Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(4): 764-785.e21, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803604

RESUMO

The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.


Assuntos
Plexo Corióideo , Hidrocefalia , Humanos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/imunologia , Imunidade Inata , Síndrome da Liberação de Citocina/patologia
2.
Annu Rev Physiol ; 85: 383-406, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36228173

RESUMO

The with no lysine (K) (WNK) kinases are an evolutionarily ancient group of kinases with atypical placement of the catalytic lysine and diverse physiological roles. Recent studies have shown that WNKs are directly regulated by chloride, potassium, and osmotic pressure. Here, we review the discovery of WNKs as chloride-sensitive kinases and discuss physiological contexts in which chloride regulation of WNKs has been demonstrated. These include the kidney, pancreatic duct, neurons, and inflammatory cells. We discuss the interdependent relationship of osmotic pressure and intracellular chloride in cell volume regulation. We review the recent demonstration of potassium regulation of WNKs and speculate on possible physiological roles. Finally, structural and mechanistic aspects of intracellular ion and osmotic pressure regulation of WNKs are discussed.


Assuntos
Cloretos , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Rim/metabolismo
3.
Crit Rev Biochem Mol Biol ; : 1-45, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946646

RESUMO

The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.

4.
EMBO J ; 41(23): e110169, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239040

RESUMO

The sodium-potassium-chloride transporter NKCC1 of the SLC12 family performs Na+ -dependent Cl- - and K+ -ion uptake across plasma membranes. NKCC1 is important for regulating cell volume, hearing, blood pressure, and regulation of hyperpolarizing GABAergic and glycinergic signaling in the central nervous system. Here, we present a 2.6 Å resolution cryo-electron microscopy structure of human NKCC1 in the substrate-loaded (Na+ , K+ , and 2 Cl- ) and occluded, inward-facing state that has also been observed for the SLC6-type transporters MhsT and LeuT. Cl- binding at the Cl1 site together with the nearby K+ ion provides a crucial bridge between the LeuT-fold scaffold and bundle domains. Cl- -ion binding at the Cl2 site seems to undertake a structural role similar to conserved glutamate of SLC6 transporters and may allow for Cl- -sensitive regulation of transport. Supported by functional studies in mammalian cells and computational simulations, we describe a putative Na+ release pathway along transmembrane helix 5 coupled to the Cl2 site. The results provide insight into the structure-function relationship of NKCC1 with broader implications for other SLC12 family members.


Assuntos
Potássio , Sódio , Membro 2 da Família 12 de Carreador de Soluto , Humanos , Microscopia Crioeletrônica , Potássio/metabolismo , Sódio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/química
5.
J Neurosci ; 44(22)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684364

RESUMO

Spinal cerebrospinal fluid-contacting neurons (CSF-cNs) form an evolutionary conserved bipolar cell population localized around the central canal of all vertebrates. CSF-cNs were shown to express molecular markers of neuronal immaturity into adulthood; however, the impact of their incomplete maturation on the chloride (Cl-) homeostasis as well as GABAergic signaling remains unknown. Using adult mice from both sexes, in situ hybridization revealed that a proportion of spinal CSF-cNs (18.3%) express the Na+-K+-Cl- cotransporter 1 (NKCC1) allowing intracellular Cl- accumulation. However, we did not find expression of the K+-Cl- cotransporter 2 (KCC2) responsible for Cl- efflux in any CSF-cNs. The lack of KCC2 expression results in low Cl- extrusion capacity in CSF-cNs under high Cl- load in whole-cell patch clamp. Using cell-attached patch clamp allowing recordings with intact intracellular Cl- concentration, we found that the activation of ionotropic GABAA receptors (GABAA-Rs) induced both depolarizing and hyperpolarizing responses in CSF-cNs. Moreover, depolarizing GABA responses can drive action potentials as well as intracellular calcium elevations by activating voltage-gated calcium channels. Blocking NKCC1 with bumetanide inhibited the GABA-induced calcium transients in CSF-cNs. Finally, we show that metabotropic GABAB receptors have no hyperpolarizing action on spinal CSF-cNs as their activation with baclofen did not mediate outward K+ currents, presumably due to the lack of expression of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Together, these findings outline subpopulations of spinal CSF-cNs expressing inhibitory or excitatory GABAA-R signaling. Excitatory GABA may promote the maturation and integration of young CSF-cNs into the existing spinal circuit.


Assuntos
Membro 2 da Família 12 de Carreador de Soluto , Medula Espinal , Simportadores , Animais , Camundongos , Medula Espinal/metabolismo , Feminino , Masculino , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Simportadores/metabolismo , Cotransportadores de K e Cl- , Transdução de Sinais/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo , Líquido Cefalorraquidiano/metabolismo , Líquido Cefalorraquidiano/fisiologia , Camundongos Endogâmicos C57BL , Receptores de GABA-A/metabolismo , Cloretos/metabolismo , Cloretos/líquido cefalorraquidiano , Cloretos/farmacologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia
6.
J Cell Physiol ; : e31369, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014912

RESUMO

Previously we showed hyperosmotic solution caused TRPV1-dependent NKCC1 activation in the lens by a mechanism that involved ERK1/2 signaling. In various tissues, integrins and the cytoskeletal network play a role in responses to osmotic stress. Here, we examined the association between integrins and TRPV1-dependent activation of NKCC1 in mouse lens epithelium. Wild-type (WT) lenses exposed to the integrin agonist leukadherin-1 (LA-1) for 10 min displayed a ~33% increase in the bumetanide-sensitive rate of Rb uptake indicating NKCC activation. Paclitaxel, a microtubule stabilizing agent, abolished the Rb uptake response. In primary cultured lens epithelium LA-1 caused a robust ERK1/2 activation response that was almost fully suppressed by paclitaxel. The TRPV1 agonist capsaicin caused a similar ERK1/2 activation response. Consistent with an association between integrins and TRPV1, the TRPV1 antagonist A889425 prevented the Rb uptake response to LA-1 as did the ERK inhibitor U0126. LA-1 did not increase Rb uptake by lenses from TRPV1 knockout mice. In cells exposed to a hyperosmotic stimulus, both the ERK1/2 activation and Rb uptake responses were prevented by paclitaxel. Taken together, the findings suggest TRPV1 activation is associated with integrins and the tubulin cytoskeleton. This aligned with the observation that LA-1 elicited a robust cytoplasmic calcium rise in cells from WT lenses but failed to increase calcium in cells from TRPV1 knockout lenses. The results are consistent with the notion that integrin activation by LA-1, or a hyperosmotic stimulus, causes TRPV1 channel opening and the consequent downstream activation of the ERK1/2 and NKCC1 responses.

7.
Glia ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166289

RESUMO

Na+-K+-2Cl- cotransporter-1 (NKCC1) is present in brain cells, including astrocytes. The expression of astrocytic NKCC1 increases in the acute phase of traumatic brain injury (TBI), which induces brain edema. Endothelin-1 (ET-1) is a factor that induces brain edema and regulates the expression of several pathology-related genes in astrocytes. In the present study, we investigated the effect of ET-1 on NKCC1 expression in astrocytes. ET-1 (100 nM)-treated cultured astrocytes showed increased NKCC1 mRNA and protein levels. The effect of ET-1 on NKCC1 expression in cultured astrocytes was reduced by BQ788 (1 µM), an ETB antagonist, but not by FR139317 (1 µM), an ETA antagonist. The involvement of ET-1 in NKCC1 expression in TBI was examined using a fluid percussion injury (FPI) mouse model that replicates the pathology of TBI with high reproducibility. Administration of BQ788 (15 nmol/day) decreased FPI-induced expressions of NKCC1 mRNA and protein, accompanied with a reduction of astrocytic activation. FPI-induced brain edema was attenuated by BQ788 and NKCC1 inhibitors (azosemide and bumetanide). ET-1-treated cultured astrocytes showed increased mRNA and protein expression of hypoxia-inducible factor-1α (HIF1α). Immunohistochemical observations of mouse cerebrum after FPI showed co-localization of HIF1α with GFAP-positive astrocytes. Increased HIF1α expression in the TBI model was reversed by BQ788. FM19G11 (an HIF inhibitor, 1 µM) and HIF1α siRNA suppressed ET-induced increase in NKCC1 expression in cultured astrocytes. These results indicate that ET-1 increases NKCC1 expression in astrocytes through the activation of HIF1α.

8.
Neurobiol Dis ; 199: 106611, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032797

RESUMO

Ultrastructural studies of contusive spinal cord injury (SCI) in mammals have shown that the most prominent acute changes in white matter are periaxonal swelling and separation of myelin away from their axon, axonal swelling, and axonal spheroid formation. However, the underlying cellular and molecular mechanisms that cause periaxonal swelling and the functional consequences are poorly understood. We hypothesized that periaxonal swelling and loss of connectivity between the axo-myelinic interface impedes neurological recovery by disrupting conduction velocity, and glial to axonal trophic support resulting in axonal swelling and spheroid formation. Utilizing in vivo longitudinal imaging of Thy1YFP+ axons and myelin labeled with Nile red, we reveal that periaxonal swelling significantly increases acutely following a contusive SCI (T13, 30 kdyn, IH Impactor) versus baseline recordings (laminectomy only) and often precedes axonal spheroid formation. In addition, using longitudinal imaging to determine the fate of myelinated fibers acutely after SCI, we show that ∼73% of myelinated fibers present with periaxonal swelling at 1 h post SCI and âˆ¼ 51% of those fibers transition to axonal spheroids by 4 h post SCI. Next, we assessed whether cation-chloride cotransporters present within the internode contributed to periaxonal swelling and whether their modulation would increase white matter sparing and improve neurological recovery following a moderate contusive SCI (T9, 50 kdyn). Mechanistically, activation of the cation-chloride cotransporter KCC2 did not improve neurological recovery and acute axonal survival, but did improve chronic tissue sparing. In distinction, the NKKC1 antagonist bumetanide improved neurological recovery, tissue sparing, and axonal survival, in part through preventing periaxonal swelling and disruption of the axo-myelinic interface. Collectively, these data reveal a novel neuroprotective target to prevent periaxonal swelling and improve neurological recovery after SCI.


Assuntos
Axônios , Recuperação de Função Fisiológica , Membro 2 da Família 12 de Carreador de Soluto , Traumatismos da Medula Espinal , Substância Branca , Animais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Substância Branca/efeitos dos fármacos , Substância Branca/patologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Axônios/efeitos dos fármacos , Axônios/patologia , Feminino , Bainha de Mielina/patologia , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Camundongos , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Bumetanida/farmacologia
9.
Curr Issues Mol Biol ; 46(3): 1851-1864, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534737

RESUMO

Autism spectrum disorder (ASD) is thought to result from susceptibility genotypes and environmental risk factors. The offspring of women who experience pregnancy infection have an increased risk for autism. Maternal immune activation (MIA) in pregnant animals produces offspring with autistic behaviors, making MIA a useful model for autism. However, how MIA causes autistic behaviors in offspring is not fully understood. Here, we show that NKCC1 is critical for mediating autistic behaviors in MIA offspring. We confirmed that MIA induced by poly(I:C) infection during pregnancy leads to autistic behaviors in offspring. We further demonstrated that MIA offspring showed significant microglia activation, excessive dendritic spines, and narrow postsynaptic density (PSD) in their prefrontal cortex (PFC). Then, we discovered that these abnormalities may be caused by overexpression of NKCC1 in MIA offspring's PFCs. Finally, we ameliorated the autistic behaviors using PFC microinjection of NKCC1 inhibitor bumetanide (BTN) in MIA offspring. Our findings may shed new light on the pathological mechanisms for autism caused by pregnancy infection.

10.
J Neurosci Res ; 102(5): e25355, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38808645

RESUMO

Gamma aminobutyric acid (GABA) is a critical inhibitory neurotransmitter in the central nervous system that plays a vital role in modulating neuronal excitability. Dysregulation of GABAergic signaling, particularly involving the cotransporters NKCC1 and KCC2, has been implicated in various pathologies, including epilepsy, schizophrenia, autism spectrum disorder, Down syndrome, and ischemia. NKCC1 facilitates chloride influx, whereas KCC2 mediates chloride efflux via potassium gradient. Altered expression and function of these cotransporters have been associated with excitotoxicity, inflammation, and cellular death in ischemic events characterized by reduced cerebral blood flow, leading to compromised tissue metabolism and subsequent cell death. NKCC1 inhibition has emerged as a potential therapeutic approach to attenuate intracellular chloride accumulation and mitigate neuronal damage during ischemic events. Similarly, targeting KCC2, which regulates chloride efflux, holds promise for improving outcomes and reducing neuronal damage under ischemic conditions. This review emphasizes the critical roles of GABA, NKCC1, and KCC2 in ischemic pathologies and their potential as therapeutic targets. Inhibiting or modulating the activity of these cotransporters represents a promising strategy for reducing neuronal damage, preventing excitotoxicity, and improving neurological outcomes following ischemic events. Furthermore, exploring the interactions between natural compounds and NKCC1/KCC2 provides additional avenues for potential therapeutic interventions for ischemic injury.


Assuntos
Isquemia Encefálica , Morte Celular , Cotransportadores de K e Cl- , Membro 2 da Família 12 de Carreador de Soluto , Simportadores , Ácido gama-Aminobutírico , Animais , Humanos , Ácido gama-Aminobutírico/metabolismo , Simportadores/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Morte Celular/fisiologia , Morte Celular/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico
11.
J Neurosci Res ; 102(8): e25373, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39101281

RESUMO

The master control of mammalian circadian rhythms is the suprachiasmatic nucleus (SCN), which is formed by the ventral and dorsal regions. In SCN neurons, GABA has an important function and even excitatory actions in adulthood. However, the physiological role of this neurotransmitter in the developing SCN is unknown. Here, we recorded GABAergic postsynaptic currents (in the perforated-patch configuration using gramicidin) to determine the chloride reversal potential (ECl) and also assessed the immunological expression of the Na-K-Cl cotransporter 1 (NKCC1) at early ages of the rat (postnatal days (P) 3 to 25), during the day and night, in the two SCN regions. We detected that ECl greatly varied with age and depending on the SCN region and time of day. Broadly speaking, ECl was more hyperpolarized with age, except for the oldest age studied (P20-25) in both day and night in the ventral SCN, where it was less negative. Likewise, ECl was more hyperpolarized in the dorsal SCN both during the day and at night; while ECl was more negative at night both in the ventral and the dorsal SCN. Moreover, the total NKCC1 fluorescent expression was higher during the day than at night. These results imply that NKCC1 regulates the circadian and developmental fluctuations in the [Cl-]i to fine-tune ECl, which is crucial for either excitatory or inhibitory GABAergic actions to occur in the SCN.


Assuntos
Cloretos , Ritmo Circadiano , Membro 2 da Família 12 de Carreador de Soluto , Núcleo Supraquiasmático , Animais , Núcleo Supraquiasmático/metabolismo , Ritmo Circadiano/fisiologia , Ratos , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Masculino , Cloretos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ratos Wistar , Técnicas de Patch-Clamp , Envelhecimento/fisiologia
12.
Mov Disord ; 39(3): 618-622, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38291616

RESUMO

BACKGROUND: Acting on the main target of dopaminergic cells, the striatal γ-aminobutyric acid (GABA)-ergic cells, might be a new way to treat persons with Parkinson's disease (PD). OBJECTIVE: The objective of this study was to assess the efficacy of bumetanide, an Na-K-Cl cotransporter (NKCC1) inhibitor, to improve motor symptoms in PD. METHODS: This was a 4-month double-blind, randomized, parallel-group, placebo-controlled trial of 1.75 to 3 mg/day bumetanide as an adjunct to levodopa in 44 participants with PD and motor fluctuations. RESULTS: Compared to the baseline, the mean change in OFF Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III score after 4 months of treatment (primary endpoint) did not improve significantly compared with placebo. No changes between participants treated with bumetanide and those treated with placebo were observed for most other outcome measures. Despite no relevant safety signals, bumetanide was poorly tolerated. CONCLUSIONS: There was no evidence in this study that bumetanide has efficacy in improving motor symptoms of PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Antiparkinsonianos , Bumetanida/uso terapêutico , Levodopa/uso terapêutico , Avaliação de Resultados em Cuidados de Saúde , Método Duplo-Cego , Resultado do Tratamento
13.
FASEB J ; 37(4): e22834, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961378

RESUMO

The kidney regulates blood pressure through salt/water reabsorption affected by tubular sodium transporters. Expanding our prior research on placental cluster of differentiation 81 (CD81), this study explores the interaction of renal CD81 with sodium transporters in preeclampsia (PE). Effects of renal CD81 with sodium transporters were determined in lipopolysaccharide (LPS)-induced PE rats and immortalized mouse renal distal convoluted tubule cells. Urinary exosomal CD81, sodium potassium 2 chloride cotransporter (NKCC2), and sodium chloride cotransporter (NCC) were measured in PE patients. LPS-PE rats had hypertension from gestational days (GD) 6 to 18 and proteinuria from GD9 to GD18. Urinary CD81 in both groups tented to rise during pregnancy. Renal CD81, not sodium transporters, was higher in LPS-PE than controls on GD14. On GD18, LPS-PE rats exhibited higher CD81 in kidneys and urine exosomes, higher renal total and phosphorylated renal NKCC2 and NCC with elevated mRNAs, and lower ubiquitinated NCC than controls. CD81 was co-immunoprecipitated with NKCC2 or NCC in kidney homogenates and co-immunostained with NKCC2 or NCC in apical membranes of renal tubules. In plasma membrane fractions, LPS-PE rats had greater amounts of CD81, NKCC2, and NCC than controls with enhanced co-immunoprecipitations of CD81 with NKCC2 or NCC. In renal distal convoluted tubule cells, silencing CD81 with siRNA inhibited NCC and prevented LPS-induced NCC elevation. Further, PE patients had higher CD81 in original urines, urine exosomes and higher NKCC2 and NCC in urine exosomes than controls. Thus, the upregulation of renal CD81 on NKCC2 and NCC may contribute to the sustained hypertension observed in LPS-PE model. Urine CD81 with NKCC2 and NCC may be used as biomarkers for PE.


Assuntos
Hipertensão , Pré-Eclâmpsia , Gravidez , Camundongos , Humanos , Ratos , Feminino , Animais , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Cloretos/metabolismo , Pré-Eclâmpsia/induzido quimicamente , Pré-Eclâmpsia/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Placenta/metabolismo , Túbulos Renais Distais/metabolismo , Hipertensão/metabolismo , Sódio/metabolismo , Potássio/metabolismo , Tetraspanina 28/metabolismo
14.
Epilepsia ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212418

RESUMO

OBJECTIVE: Following hypoxic-ischemic (HI) brain injury, neuronal cytoplasmic chloride concentration ([Cl-]i) increases, potentially contributing to depolarizing γ-aminobutyric acid (GABA) responses, onset of seizures, and the failure of antiepileptic drugs that target inhibitory chloride-permeable GABAA receptors. Post-HI seizures characteristically begin hours after injury, by which time substantial accumulation of [Cl-]i may have already occurred. In immature neurons, a major pathway for Cl- influx is the reversible Na+-K+-2Cl- cotransporter NKCC1. METHODS: Spontaneous neuronal network, neuronal [Cl-]i, and GABA activity were determined in hippocampal preparations from neonatal Clomeleon and SuperClomeleon/DLX-cre mice to test whether blocking NKCC1 earlier after oxygen-glucose deprivation (OGD) injury would more effectively ameliorate the increase in [Cl-]i, ictallike epileptiform discharges (ILDs), and the failure of the GABAergic anticonvulsant phenobarbital. RESULTS: In vitro, murine intact hippocampi were free of ILDs for 12 h after preparation. Transient OGD resulted in a gradual increase in [Cl-]i, depolarizing action of GABA, and facilitation of neuronal network activity. Spontaneous ILDs began 3-5 h after injury. Blocking NKCC1 with 2-10 µmol·L-1 bumetanide reduced [Cl-]i equally well when applied up to 10 h after injury. Whereas phenobarbital or bumetanide applied separately were less effective when applied later after injury, ILDs were successfully suppressed by the combination of phenobarbital and bumetanide regardless of the number of prior ILDs or delay in application. SIGNIFICANCE: The present age-specific group studies demonstrate that after OGD, NKCC1 transport activity significantly contributes to progressive [Cl-]i accumulation, depolarizing action of GABA, and delayed onset of ILDs. In this neonatal model of neuronal injury and ILDs, earlier treatment with bumetanide alone more efficiently recovered control baseline [Cl-]i and depressed epileptiform discharges. However, there was no time dependency to the anti-ictal efficacy of the combination of phenobarbital and bumetanide. These in vitro results suggest that after perinatal injury, early pre-emptive treatment with phenobarbital plus bumetanide would be as efficacious as late treatment after seizures are manifest.

15.
Nephrol Dial Transplant ; 39(2): 297-304, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37463050

RESUMO

BACKGROUND: The use of cyclosporin A (CsA) is hampered by the development of nephrotoxicity including hypertension, which is partially dependent on renal sodium retention. To address this issue, we have investigated in vivo sodium reabsorption in different nephron segments of CsA-treated rats through micropuncture study coupled to expression analyses of sodium transporters. To translate the findings in rats to human, kidney-transplanted patients having CsA treatment were enrolled in the study. METHODS: Adult male Sprague-Dawley rats were treated with CsA (15 mg/kg/day) for 21 days, followed by micropuncture study and expression analyses of sodium transporters. CsA-treated kidney-transplanted patients with resistant hypertension were challenged with 50 mg furosemide. RESULTS: CsA-treated rats developed hypertension associated with reduced glomerular filtration rate. In vivo microperfusion study demonstrated a significant decrease in rate of absolute fluid reabsorption in the proximal tubule but enhanced sodium reabsorption in the thick ascending limb of Henle's loop (TAL). Expression analyses of sodium transporters at the same nephron segments further revealed a reduction in Na+-H+ exchanger isoform 3 (NHE3) in the renal cortex, while TAL-specific, furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and NHE3 were significantly upregulated in the inner stripe of outer medulla. CsA-treated patients had a larger excretion of urinary NKCC2 protein at basal condition, and higher diuretic response to furosemide, showing increased FeNa+, FeCl- and FeCa2+ compared with both healthy controls and FK506-treated transplanted patients. CONCLUSION: Altogether, these findings suggest that up-regulation of NKCC2 along the TAL facilitates sodium retention and contributes to the development of CsA-induced hypertension.


Assuntos
Ciclosporina , Hipertensão , Adulto , Humanos , Masculino , Ratos , Animais , Ciclosporina/efeitos adversos , Trocador 3 de Sódio-Hidrogênio/metabolismo , Regulação para Cima , Furosemida , Ratos Sprague-Dawley , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
16.
Cereb Cortex ; 33(10): 5906-5923, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36573432

RESUMO

The Na-K-2Cl cotransporter NKCC1 is widely expressed in cells within and outside the brain. However, our understanding of its roles in brain functions throughout development, as well as in neuropsychiatric and neurological disorders, has been severely hindered by the lack of reliable data on its developmental and (sub)cellular expression patterns. We provide here the first properly controlled analysis of NKCC1 protein expression in various cell types of the mouse brain using custom-made antibodies and an NKCC1 knock-out validated immunohistochemical procedure, with parallel data based on advanced mRNA approaches. NKCC1 protein and mRNA are expressed at remarkably high levels in oligodendrocytes. In immature neurons, NKCC1 protein was located in the somata, whereas in adult neurons, only NKCC1 mRNA could be clearly detected. NKCC1 immunoreactivity is also seen in microglia, astrocytes, developing pericytes, and in progenitor cells of the dentate gyrus. Finally, a differential expression of NKCC1 splice variants was observed, with NKCC1a predominating in non-neuronal cells and NKCC1b in neurons. Taken together, our data provide a cellular basis for understanding NKCC1 functions in the brain and enable the identification of major limitations and promises in the development of neuron-targeting NKCC1-blockers.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Hipocampo/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782119

RESUMO

NKCC1 is the primary transporter mediating chloride uptake in immature principal neurons, but its role in the development of in vivo network dynamics and cognitive abilities remains unknown. Here, we address the function of NKCC1 in developing mice using electrophysiological, optical, and behavioral approaches. We report that NKCC1 deletion from telencephalic glutamatergic neurons decreases in vitro excitatory actions of γ-aminobutyric acid (GABA) and impairs neuronal synchrony in neonatal hippocampal brain slices. In vivo, it has a minor impact on correlated spontaneous activity in the hippocampus and does not affect network activity in the intact visual cortex. Moreover, long-term effects of the developmental NKCC1 deletion on synaptic maturation, network dynamics, and behavioral performance are subtle. Our data reveal a neural network function of NKCC1 in hippocampal glutamatergic neurons in vivo, but challenge the hypothesis that NKCC1 is essential for major aspects of hippocampal development.


Assuntos
Hipocampo/crescimento & desenvolvimento , Membro 2 da Família 12 de Carreador de Soluto/fisiologia , Animais , Animais Recém-Nascidos , Ácido Glutâmico/metabolismo , Camundongos , Rede Nervosa , Neurônios/metabolismo , Sinapses/metabolismo , Córtex Visual/fisiologia , Ácido gama-Aminobutírico/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083438

RESUMO

Regulation of cell volume is essential for tissue homeostasis and cell viability. In response to hypertonic stress, cells need rapid electrolyte influx to compensate water loss and to prevent cell death in a process known as regulatory volume increase (RVI). However, the molecular component able to trigger such a process was unknown to date. Using a genome-wide CRISPR/Cas9 screen, we identified LRRC8A, which encodes a chloride channel subunit, as the gene most associated with cell survival under hypertonic conditions. Hypertonicity activates the p38 stress-activated protein kinase pathway and its downstream MSK1 kinase, which phosphorylates and activates LRRC8A. LRRC8A-mediated Cl- efflux facilitates activation of the with-no-lysine (WNK) kinase pathway, which in turn, promotes electrolyte influx via Na+/K+/2Cl- cotransporter (NKCC) and RVI under hypertonic stress. LRRC8A-S217A mutation impairs channel activation by MSK1, resulting in reduced RVI and cell survival. In summary, LRRC8A is key to bidirectional osmotic stress responses and cell survival under hypertonic conditions.


Assuntos
Tamanho Celular , Canais de Cloreto/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transporte Biológico , Sistemas CRISPR-Cas , Morte Celular , Sobrevivência Celular , Células HeLa , Humanos , Pressão Osmótica , Fosforilação , Potássio/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sódio/metabolismo
19.
Biopharm Drug Dispos ; 45(3): 138-148, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823029

RESUMO

Bumetanide is used widely as a tool and off-label treatment to inhibit the Na-K-2Cl cotransporter NKCC1 in the brain and thereby to normalize intra-neuronal chloride levels in several brain disorders. However, following systemic administration, bumetanide only poorly penetrates into the brain parenchyma and does not reach levels sufficient to inhibit NKCC1. The low brain penetration is a consequence of both the high ionization rate and plasma protein binding, which restrict brain entry by passive diffusion, and of brain efflux transport. In previous studies, bumetanide was determined in the whole brain or a few brain regions, such as the hippocampus. However, the blood-brain barrier and its efflux transporters are heterogeneous across brain regions, so it cannot be excluded that bumetanide reaches sufficiently high brain levels for NKCC1 inhibition in some discrete brain areas. Here, bumetanide was determined in 14 brain regions following i.v. administration of 10 mg/kg in rats. Because bumetanide is much more rapidly eliminated by rats than humans, its metabolism was reduced by pretreatment with piperonyl butoxide. Significant, up to 5-fold differences in regional bumetanide levels were determined with the highest levels in the midbrain and olfactory bulb and the lowest levels in the striatum and amygdala. Brain:plasma ratios ranged between 0.004 (amygdala) and 0.022 (olfactory bulb). Regional brain levels were significantly correlated with local cerebral blood flow. However, regional bumetanide levels were far below the IC50 (2.4 µM) determined previously for rat NKCC1. Thus, these data further substantiate that the reported effects of bumetanide in rodent models of brain disorders are not related to NKCC1 inhibition in the brain.


Assuntos
Encéfalo , Bumetanida , Animais , Bumetanida/farmacologia , Bumetanida/farmacocinética , Bumetanida/administração & dosagem , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Masculino , Ratos , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacocinética , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/administração & dosagem , Ratos Sprague-Dawley , Distribuição Tecidual , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
20.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000071

RESUMO

The Goldblatt model of hypertension (2K-1C) in rats is characterized by renal sympathetic nerve activity (rSNA). We investigated the effects of unilateral renal denervation of the clipped kidney (DNX) on sodium transporters of the unclipped kidneys and the cardiovascular, autonomic, and renal functions in 2K-1C and control (CTR) rats. The mean arterial pressure (MAP) and rSNA were evaluated in experimental groups. Kidney function and NHE3, NCC, ENaCß, and ENaCγ protein expressions were assessed. The glomerular filtration rate (GRF) and renal plasma flow were not changed by DNX, but the urinary (CTR: 0.0042 ± 0.001; 2K-1C: 0.014 ± 0.003; DNX: 0.005 ± 0.0013 mL/min/g renal tissue) and filtration fractions (CTR: 0.29 ± 0.02; 2K-1C: 0.51 ± 0.06; DNX: 0.28 ± 0.04 mL/min/g renal tissue) were normalized. The Na+/H+ exchanger (NHE3) was reduced in 2K-1C, and DNX normalized NHE3 (CTR: 100 ± 6; 2K-1C: 44 ± 14, DNX: 84 ± 13%). Conversely, the Na+/Cl- cotransporter (NCC) was increased in 2K-1C and was reduced by DNX (CTR: 94 ± 6; 2K-1C: 144 ± 8; DNX: 60 ± 15%). In conclusion, DNX in Goldblatt rats reduced blood pressure and proteinuria independently of GRF with a distinct regulation of NHE3 and NCC in unclipped kidneys.


Assuntos
Rim , Trocador 3 de Sódio-Hidrogênio , Animais , Rim/inervação , Rim/metabolismo , Ratos , Masculino , Trocador 3 de Sódio-Hidrogênio/metabolismo , Taxa de Filtração Glomerular , Denervação , Isquemia/metabolismo , Pressão Sanguínea , Ratos Wistar , Hipertensão/metabolismo , Canais Epiteliais de Sódio/metabolismo , Modelos Animais de Doenças , Trocadores de Sódio-Hidrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA