Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 645
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Cell Physiol ; 239(5): e31248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501506

RESUMO

The loss of semaphorin 3A (Sema3A), which is related to endothelial-to-mesenchymal transition (EndMT) in atrial fibrosis, is implicated in the pathogenesis of atrial fibrillation (AF). To explore the mechanisms by which EndMT affects atrial fibrosis and assess the potential of a Sema3A activator (naringin) to prevent atrial fibrosis by targeting transforming growth factor-beta (TGF-ß)-induced EndMT, we used human atria, isolated human atrial endocardial endothelial cells (AEECs), and used transgenic mice expressing TGF-ß specifically in cardiac tissues (TGF-ß transgenic mice). We evaluated an EndMT marker (Twist), a proliferation marker (proliferating cell nuclear antigen; PCNA), and an endothelial cell (EC) marker (CD31) through triple immunohistochemistry and confirmed that both EndMT and EC proliferation contribute to atrial endocardial fibrosis during AF in TGF-ß transgenic mice and AF patient tissue sections. Additionally, we investigated the impact of naringin on EndMT and EC proliferation in AEECs and atrial fibroblasts. Naringin exhibited an antiproliferative effect, to which AEECs were more responsive. Subsequently, we downregulated Sema3A in AEECs using small interfering RNA to clarify a correlation between the reduction in Sema3A and the elevation of EndMT markers. Naringin treatment induced the expression of Sema3A and a concurrent decrease in EndMT markers. Furthermore, naringin administration ameliorated AF and endocardial fibrosis in TGF-ß transgenic mice by stimulating Sema3A expression, inhibiting EndMT markers, reducing atrial fibrosis, and lowering AF vulnerability. This suggests therapeutic potential for naringin in AF treatment.


Assuntos
Fibrilação Atrial , Proliferação de Células , Células Endoteliais , Transição Epitelial-Mesenquimal , Flavanonas , Átrios do Coração , Semaforina-3A , Fator de Crescimento Transformador beta , Animais , Humanos , Masculino , Camundongos , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Fibrilação Atrial/genética , Fibrilação Atrial/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Flavanonas/farmacologia , Átrios do Coração/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/patologia , Camundongos Transgênicos , Semaforina-3A/metabolismo , Semaforina-3A/genética , Fator de Crescimento Transformador beta/metabolismo
2.
Cancer Sci ; 115(1): 59-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923388

RESUMO

Sinus macrophages in draining lymph nodes (DLNs) are involved in anti-tumor immune reactions. CD169 (Sialoadhesin, Siglec-1) is expressed on sinus macrophages and is considered a surrogate marker for the immunostimulatory phenotype of macrophages. In this study, the significance of sinus macrophages in immunotherapy was evaluated using mouse models. Treatment with anti-programmed death-ligand 1 (PD-L1) antibody suppressed the subcutaneous tumor growth of MC38 and E0771 cells but was not effective against MB49 and LLC tumors. Decreased cytotoxic T-lymphocyte (CTL) infiltration in tumor tissues and CD169 expression in sinus macrophages were observed in MB49 and LLC cells compared to corresponding parameters in MC38 and E0771 cells. The anti-tumor effects of the anti-PD-L1 antibody on MC38 and E0771 cells were abolished when sinus macrophages in DLNs were depleted, suggesting that sinus macrophages are involved in the therapeutic effect of the anti-PD-L1 antibody. Naringin activated sinus macrophages. Naringin inhibited tumor growth in MB49- and LLC-bearing mice but did not affect that in MC38- and E0771-bearing mice. The infiltration of CTLs in tumor tissues and their activation were increased by naringin, and this effect was impaired when sinus macrophages were depleted. Combination therapy with naringin and anti-PD-L1 antibody suppressed MB49 tumor growth. In conclusion, CD169-positive sinus macrophages in DLNs are critical for anti-tumor immune responses, and naringin suppresses tumor growth by activating CD169-positive sinus macrophages and anti-tumor CTL responses. The activation status of sinus macrophages has been suggested to differ among tumor models, and this should be investigated in future studies.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Linfócitos T Citotóxicos/metabolismo , Anticorpos/uso terapêutico , Imunoterapia , Macrófagos/metabolismo , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral
3.
J Transl Med ; 22(1): 878, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350164

RESUMO

An oral colon-targeted drug delivery system holds great potential in preventing systemic toxicity and preserving the therapeutic benefits of ulcerative colitis (UC) treatment. In this study, we developed a negatively charged PLGA-PEG nanoparticle system for encapsulating naringin (Nar). Additionally, chitosan and mannose were coated on the surface of these nanoparticles to enhance their mucosal adsorption and macrophage targeting abilities. The resulting nanoparticles, termed MC@Nar-NPs, exhibited excellent resistance against decomposition in the strong acidic gastrointestinal environment and specifically accumulated at inflammatory sites. Upon payload release, MC@Nar-NPs demonstrated remarkable efficacy in alleviating colon inflammation as evidenced by reduced levels of pro-inflammatory cytokines in both blood and colon tissues, as well as the scavenging of reactive oxygen species (ROS) in the colon. This oral nanoparticle delivery system represents a novel approach to treating UC by utilizing Chinese herbal ingredient-based oral delivery and provides a theoretical foundation for local and precise intervention in specific UC treatment.


Assuntos
Colite Ulcerativa , Colo , Flavanonas , Nanopartículas , Polímeros , Flavanonas/farmacologia , Flavanonas/química , Flavanonas/administração & dosagem , Flavanonas/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Animais , Nanopartículas/química , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Concentração de Íons de Hidrogênio , Administração Oral , Polímeros/química , Camundongos , Liberação Controlada de Fármacos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Citocinas/metabolismo
4.
Cell Tissue Res ; 397(3): 193-204, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38953985

RESUMO

Cisplatin nephrotoxicity is a well-known emergency clinical condition caused by oxidative stress and inflammation. Naringin (NAR) is considered an antioxidant agent with renoprotective effects capable of removing reactive oxygen species. Adipose tissue-derived mesenchymal stem cells (AD-MSCs) are reported to have anti-inflammatory and antioxidant properties. The present research examined the renoprotective effect of the combination of NAR and AD-MSCs as opposed to each one alone on cisplatin-induced nephrotoxicity through SIRT-1/Nrf-2/HO-1 pathway. This study included five groups (n = 8 each) of male Sprague-Dawley rats (200 - 220 g): sham, cisplatin: rats receiving cisplatin (6.5 mg/kg, i.p.) on the 4th day; NAR+cisplatin: rats pretreated with NAR (1 week, i.p.) + cisplatin on the 4th day; AD-MSCs: rats receiving AD-MSCs (1 × 106) by injection through the tail vein on the 5th day + cisplatin on the 4th day; and NAR+AD-MSCs+cisplatin. On the 8th day, the animals were anesthetized to obtain tissue and blood samples. Biochemical factors, inflammation, oxidative stress, and gene expression were explored. Cisplatin increased blood urea nitrogen, creatinine, inflammation, and oxidative stress. Moreover, mRNA expression of Sirtuin1, nuclear factor erythroid 2-related factor 2 (Nrf-2), and heme oxygenase-1 (HO-1) remarkably reduced. Furthermore, cisplatin led to a disturbance in kidney structure (glomerular atrophy, cell infiltrations, and tubular dysfunction) as confirmed by histology findings. However, NAR pretreatment, AD-MSC administration, or a combination of both significantly reversed these changes. Overall, when used together, NAR and AD-MSCs had stronger cisplatin-induced effects on kidney dysfunction by inhibiting inflammation, reducing oxidative stress, and increasing the Sirtuin1/Nrf-2/HO-1 pathway.


Assuntos
Tecido Adiposo , Cisplatino , Flavanonas , Células-Tronco Mesenquimais , Fator 2 Relacionado a NF-E2 , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1 , Animais , Cisplatino/farmacologia , Cisplatino/efeitos adversos , Sirtuína 1/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Ratos , Tecido Adiposo/metabolismo , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Heme Oxigenase-1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos
5.
Arch Biochem Biophys ; 753: 109890, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38246327

RESUMO

Osteoimmunology has uncovered the critical role of the immune microenvironment in the bone healing process, with macrophages playing a central part in generating immune responses via chemokine production. Naringin, a flavanone glycoside extracted from various plants, has been shown to promote osteoblast differentiation, thereby enhancing bone formation and mitigating osteoporosis progression. Current research on the osteogenic mechanism primarily focuses on the direct impact of naringin on mesenchymal stem cells, while its indirect immunoregulatory effects remain elusive. In this study, we investigated the bone defect-enhancing effects of varying naringin concentrations in vivo using a cranial bone defect model in Sprague-Dawley rats. We assessed the osteoimmune modulation capacity of naringin by exposing lipopolysaccharide (LPS)-induced RAW 264.7 macrophages to different doses of naringin. To further elucidate the underlying osteogenic enhancement mechanism, Bone Marrow Stromal Cells (BMSCs) derived from mice were treated with conditioned media from naringin-treated macrophages. Our findings indicated that naringin promotes M2 phenotype polarization in macrophages, as evidenced by the downregulation of pro-inflammatory cytokines Inducible Nitric Oxide Synthase (iNOS), interleukin (IL)-1ß, and Tumor Necrosis Factor (TNF)-α, and the upregulation of anti-inflammatory cytokine Transforming growth factor (TGF)-ß. Transcriptome analysis revealed that differentially expressed genes were significantly enriched in osteoblast differentiation and anti-inflammatory response pathways in naringin-pretreated macrophages, with the cytokines signaling pathway being upregulated. The conditioned media from naringin-treated macrophages stimulated the expression of osteogenic-related genes Alkaline phosphatase (Alp), osteocalcin (Ocn), osteopontin (Opn), and Runt-related transcription factor (Runx) 2, as well as protein expression in BMSCs. In conclusion, naringin alleviates macrophage inflammation by promoting M2 phenotype polarization, which in turn enhances the osteogenic differentiation of BMSCs, contributing to its bone healing effects in vivo. These results suggest that naringin holds significant potential for improving bone defect healing through osteoimmune modulation.


Assuntos
Flavanonas , Células-Tronco Mesenquimais , Ratos , Camundongos , Animais , Osteogênese , Ratos Sprague-Dawley , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células Cultivadas , Macrófagos/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Diferenciação Celular , Fator de Crescimento Transformador beta/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia
6.
Mol Pharm ; 21(8): 3951-3966, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39049477

RESUMO

In this research, we utilized molecular simulations to create co-amorphous materials (CAMs) of ceritinib (CRT) with the objective of improving its solubility and bioavailability. We identified naringin (NRG) as a suitable co-former for CRT CAMs based on binding energy and intermolecular interactions through computational modeling. We used the solvent evaporation method to produce CAMs of CRT and NRG, expecting to enhance both solubility and bioavailability simultaneously. The solid-state characterization using techniques like differential scanning calorimeter, X-ray powder diffraction, and Fourier-transform infrared spectroscopy affirmed the formation of a single amorphous phase and the presence of intermolecular interactions between CRT and NRG in the CAMs. These materials remained physically stable for up to six months under dry conditions at 40 °C. Moreover, the CAMs demonstrated significant improvements in the solubility and dissolution of CRT (specifically in the ratio CRT:NRG 1:2). This, in turn, led to an increase in cytotoxicity, apoptotic cells, and G0/G1 phase inhibition in A549 cells compared to CRT alone. Furthermore, CRT permeability is also improved twofold, as estimated by the everted gut sac method. The enhanced solubility of CAMs also positively affected the pharmacokinetic parameters. When compared to the physical mixture, the CAMs of CRT:NRG 2:1 exhibited a 2.1-fold increase in CRT exposure (AUC0-t) and a 2.4-fold increase in plasma concentration (Cmax).


Assuntos
Disponibilidade Biológica , Carcinoma Pulmonar de Células não Pequenas , Flavanonas , Neoplasias Pulmonares , Polifenóis , Solubilidade , Flavanonas/química , Flavanonas/farmacocinética , Flavanonas/administração & dosagem , Humanos , Polifenóis/química , Polifenóis/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Células A549 , Animais , Apoptose/efeitos dos fármacos , Masculino , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
7.
Mol Cell Biochem ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332449

RESUMO

The function of mitochondria as a regulator of myocyte calcium homeostasis has been extensively discussed. The aim of the present work was further clarification of the details of modulation of the functional activity of rat cardiac mitochondria by exogenous Ca2+ ions either in the absence or in the presence of the plant flavonoid naringin. Low free Ca2+ concentrations (40-250 nM) effectively inhibited the respiratory activity of heart mitochondria, remaining unaffected the efficacy of oxygen consumption. In the presence of high exogenous Ca2+ ion concentrations (Ca2+ free was 550 µM), we observed a dramatic increase in mitochondrial heterogeneity in size and electron density, which was related to calcium-induced opening of the mitochondrial permeability transition pores (MPTP) and membrane depolarization (Ca2+free ions were from 150 to 750 µM). Naringin partially prevented Ca2+-induced cardiac mitochondrial morphological transformations (200 µM) and dose-dependently inhibited the respiratory activity of mitochondria (10-75 µM) in the absence or in the presence of calcium ions. Our data suggest that naringin (75 µM) promoted membrane potential dissipation, diminishing the potential-dependent accumulation of calcium ions by mitochondria and inhibiting calcium-induced MPTP formation. The modulating effect of the flavonoid on Ca2+-induced mitochondria alterations may be attributed to the weak-acidic nature of the flavonoid and its protonophoric/ionophoric properties. Our results show that the sensitivity of rat heart mitochondria to Ca2+ ions was much lower in the case of MPTP opening and much higher in the case of respiration inhibition as compared to liver mitochondria.

8.
Pharmacol Res ; 202: 107124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428704

RESUMO

Metabolic syndrome has become major health problems in recent decades, and natural compounds receive considerable attention in the management of metabolic syndrome. Among them, naringin is abundant in citrus fruits and tomatoes. Many studies have investigated the therapeutic effects of naringin in metabolic syndrome. This review discusses in vitro and in vivo studies on naringin and implications for clinical trials on metabolic syndrome such as diabetes mellitus, obesity, nonalcoholic fatty liver disease, dyslipidemia, and hypertension over the past decades, overviews the molecular mechanisms by which naringin targets metabolic syndrome, and analyzes possible correlations between the different mechanisms. This review provides a theoretical basis for the further application of naringin in the treatment of metabolic syndrome.


Assuntos
Flavanonas , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Humanos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Obesidade/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
9.
Mol Biol Rep ; 51(1): 56, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165461

RESUMO

BACKGROUND: Inflammation is intricately linked to the development of various diseases, such as diabetes, cardiovascular diseases, and cancer. Flavonoids, commonly found in plants, are known for their diverse health benefits, including antioxidant and anti-inflammatory properties. These compounds are categorized into different classes based on their chemical structure. structures. However, limited research has compared the effects of flavonoid aglycones and flavonoid glycosides. This study aims to assess the anti-inflammatory effects of naringenin and its glycosides (naringin and narirutin) in RAW264.7 macrophages. METHODS AND RESULTS: RAW264.7 cells were treated with naringenin, naringin, and narirutin, followed by stimulation with lipopolysaccharide. The levels of inflammatory mediators, including tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), nitric oxide (NO), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), were assessed. Additionally, the study examined nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation using western blot analysis. Among the compounds tested, narirutin exhibited the most potent anti-inflammatory effect against TNF-α, NO, and iNOS. Naringin and narirutin showed comparable inhibitory effects on IL-1ß and COX-2. Both naringin and narirutin suppressed the expression of pro-inflammatory mediators by targeting different levels of the NF-κB and MAPK pathways. Naringenin demonstrated the weakest anti-inflammatory effect, primarily inhibiting NF-κB and reducing the phosphorylation levels of p38. CONCLUSIONS: This study suggests that the presence of glycosides on naringenin and the varied binding forms of sugars in naringenin glycosides significantly influence the anti-inflammatory effects compared with naringenin in RAW 264.7 macrophages.


Assuntos
Glicosídeos , Lipopolissacarídeos , Humanos , Glicosídeos/farmacologia , Lipopolissacarídeos/farmacologia , Ciclo-Oxigenase 2 , NF-kappa B , Fator de Necrose Tumoral alfa , Flavonoides , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Macrófagos , Mediadores da Inflamação , Anti-Inflamatórios/farmacologia
10.
J Biochem Mol Toxicol ; 38(1): e23604, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38037725

RESUMO

Oxaliplatin (OXL) is a significant therapy agent for the worldwide increase in cancer cases. Naringin (4',5,7-trihydroxy flavonon 7-rhamnoglucoside, NRG) has a wide range of biological and pharmacological activities, including antioxidant and anti-inflammatory potentials. This research aimed to investigate NRG activity in OXL-induced hepatorenal toxicity. Accordingly, OXL (4 mg/kg b.w.) in 5% glucose was injected intraperitoneally on the first, second, fifth, and sixth days, and NRG (50 and 100 mg/kg b.w.) was given orally 30 min before to treatment. Biochemical, genetic, and histological methods were utilized to investigate the function tests, oxidant/antioxidant status, inflammation, apoptosis, and endoplasmic reticulum (ER) stress pathways in kidney and liver tissues. Administration of NRG demonstrated an antioxidant effect by increasing the activities of OXL-induced reduced antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and decreasing the elevated lipid peroxidation parameter malondialdehyde levels. Nuclear factor-κB, tumor necrosis factor-α, interleukin-1ß, and inducible nitric oxide synthase levels increased in OXL administered groups but reduced in NRG-treated groups. In the OXL-administered groups, NRG reduced the apoptosis-inducing factors Caspase-3 and B-cell lymphoma 2 (Bcl-2)-associated X protein levels, while elevating the antiapoptotic factor Bcl-2 levels. OXL triggered prolonged ER stress by increasing the levels of ER stress parameters activating transcription factor 6, protein kinase R-like ER kinase, inositol-requiring enzyme 1α, and glucose-regulated protein 78. Therefore, with the NRG administration, this activity was reduced and the ER stress level decreased. Taken together, it was found that OXL induced toxicity by increasing the levels of urea and creatinine, alanine transaminase, aspartate aminotransferase, and alkaline phosphatase activities, inflammation, apoptosis, ER stress, and oxidants in the liver and kidney tissue, and NRG had a protective effect by reversing the deterioration in these pathways.


Assuntos
Antioxidantes , Flavanonas , Estresse Oxidativo , Ratos , Animais , Antioxidantes/metabolismo , Oxaliplatina/farmacologia , Inflamação/metabolismo , Fígado/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA