Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2403143121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959041

RESUMO

Currently, the nanofluidic synapse can only perform basic neuromorphic pulse patterns. One immediate problem that needs to be addressed to further its capability of brain-like computing is the realization of a nanofluidic spiking device. Here, we report the use of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate membrane to achieve bionic ionic current-induced spiking. In addition to the simulation of various electrical pulse patterns, our synapse could produce transmembrane ionic current-induced spiking, which is highly analogous to biological action potentials with similar phases and excitability. Moreover, the spiking properties could be modulated by ions and neurochemicals. We expect that this work could contribute to biomimetic spiking computing in solution.


Assuntos
Potenciais de Ação , Poliestirenos , Sinapses , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Poliestirenos/química , Nanotecnologia/métodos , Nanotecnologia/instrumentação
2.
Nano Lett ; 24(40): 12515-12521, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39347814

RESUMO

Reproducing neural functions with artificial nanofluidic systems has long been an aspirational goal for neuromorphic computing. In this study, neural functions, such as neural activation and synaptic plasticity, are successfully accomplished with a polarity-switchable nanofluidic memristor (PSNM), which is based on the anodized aluminum oxide (AAO) nanochannel array. The PSNM has unipolar memristive behavior at high electrolyte concentrations and bipolar memristive behavior at low electrolyte concentrations, which can emulate neural activation and synaptic plasticity, respectively. The mechanisms for the unipolar and bipolar memristive behaviors are related to the polyelectrolytic Wien (PEW) effect and ion accumulation/depletion effect, respectively. These findings are beneficial to the advancement of neuromorphic computing on nanofluidic platforms.

3.
Biochem Biophys Res Commun ; 695: 149464, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38217957

RESUMO

DNA double strand breaks (DSBs) can be detrimental to the cell and need to be efficiently repaired. A first step in DSB repair is to bring the free ends in close proximity to enable ligation by non-homologous end-joining (NHEJ), while the more precise, but less available, repair by homologous recombination (HR) requires close proximity of a sister chromatid. The human MRE11-RAD50-NBS1 (MRN) complex, Mre11-Rad50-Xrs2 (MRX) in yeast, is involved in both repair pathways. Here we use nanofluidic channels to study, on the single DNA molecule level, how MRN, MRX and their constituents interact with long DNA and promote DNA bridging. Nanofluidics is a suitable method to study reactions on DNA ends since no anchoring of the DNA end(s) is required. We demonstrate that NBS1 and Xrs2 play important, but differing, roles in the DNA tethering by MRN and MRX. NBS1 promotes DNA bridging by MRN consistent with tethering of a repair template. MRX shows a "synapsis-like" DNA end-bridging, stimulated by the Xrs2 subunit. Our results highlight the different ways MRN and MRX bridge DNA, and the results are in agreement with their key roles in HR and NHEJ, respectively, and contribute to the understanding of the roles of NBS1 and Xrs2 in DSB repair.


Assuntos
Proteínas de Ligação a DNA , Endodesoxirribonucleases , Proteínas de Saccharomyces cerevisiae , Humanos , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Small ; : e2310681, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462953

RESUMO

2D materials, with advantages of atomic thickness and novel physical/chemical characteristics, have emerged as the vital building blocks for advanced lamellar membranes which possess promising potential in energy storage, ion separation, and catalysis. When 2D materials are stacked together, the van der Waals (vdW) force generated between adjacent layered nanosheets induces the construction of an ordered lamellar membrane. By regulating the interlayer spacing down to the nanometer or even sub-nanometer scale, rapid and selective ion transport can be achieved through such vdW gaps. The further improvement and application of qualified 2D materials-based lamellar membranes (2DLMs) can be fulfilled by the rational design of nanochannels and the intelligent micro-environment regulation under different stimuli. Focusing on the newly emerging advances of 2DLMs, in this review, the common top-down and bottom-up synthesis approaches of 2D nanosheets and the design strategy of functional 2DLMs are briefly introduced. Two essential ion transport mechanisms within vdW gaps are also involved. Subsequently, the responsive 2DLMs based on different types of external stimuli and their unique applications in nanofluid transport, membrane-based filters, and energy storage are presented. Based on the above analysis, the existing challenges and future developing prospects of 2DLMs are further proposed.

5.
Small ; 20(15): e2306809, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009781

RESUMO

The diagnosis and evaluation of traumatic brain injury (TBI) are crucial steps toward the treatment and prognosis of patients. A common question remains as to whether it is possible to introduce an ideal device for signal detection and evaluation that can directly connect digital signals with TBI, thereby enabling prompt response of the evaluation signal and sensitive and specific functioning of the detection process. Herein, a method is presented utilizing polymetric porous membranes with TRTK-12 peptide-modified nanochannels for the detection of S100B (a TBI biomarker) and assessment of TBI severity. The method leverages the specific bonding force between TRTK-12 peptide and S100B protein, along with the nanoconfinement effect of nanochannels, to achieve high sensitivity (LOD: 0.002 ng mL-1) and specificity (∆I/I0: 44.7%), utilizing ionic current change as an indicator. The proposed method, which is both sensitive and specific, offers a simple yet responsive approach for real-time evaluation of TBI severity. This innovative technique provides valuable scientific insights into the advancement of future diagnostic and therapeutic integration devices.


Assuntos
Biomimética , Lesões Encefálicas Traumáticas , Humanos , Peptídeos , Lesões Encefálicas Traumáticas/diagnóstico , Prognóstico , Biomarcadores , Subunidade beta da Proteína Ligante de Cálcio S100
6.
Small ; : e2403629, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958098

RESUMO

Natural organisms have evolved precise sensing systems relying on unique ion channels, which can efficiently perceive various physical/chemical stimuli based on ionic signal transmission in biological fluid environments. However, it is still a huge challenge to achieve extensive applications of the artificial counterparts as an efficient wet sensing platform due to the fluidity of the working medium. Herein, nanofluidic membranes with selective cation transport properties and solid-state organic electrochemical transistors (OECTs) with amplified signals are integrated together to mimic human gustatory sensation, achieving ionic gustatory reagent recognition and a portable configuration. Cu-HHTP nanofluidic membranes with selective cation transport through their uniform micropores are constructed first, followed by assembly with OECTs to form the designed nanofluidic membrane-assisted OECTs (nanofluidic OECTs). As a result, they can distinguish typically ionic gustatory reagents, and even ionic liquids (ILs), demonstrating enhanced gustatory perception performance under a wide concentration range (10-7-10-1 m) compared with those of conventional OECTs. The linear correlations between the response and the reagent concentration further indicate the promising potential for practical application as a next-generation sensing platform. It is suggested that nanofluidic membranes mediated intramembrane cation transport based on the steric hindrance effect, resulting in distinguishable and improved response to multiple ions.

7.
Small ; 20(22): e2309253, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38126674

RESUMO

Atomic thick 2D materials hold great potential as building blocks to construct highly permeable membranes, yet the permeability of laminar 2D material membranes is still limited by their irregularity sheep track-like interlayer channels. Herein, a supramolecular-mediated strategy to induce the regular assembly of high-throughput 2D nanofluidic channels based on host-guest interactions is proposed. Inspired by the characteristics of motorways, supramolecular-mediated ultrathin 2D membranes with broad and continuous regular water transport channels are successfully constructed using graphene oxide (GO) as an example. The prepared membrane achieves an ultrahigh water permeability (369.94 LMH bar-1) more than six times higher than that of the original membranes while maintaining dye rejection above 98.5%, which outperforms the reported 2D membranes. Characterization and simulation results show that the introduction of hyaluronate-grafted ß-cyclodextrin not only expands the interlayer channels of GO membranes but also enables the membranes to operate stably under harsh conditions with the help of host-guest interactions. This universal supramolecular assembly strategy provides new opportunities for the preparation of 2D membranes with high separation performance and reliable and stable nanofluidic channels.

8.
Small ; 20(40): e2402284, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38801397

RESUMO

2D lamellar nanofiltration membrane is considered to be a promising approach for desalinating seawater/brackish water and recycling sewage. However, its practical feasibility is severely constrained by the lack of durability and stability. Herein, a ternary nanofiltration membrane via a mixed-dimensional assembly of 2D boron nitride nanosheets (BNNS) is fabricated, 1D aramid nanofibers (ANF), and 2D covalent organic frameworks (COF). The abundant 2D and 1D nanofluid channels endow the BNNS/ANF/COF membrane with a high flux of 194 L·m‒2·h‒1. By the synergies of the size sieving and Donnan effect, the BNNS/ANF/COF membrane demonstrates high rejection (among 98%) for those dyes whose size exceeds 1.0 nm. Moreover, the BNNS/ANF/COF membrane also exhibits remarkable durability and mechanical stability, which are attributed to the strong adhesion and interactions between BNNS, ANF, and COF, as well as the superior mechanical robustness of ANF. This work provides a novel strategy to develop robust and durable 2D lamellar nanofiltration membranes with high permeance and selectivity simultaneously.

9.
Nano Lett ; 23(6): 2210-2218, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36879391

RESUMO

Single-molecule studies offer deep insights into the essence of chemistry, biology, and materials science. Despite significant advances in single-molecule experiments, the precise regulation of the flow of single small molecules remains a formidable challenge. Herein, we present a flexible glass-based hybrid nanofluidic device that can precisely block, open, and direct the flow of single small molecules in nanochannels. Additionally, this approach allows for real-time tracking of regulated single small molecules in nanofluidic conditions. Therefore, the dynamic behaviors of single small molecules confined in different nanofluidic conditions with varied spatial restrictions are clarified. Our device and approach provide a nanofluidic platform and mechanism that enable single-molecule studies and applications in actively regulated fluidic conditions, thus opening avenues for understanding the original behavior of individual molecules in their natural forms and the development of single-molecule regulated chemical and biological processes in the future.

10.
Nano Lett ; 23(11): 4830-4836, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37260351

RESUMO

Plasmonic nanopores combined with Raman spectroscopy are emerging as platforms for single-molecule detection and sequencing in label-free mode. Recently, the ability of identifying single DNA bases or amino acids has been demonstrated for molecules adsorbed on plasmonic particles and then delivered into the plasmonic pores. Here, we report on bowl-shaped plasmonic gold nanopores capable of direct Raman detection of single λ-DNA molecules in a flow-through scheme. The bowl shape enables the incident laser to be focused into the nanopore to generate a single intense hot spot with no cut off in pore size. Therefore, we achieved ultrasmall focusing of NIR light in a spot of 3 nm. This enabled us to detect 7 consecutive bases along the DNA chain in flow-through conditions. Furthermore, we found a novel electrofluidic mechanism to manipulate the molecular trajectory within the pore volume so that the molecule is pushed toward the hot spot, thus improving the detection efficiency.


Assuntos
Nanoporos , DNA/química , Ouro/química , Nanotecnologia/métodos , Aminoácidos , Análise Espectral Raman
11.
Nano Lett ; 23(23): 11043-11050, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38032845

RESUMO

Layered MXene nanofluidic membranes still face the problems of low mechanical property, poor ion selectivity, and low output power density. In this work, we successfully constructed heterostructured membranes with the combination of the layered channels of the MXene layer on the top and the nanoscale poly(p-phenylene-benzodioxazole) nanofiber (PBONF) layer on the bottom through a stepwise filtration method. The as-prepared MXene/PBONF-50 heterogeneous membrane exhibits high mechanical properties (strength of 221.6 MPa, strain of 3.2%), high ion selectivity of 0.87, and an excellent output power density of 15.7 W/m2 at 50-fold concentration gradient. Excitingly, the heterogeneous membrane presents a high power density of 6.8 W/m2 at a larger testing area of 0.79 mm2 and long-term stability. This heterogeneous membrane construction provides a viable strategy for the enhancement of mechanical properties and osmotic energy conversion of 2D materials.

12.
Angew Chem Int Ed Engl ; 63(17): e202401477, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38419469

RESUMO

Voltage-gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio-inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro-inspired devices and brain-liking computing. Here, we reported a two-dimensional nanofluidic ionic transistor based on a MXene membrane with sub-1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene-composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the "NOT", "NAND", and "NOR" gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion-based brain-like computing.


Assuntos
Encéfalo , Nitritos , Elementos de Transição , Potenciais de Ação , Íons , Potenciais da Membrana
13.
Small ; 19(9): e2206382, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36519638

RESUMO

Nanofluidic diodes are potentially useful in many important applications such as sensing, electronics, and energy conversion. However, the manufacturing of controllable nanopores for nanofluidic diodes is technically challenging. Herein, a nanofluidic diode is designed from a highly programmatic covalent organic framework (COF). Through molecular simulation, remarkable diode behavior is observed in a hybrid-bilayer COF but not in its constituent single-layer COFs. The rectification effect of ion current in the hybrid-bilayer COF is attributed to an asymmetric electrostatic potential across the COF nanopore. Furthermore, a synergistic effect of counterion is unraveled in the hybrid-bilayer COF, and the presence of counterion is found to reduce the entry barrier and facilitate ion transport. The performance of the hybrid-bilayer COF as a nanofluidic diode is comprehensively investigated by varying salt concentration, layer number, interlayer spacing, and slipping. This proof-of-concept simulation study demonstrates the feasibility of the hybrid-bilayer COF as a nanofluidic diode and the finding may stimulate the development of new nanofluidic platforms.

14.
Small ; 19(35): e2300338, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37186166

RESUMO

It is crucial to control the ion transport in membranes for various technological applications such as energy storage and conversion. The emerging functional two-dimensional (2D) nanosheets such as graphene oxide and MXenes show great potential for constructing ordered nanochannels, but the assembled membranes suffer from low ion selectivity and stability. Here a class of robust charge-selective membranes with superhigh cation/anion selectivity, which are assembled with monolayer nanosheets of cationic/anionic clays that inherently have permanent and uniform charges on each layer is reported. The transport number of cations/anions of cationic vermiculite nanosheet membranes (VNMs)/anionic Co-Al layered double hydroxide (CoAl-LDH) nanosheet membranes is over 0.90 in different NaCl concentration gradients, outperforming all the reported ion-selective membranes. Importantly, this excellent ion selectivity can persist at high-concentration salt solutions, under acidic and alkaline conditions, and for a wide range of ions of different sizes and charges. By coupling a pair of cation-selective vermiculite membrane and anion-selective CoAl-LDH membrane, a reverse electrodialysis device which shows an output power density of 0.7 W m-2 and energy conversion efficiency of 45.5% is constructed. This work provides a new strategy to rationally design high-performance ion-selective membranes by using 2D nanosheets with inherent surface charges for controllable ion-transport applications.

15.
Small ; 19(4): e2205003, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36424182

RESUMO

Two-dimensional nanofluidic membranes offer great opportunities for developing efficient and robust devices for ionic/water-nexus energy harvesting. However, low counterion concentration and long pathway through limited ionic flux restrict their output performance. Herein, it is demonstrated that rapid diffusion kinetics can be realized in two-dimensional nanofluidic membranes by introducing in-plane holes across nanosheets, which not only increase counterion concentration but also shorten pathway length through the membranes. Thus, the holey membranes exhibited an enhanced performance relative to the pristine ones in terms of osmotic energy conversion. In particular, a biomimetic multilayered membrane sequentially assembled from pristine and holey sections offers an optimized combination of selectivity and permeability, therefore generating a power density up to 6.78 W m-2 by mixing seawater and river water, superior to the majority of the state-of-the-art lamellar nanofluidic membranes. This work highlights the importance of channel morphologies and presents a general strategy for effectively improving ion transport through lamellar membranes for high-performance nanofluidic devices.

16.
Small ; 19(33): e2301460, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37081282

RESUMO

The recognition and separation of chiral molecules with similar structure are of great industrial and biological importance. Development of highly efficient chiral recognition systems is crucial for the precise application of these chiral molecules. Herein, a homochiral zeolitic imidazolate frameworks (c-ZIF) functionalized nanochannel device that exhibits an ideal platform for electrochemical enantioselective recognition is reported. Its distinct chiral binding cavity enables more sensitive discrimination of tryptophan (Trp) enantiomer pairs than other smaller chiral amino acids owing to its size matching to the target molecule. It is found that introducing neighboring aldehyde groups into the chiral cavity will result in an inferior chiral Trp recognition due to the decreased adsorption-energy difference of D- and L-Trp on the chiral sites. This study may provide an alternative strategy for designing efficient chiral recognition devices by utilizing the homochiral reticular materials and tailoring their chiral environments.

17.
Small ; 19(43): e2301013, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37350189

RESUMO

Single-molecule experiments allow understanding of the diversity, stochasticity, and heterogeneity of molecular behaviors and properties hidden by conventional ensemble-averaged measurements. They hence have great importance and significant impacts in a wide range of fields. Despite significant advances in single-molecule experiments at ultralow concentrations, the capture of single molecules in solution at normal concentrations within natural biomolecular processes remains a formidable challenge. Here, a high-density, well-defined nanofluidic aptamer nanoarray (NANa) formed via site-specific self-assembly of well-designed aptamer molecules in nanochannels with nano-in-nano gold nanopatterns is presented. The nanofluidic aptamer nanoarray exhibits a high capability to specifically capture target proteins (e.g., platelet-derived growth factor BB; PDGF-BB) to form uniform protein nanoarrays under optimized nanofluidic conditions. Owing to these fundamental features, the nanofluidic aptamer nanoarray enables the stochastic capture of single PDGF-BB molecules at a normal concentration from a sample with an ultrasmall volume equivalent to a single cell by following Poisson statistics, forming a readily addressable single-protein nanoarray. This approach offers a methodology and device to surpass both the concentration and volume limits of single-protein capture in most conventional methodologies of single-molecule experiments, thus opening an avenue to explore the behavior of individual biomolecules in a manner close to their natural forms, which remains largely unexplored to date.


Assuntos
Aptâmeros de Nucleotídeos , Becaplermina , Aptâmeros de Nucleotídeos/metabolismo , Ouro
18.
Small ; : e2308277, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38044301

RESUMO

Bioinspired two-dimensional (2D) nanofluidic systems for photo-induced ion transport have attracted great attention, as they open a new pathway to enabling light-to-ionic energy conversion. However, there is still a great challenge in achieving a satisfactory performance. It is noticed that organic solar cells (OSCs, light-harvesting device based on photovoltaic effect) commonly require hole/electron transport layer materials (TLMs), PEDOT:PSS (PE) and PDINN (PD), respectively, to promote the energy conversion. Inspired by such a strategy, an artificial proton pump by coupling a nanofluidic system with TLMs is proposed, in which the PE- and PD-functionalized tungsten disulfide (WS2 ) multilayers construct a heterogeneous membrane, realizing an excellent output power of ≈1.13 nW. The proton transport is fine-regulated due to the TLMs-engineered band structure of WS2 . Clearly, the incorporating TLMs of OSCs into 2D nanofluidic systems offers a feasible and promising approach for band edge engineering and promoting the light-to-ionic energy conversion.

19.
Nano Lett ; 22(5): 2140-2146, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35050632

RESUMO

Curved fluidic channels with a circular cross-section play an important role in biology, chemistry, and medicine. However, in nanofluidics, a problem that is largely unsolved is the lack of an effective fabrication method for curved circular nanotubes (10-1000 nm). In this work, an electron-beam-induced self-assembly process was applied to achieve fine curved nanostructures for the realization of nanofluidic devices. The diameter of the tube could be precisely controlled by an atomic layer deposition process. Fluid transported through the nanochannels was verified and characterized using a dark-field microscope under an optical diffraction limit size. The fluid flow demonstrates that the liquid's evaporation (vapor diffusion) in the nanochannel generates compressed vapor, which pumps the liquid and pushes it forward, resulting in a directional flow behavior in the ∼100 nm radius of tubes. This phenomenon could provide a useful platform for the development of diverse nanofluidic devices.


Assuntos
Nanoestruturas , Nanotubos , Transporte Biológico , Nanoestruturas/química , Nanotecnologia/métodos
20.
Nano Lett ; 22(9): 3678-3684, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35442043

RESUMO

Inspired by electronic transistors, electric field gating has been adopted to manipulate ionic currents of smart nanofluidic devices. Here, we report a PNP nanofluidic bipolar junction transistor (nBJT) consisting of one polyaniline (PANI) layer sandwiched between two polyethylene terephthalate (PET) nanoporous membranes. The PNP nBJT exhibits three different responses of currents (quasi-linear, rectification, and sigmoid) due to the counterbalance between surface charge distribution and base voltage applied in the nanofluidic channels; thus, they can be switched by base voltage. Four operating modes (cutoff, active, saturation, and breakdown mode) occur in the collector response currents. Under optimal conditions, the PNP nBJT exhibits an average current gain of up to 95 in 100 mM KCl solution at a low base voltage of 0.2 V. The present nBJT is promising for fabrication of nanofluidic devices with logical-control functions for analysis of single molecules.


Assuntos
Nanoporos , Nanotecnologia , Transporte de Íons , Íons , Transistores Eletrônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA