linkers within the film formed stable bonds through surface reactions, resulting in a negligible decrease in thickness of approximately -11% even upon exposure to a high annealing temperature of 600 °C. This observation was confirmed by SE, distinguishing the as-prepared film from previously reported low-k films that fail to maintain their thickness under similar conditions. X-ray photoelectron spectroscopy (XPS) and current-voltage (I-V) and capacitance-voltage (C-V) measurement were conducted to evaluate the composition, insulating properties, and dielectric constant according to the deposition and annealing conditions. XPS results revealed that as the plasma power increased from 200 to 300 W, the C/Si ratio increased from 0.37 to 0.67, decreasing the dielectric constant from 3.46 to 3.12. Furthermore, there was no significant difference in the composition before and after annealing, and the hysteresis decreased from 0.58 to 0.19 V owing to defect healing, while maintaining the leakage current density, breakdown field, and dielectric constant. The low dielectric constant, accurate thickness control, and excellent thermal stability of this MLD SiONC thin film enable its application as an interlayer dielectric in back-end-of-line process.

4.
Nutr Neurosci ; : 1-11, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367228

RESUMO

OBJECTIVE: The cerebellum has a long, protracted developmental period; therefore, it is more sensitive to intrauterine and postnatal insults like nutritional deficiencies. Folate is an essential nutrient in fetal and postnatal brain development, and its supplementation during pregnancy is widely recommended. This study aimed to describe the effects of maternal folate intake on postnatal cerebellum development. METHODS: Twelve adult female Rattus norwegicus (6-8 weeks old) rats were randomly assigned to one of four groups and given one of four premixed diets: a standard diet (2 mg/kg), a folate-deficient (folate 0 mg/kg), folate-supplemented (8 mg/kg), or folate supra-supplemented (40 mg/kg). The rats began consuming their specific diets 14 days before mating and were maintained on them throughout pregnancy and lactation. Five pups from each group were sacrificed, and their brains processed for light microscopic examination on postnatal days 1, 7, 21, and 35. The data gathered included the morphology of the cerebellar folia and an estimate of the volume of the cerebellar cortical layer using the Cavalieri method. RESULTS: Folia of the folate-supplemented and supra-supplemented groups were thicker and showed extensive branching with sub-lobule formation. The folate-deficient diet group's folia were smaller, had more inter-folial spaces, or fused. When compared to the folate-deficient group, the volumes of the cerebellum and individual cerebellar cortical layers were significantly larger in the folate-supplemented and supra-supplemented groups (p<0.05). CONCLUSION: Folate supplementation during pregnancy and lactation improves the degree and complexity of the cerebellar folia and the volumes of individual cerebellar cortical layers.

5.
Nanotechnology ; 34(46)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567164

RESUMO

The formation of compressible porous sponge electrodes is appealing to overcome diffusion limitations in porous electrodes for applications including electrochemical energy storage, electrochemical water desalination, and electrocatalysis. Previous work has employed wet chemical synthesis to deliver conductive materials into porous polymer sponge supports, but these approaches struggle to produce functional electrodes due to (1) poor electrical connectivity of the conductive network and (2) mechanical rigidity of the foam after coating. In this work we employ oxidative molecular layer deposition (oMLD) via sequential gas-phase exposures of 3,4 ethylenedioxythiophene (EDOT) and molybdenum pentachloride (MoCl5) oxidant to imbibe polyurethane (PU) sponges with electrically-conductive and redox-active poly(3,4 ethylenedioxythiophene) (PEDOT) coatings. We analyze the oMLD deposition on compressive PU sponges and modify the reaction conditions to obtain mechanically compressible and electrically conductive sponge electrodes. We specifically identify the importance MoCl5dose time to enhance the conductivity of the sponges and the importance of EDOT purge time to preserve the mechanical properties of the sponges. Controlling these variables produces an electrically conductive PEDOT network within the sponge support with reduced impact on the sponge's mechanical properties, offering advantages over wet-chemical synthesis approaches. The compressible, conductive sponges we generate have the potential to be used as compressible electrodes for water desalination, energy storage, and electrocatalysis.

6.
Nanotechnology ; 34(27)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37015219

RESUMO

Ferroelectric transistors hold great potential in low consumption devices. Due to the high film quality and clean system, two dimensional organic semiconductors are widely employed to fabricate high performance organic electronic devices and explore the modulation mechanism of the molecular packing on device performance. Here, we combine the ferroelectric hafnium oxide HfZrOxand two-dimensional molecular crystal 2,9-didecyldinaphtho[2,3-b:2',3'-f]thieno[3,2b]thiophene (C10-DNTT) with controllable layers to study the molecular layer modulation of ferroelectric organic thin-film transistors (OTFTs). The contact resistance, driving current and transconductance are directly affected by the additional access resistance across the upper molecular layers at the source/drain contact region. Simultaneously, the capacitance of Schottky junction related to the molecular layer thickness could effectively adjust the gate potential acting on the organic channel, further controlling the devices' subthreshold swing and transconductance efficiency. This work would promote the development of low voltage and high performance OTFTs.

7.
Nano Lett ; 22(12): 5022-5028, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35679580

RESUMO

Spin electronics is delivering a much desired combination of properties such as high speed, low power, and high device densities for the next generation of memory devices. Utilizing chiral-induced spin selectivity (CISS) effect is a promising path toward efficient and simple spintronic devices. To be compatible with state-of-the-art integrated circuits manufacturing methodologies, vapor phase methodologies for deposition of spin filtering layers are needed. Here, we present vapor phase deposition of hybrid organic-inorganic thin films with embedded chirality. The deposition scheme relies on a combination of atomic and molecular layer deposition (A/MLD) utilizing enantiomeric pure alaninol molecular precursors combined with trimethyl aluminum (TMA) and water. The A/MLD deposition method deliver highly conformal thin films allowing the fabrication of several types of nanometric scale spintronic devices. The devices showed high spin polarization (close to 100%) for 5 nm thick spin filter layer deposited by A/MLD. The procedure is compatible with common device processing methodologies.

8.
Molecules ; 28(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630385

RESUMO

Polysulfone (PSF) is one of the most used polymers for water treatment membranes, but its intrinsic hydrophobicity can be detrimental to the membranes' performances. By modifying a membrane's surface, it is possible to adapt its physicochemical properties and thus tune the membrane's hydrophilicity or porosity, which can achieve improved permeability and antifouling efficiency. Atomic layer deposition (ALD) stands as a distinctive technology offering exceedingly even and uniform layers of coatings, like oxides that cover the surfaces of objects with three-dimensional (3D) shapes, porous structures, and particles. In the context of this study, the focus was on titanium dioxide (TiO2), zinc oxide (ZnO), and alumina (Al2O3), which were deposited on polysulfone hollow fiber (HF) membranes via ALD using TiCl4, diethyl zinc (DEZ), and trimethylamine (TMA), respectively, and H2O as precursors. The morphology and mechanical properties of membranes were changed without damaging their performances. The deposition was confirmed mainly by energy-dispersive X-ray spectroscopy (EDX). All depositions offered great performances with a maintained permeability and BSA retention and a 20 to 40° lower water contact angle (WCA) than the raw PSF HF membrane. The deposition of TiO2 offered the best results, showing an enhancement of 50% for the water permeability and 20% for the fouling resistance of the PSF HF membranes.

9.
BMC Neurosci ; 23(1): 39, 2022 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-35754033

RESUMO

BACKGROUND: Corticotropin-releasing factor (CRF) is the major neuromodulator orchestrating the stress response, and is secreted by neurons in various regions of the brain. Cerebellar CRF is released by afferents from inferior olivary neurons and other brainstem nuclei in response to stressful challenges, and contributes to modulation of synaptic plasticity and motor learning behavior via its receptors. We recently found that CRF modulates facial stimulation-evoked molecular layer interneuron-Purkinje cell (MLI-PC) synaptic transmission via CRF type 1 receptor (CRF-R1) in vivo in mice, suggesting that CRF modulates sensory stimulation-evoked MLI-PC synaptic plasticity. However, the mechanism of how CRF modulates MLI-PC synaptic plasticity is unclear. We investigated the effect of CRF on facial stimulation-evoked MLI-PC long-term depression (LTD) in urethane-anesthetized mice by cell-attached recording technique and pharmacological methods. RESULTS: Facial stimulation at 1 Hz induced LTD of MLI-PC synaptic transmission under control conditions, but not in the presence of CRF (100 nM). The CRF-abolished MLI-PC LTD was restored by application of a selective CRF-R1 antagonist, BMS-763,534 (200 nM), but it was not restored by application of a selective CRF-R2 antagonist, antisauvagine-30 (200 nM). Blocking cannabinoid type 1 (CB1) receptor abolished the facial stimulation-induced MLI-PC LTD, and revealed a CRF-triggered MLI-PC long-term potentiation (LTP) via CRF-R1. Notably, either inhibition of protein kinase C (PKC) with chelerythrine (5 µM) or depletion of intracellular Ca2+ with cyclopiazonic acid (100 µM), completely prevented CRF-triggered MLI-PC LTP in mouse cerebellar cortex in vivo. CONCLUSIONS: The present results indicated that CRF blocked sensory stimulation-induced opioid-dependent MLI-PC LTD by triggering MLI-PC LTP through CRF-R1/PKC and intracellular Ca2+ signaling pathway in mouse cerebellar cortex. These results suggest that activation of CRF-R1 opposes opioid-mediated cerebellar MLI-PC plasticity in vivo in mice.


Assuntos
Hormônio Liberador da Corticotropina , Células de Purkinje , Analgésicos Opioides/farmacologia , Animais , Córtex Cerebelar/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Interneurônios/metabolismo , Camundongos , Plasticidade Neuronal/fisiologia , Células de Purkinje/metabolismo , Receptor CB1 de Canabinoide/metabolismo
10.
Mol Cell Proteomics ; 19(1): 128-141, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31699905

RESUMO

Synaptic dysfunction is an early pathogenic event in Alzheimer disease (AD) that contributes to network disturbances and cognitive decline. Some synapses are more vulnerable than others, including the synapses of the perforant path, which provides the main excitatory input to the hippocampus. To elucidate the molecular mechanisms underlying the dysfunction of these synapses, we performed an explorative proteomic study of the dentate terminal zone of the perforant path. The outer two-thirds of the molecular layer of the dentate gyrus, where the perforant path synapses are located, was microdissected from five subjects with AD and five controls. The microdissected tissues were dissolved and digested by trypsin. Peptides from each sample were labeled with different isobaric tags, pooled together and pre-fractionated into 72 fractions by high-resolution isoelectric focusing. Each fraction was then analyzed by liquid chromatography-mass spectrometry. We quantified the relative expression levels of 7322 proteins, whereof 724 showed significantly altered levels in AD. Our comprehensive data analysis using enrichment and pathway analyses strongly indicated that presynaptic signaling, such as exocytosis and synaptic vesicle cycle processes, is severely disturbed in this area in AD, whereas postsynaptic proteins remained unchanged. Among the significantly altered proteins, we selected three of the most downregulated synaptic proteins; complexin-1, complexin-2 and synaptogyrin-1, for further validation, using a new cohort consisting of six AD and eight control cases. Semi-quantitative analysis of immunohistochemical staining confirmed decreased levels of complexin-1, complexin-2 and synaptogyrin-1 in the outer two-thirds of the molecular layer of the dentate gyrus in AD. Our in-depth proteomic analysis provides extensive knowledge on the potential molecular mechanism underlying synaptic dysfunction related to AD and supports that presynaptic alterations are more important than postsynaptic changes in early stages of the disease. The specific synaptic proteins identified could potentially be targeted to halt synaptic dysfunction in AD.


Assuntos
Doença de Alzheimer/patologia , Giro Denteado/patologia , Via Perfurante/patologia , Proteínas/metabolismo , Proteoma , Sinapses/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Giro Denteado/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Via Perfurante/metabolismo , Proteômica/métodos , Sinapses/metabolismo , Transmissão Sináptica
11.
Molecules ; 27(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234705

RESUMO

Alkali metals (lithium, sodium, and potassium) are promising as anodes in emerging rechargeable batteries, ascribed to their high capacity or abundance. Two commonly experienced issues, however, have hindered them from commercialization: the dendritic growth of alkali metals during plating and the formation of solid electrolyte interphase due to contact with liquid electrolytes. Many technical strategies have been developed for addressing these two issues in the past decades. Among them, atomic and molecular layer deposition (ALD and MLD) have been drawing more and more efforts, owing to a series of their unique capabilities. ALD and MLD enable a variety of inorganic, organic, and even inorganic-organic hybrid materials, featuring accurate nanoscale controllability, low process temperature, and extremely uniform and conformal coverage. Consequently, ALD and MLD have paved a novel route for tackling the issues of alkali metal anodes. In this review, we have made a thorough survey on surface coatings via ALD and MLD, and comparatively analyzed their effects on improving the safety and stability of alkali metal anodes. We expect that this article will help boost more efforts in exploring advanced surface coatings via ALD and MLD to successfully mitigate the issues of alkali metal anodes.

12.
Hippocampus ; 31(5): 522-539, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33600026

RESUMO

Glutamatergic hilar mossy cells (MCs) have axons that terminate both near and far from their cell body but stay within the DG, making synapses primarily in the molecular layer. The long-range axons are considered the primary projection, and extend throughout the DG ipsilateral to the soma, and project to the contralateral DG. The specificity of MC axons for the inner molecular layer (IML) has been considered to be a key characteristic of the DG. In the present study, we made the surprising finding that dorsal MC axons are an exception to this rule. We used two mouse lines that allow for Cre-dependent viral labeling of MCs and their axons: dopamine receptor D2 (Drd2-Cre) and calcitonin receptor-like receptor (Crlr-Cre). A single viral injection into the dorsal DG to label dorsal MCs resulted in labeling of MC axons in both the IML and middle molecular layer (MML). Interestingly, this broad termination of dorsal MC axons occurred throughout the septotemporal DG. In contrast, long-range axons of ventral MCs terminated in the IML, consistent with the literature. Taken together, these results suggest that dorsal and ventral MCs differ significantly in their axonal projections. Since MC projections in the ML are thought to terminate primarily on GCs, the results suggest a dorsal-ventral difference in MC activation of GCs. The surprising difference in dorsal and ventral MC projections should therefore be considered when evaluating dorsal-ventral differences in DG function.


Assuntos
Giro Denteado , Fibras Musgosas Hipocampais , Animais , Giro Denteado/fisiologia , Hipocampo , Camundongos , Fibras Musgosas Hipocampais/fisiologia , Sinapses
13.
Eur J Neurosci ; 54(5): 5730-5746, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33866634

RESUMO

Major depressive disorder (MDD) is a debilitating neuropsychiatric illness affecting over 20% of the population worldwide. Despite its prevalence, our understanding of its pathophysiology is severely limited, thus hampering the development of novel therapeutic strategies. Recent advances have clearly established astrocytes as major players in the pathophysiology, and plausibly pathogenesis, of major depression. In particular, astrocyte density in the hippocampus is severely diminished in MDD patients and correlates strongly with the disease outcome. Moreover, astrocyte densities from different subfields of the hippocampus show varying trends in terms of their correlation to the disease outcome. Given the central role that hippocampus plays in the pathophysiology of depression and in the action of antidepressant drugs, changes in hippocampal astrocyte density and physiology may have a significant effect on behavioral symptoms of MDD. In this study, we used chronic mild unpredictable stress (CMUS) in mice, which induces a depressive-like state, and examined its effects on astrocytes from different subfields of the hippocampus. We used SOX9 and S100ß immunostaining to estimate the number of astrocytes per square millimeter from various hippocampal subfields. Furthermore, using confocal images of fluorescently labeled glial fibrillary acidic protein (GFAP)-immunopositive hippocampal astrocytes, we quantified various morphology-related parameters and performed Sholl analysis. We found that CMUS exerts differential effects on astrocyte cell numbers, ramification, cell radius, surface area, and process width of hippocampal astrocytes from different hippocampal subfields. Taken together, our study reveals that chronic stress does not uniformly affect all hippocampal astrocytes; but exerts its effects differentially on different astrocytic subpopulations within the hippocampus.


Assuntos
Astrócitos , Transtorno Depressivo Maior , Animais , Antidepressivos , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos
14.
Chemistry ; 27(34): 8799-8803, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33780076

RESUMO

Two new atomic/molecular layer deposition processes for depositing crystalline metal-organic thin films, built from 1,4-benzenedisulfonate (BDS) as the organic linker and Cu or Li as the metal node, are reported. The processes yield in-situ crystalline but hydrated Cu-BDS and Li-BDS films; in the former case, the crystal structure is of a previously known metal-organic-framework-like structure, while in the latter case not known from previous studies. Both hydrated materials can be readily dried to obtain the crystalline unhydrated phases. The stability and the ionic conductivity of the unhydrated Li-BDS films were characterized to assess their applicability as a thin film solid polymer Li-ion conductor.

15.
Molecules ; 26(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072008

RESUMO

Curcumin is known as a biologically active compound and a possible antimicrobial agent. Here, we combine it with TiO2 and ZnO semiconductors, known for their photocatalytic properties, with an eye towards synergistic photo-harvesting and/or antimicrobial effects. We deposit different nanoscale multi-layer structures of curcumin, TiO2 and ZnO, by combining the solution-based spin-coating (S-C) technique and the gas-phase atomic layer deposition (ALD) and molecular layer deposition (MLD) thin-film techniques. As one of the highlights, we demonstrate for these multi-layer structures a red-shift in the absorbance maximum and an expansion of the absorbance edge as far as the longest visible wavelength region, which activates them for the visible light harvesting. The novel fabrication approaches introduced here should be compatible with, e.g., textile substrates, opening up new horizons for novel applications such as new types of protective masks with thin conformal antimicrobial coatings.


Assuntos
Curcumina/química , Semicondutores , Titânio/química , Óxido de Zinco/química , Antibacterianos , Anti-Infecciosos/química , Catálise , Química Farmacêutica/métodos , Teste de Materiais , Nanoestruturas/química , Fotoquímica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Têxteis , Difração de Raios X
16.
Eur J Neurosci ; 52(9): 4081-4099, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32726468

RESUMO

We investigated long-term environmental influences on morphology of microglia from the outer and middle thirds of molecular layer of the dentate gyrus (MolDG), and on microglia from dorsal and ventral dentate gyrus molecular layer. We also estimated the total number of MolDG microglia using stereology. For this purpose, microglia of the molecular layer of the dentate gyrus of 20-month-old female Swiss albino mice, housed from 21st postnatal day onwards, in the impoverished environment of the standard laboratory cages (SEA), or in a cage with an enriched environment (EEA), were reconstructed microscopically in three dimensions and compared with each other and with microglia of 6-month-old female Swiss albino mice, also housed from weaning onwards in an enriched cage (EEY). All mice had their brains sectioned and processed for immunolabeling for IBA-1, a selective microglia marker. Random and systematic microglia samples were reconstructed in three dimensions and classified morphologically using hierarchical cluster analysis, followed by discriminant function analysis. SEA and EEY showed two morphological phenotypes of microglia in both the outer and middle thirds of MolDG. EEA mice showed such a reduction in the morphological diversity of microglia that essentially a single morphotype was found. EEA mouse microglia showed an intermediate morphological complexity between types I and II SE microglia. We suggest that type I and type II microglia in SE mice may have different physiological roles and that long-term EE may be associated with adaptive responses of microglial phenotypes to somatomotor and cognitive stimuli.


Assuntos
Giro Denteado , Microglia , Animais , Encéfalo , Feminino , Abrigo para Animais , Camundongos
17.
Hippocampus ; 29(6): 550-565, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30394609

RESUMO

Cajal-Retzius (CR) cells are early-born glutamatergic neurons that are primarily known as the early main source of the signal protein Reelin. In the reeler mutant, the absence of Reelin causes severe defects in the radial migration of neurons, resulting in abnormal cortical layering. To date, the exact morphological properties of CR-cells independent of Reelin are unknown. With this in view, we studied the ontogenesis, density, and distribution of CR-cells in reeler mice that were cross-bred with a CXCR4-EGFP reporter mouse line, thus enabling us to clearly identify CR-cells positions in the disorganized hippocampus of the reeler mouse. As evidenced by morphological analysis, differences were found regarding CR-cell distribution and density: generally, we found fewer CR-cells in the developing and adult reeler hippocampus as compared to the hippocampus of wild-type animals (WT); however, in reeler mice, CR-cells were much more closely associated to the hippocampal fissure (HF), resulting in relatively higher local CR-cell densities. This higher local cell density was accompanied by stronger immunoreactivity of the CXCR4 ligand, stroma-derived factor-1 (SDF-1) that is known to regulate CR-cell positioning. Importantly, confocal microscopy indicates an integration of CR-cells into the developing and adult hippocampal network in reeler mice, raising evidence that network integration of CR-cells might be independent of Reelin.


Assuntos
Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Hipocampo/patologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Animais , Contagem de Células , Movimento Celular , Quimiocina CXCL12/metabolismo , Giro Denteado/metabolismo , Giro Denteado/patologia , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Camundongos , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Microscopia Confocal , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Neurogênese , Neurônios/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Proteína Reelina , Transdução de Sinais
18.
Chemistry ; 25(49): 11466-11473, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31167042

RESUMO

The combined atomic and molecular layer deposition (ALD/MLD) technique offers a unique way to build-both known and previously unknown-crystalline coordination polymer materials directly from gaseous precursors in a high-quality thin-film form. Here, we demonstrate the ALD/MLD of crystalline Li-, Na-, and K-based 3,5-pyridinedicarboxylate (3,5-PDC) thin films; the Li2 -3,5-PDC films are of the known Li-ULMOF-4 crystal structure whereas the other as-deposited crystalline films possess structures not previously reported. Another exciting possibility offered by ALD/MLD is the deposition of well-defined but amorphous metal-organic thin films, such as our Mg-, Ca-, Sr-, and Ba-based 3,5-PDC films, which can then be crystallized into water-containing structures through a post-deposition humidity treatment. All together, the new metal-organic structures realized in this study through ALD/MLD comprise a majority of the (anhydrous and water-containing) members of the s-block metal 3,5-pyridinedicarboxylate family.

19.
Angew Chem Int Ed Engl ; 58(44): 15797-15802, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31400290

RESUMO

Herein, molecular layer deposition is used to form a nanoscale "zircone" protective layer on Li metal to achieve stable and long life Li metal anodes. The zircone-coated Li metal shows enhanced air stability, electrochemical performance and high rate capability in symmetrical cell testing. Moreover, as a proof of concept, the protected Li anode is used in a next-generation Li-O2 battery system and is shown to extend the lifetime by over 10-fold compared to the batteries with untreated Li metal. Furthermore, in-situ synchrotron X-ray absorption spectroscopy is used for the first time to study an artificial SEI on Li metal, revealing the electrochemical stability and lithiation of the zircone film. This work exemplifies significant progress towards the development and understanding of MLD thin films for high performance next-generation batteries.

20.
Angew Chem Int Ed Engl ; 58(38): 13400-13404, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31318130

RESUMO

The atomic/molecular layer deposition (ALD/MLD) technique provides an elegant way to grow crystalline metal-azobenzene thin films directly from gaseous precursors; the photoactive azobenzene linkers thus form an integral part of the crystal framework. Reversible water capture/release behavior for these thin films can be triggered through the trans-cis photoisomerization reaction of the azobenzene moieties in the structure. The ALD/MLD approach could open up new horizons for example, for the emerging fields of remotely controlled drug delivery and gas storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA