Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.438
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 41: 415-429, 2018 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-29709206

RESUMO

The fields of human motor control, motor learning, and neurorehabilitation have long been linked by the intuition that understanding how we move (and learn to move) leads to better rehabilitation. In reality, these fields have remained largely separate. Our knowledge of the neural control of movement has expanded, but principles that can directly impact rehabilitation efficacy remain somewhat sparse. This raises two important questions: What can basic studies of motor learning really tell us about rehabilitation, and are we asking the right questions to improve the lives of patients? This review aims to contextualize recent advances in computational and behavioral studies of human motor learning within the framework of neurorehabilitation. We also discuss our views of the current challenges facing rehabilitation and outline potential clinical applications from recent theoretical and basic studies of motor learning and control.


Assuntos
Encéfalo/fisiologia , Aprendizagem/fisiologia , Movimento/fisiologia , Reabilitação Neurológica , Neurociências , Encéfalo/efeitos dos fármacos , Humanos
2.
Eur J Neurosci ; 59(2): 298-307, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128061

RESUMO

Children with cerebral palsy (CP) exhibit impaired motor control and significant muscle weakness due to a brain lesion. However, studies that assess the relationship between brain activity and performance on dynamic functional muscle strength assessments in CP are needed. The aim of this study was to determine the effect of a progressive lateral step-up test on prefrontal cortex (PFC) hemodynamic activity in children with CP. Fourteen ambulatory children with spastic CP (Gross Motor Function Classification System level I; 5-11 y) and 14 age- and sex-matched typically developing control children completed a progressive lateral step-up test at incremental step heights (0, 10, 15 and 20 cm) using their non-dominant lower limb. Hemodynamic activity in the PFC was assessed using non-invasive, portable functional neuroimaging (functional near-infrared spectroscopy). Children with CP completed fewer repetitions at each step height and exhibited lower PFC hemodynamic activity across step heights compared to controls. Lower PFC activation in CP was maintained after statistically controlling for the number of repetitions completed at each step height. PFC hemodynamic activity was not associated with LSUT task performance in children with CP, but a positive relationship was observed in controls at the most challenging 20 cm step height. The results suggest there is an altered PFC recruitment pattern in children with CP during a highly dynamic test of functional strength. Further studies are needed to explore the mechanisms underlying the suppressed PFC activation observed in children with CP compared to typically developing children.


Assuntos
Paralisia Cerebral , Criança , Humanos , Paralisia Cerebral/diagnóstico por imagem , Paralisia Cerebral/patologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Extremidade Inferior , Córtex Pré-Frontal/fisiologia , Hemodinâmica , Força Muscular/fisiologia
3.
J Neuroinflammation ; 21(1): 147, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835057

RESUMO

BACKGROUND: The gut microbiota plays a critical role in regulating brain function through the microbiome-gut-brain axis (MGBA). Dysbiosis of the gut microbiota is associated with neurological impairment in Traumatic brain injury (TBI) patients. Our previous study found that TBI results in a decrease in the abundance of Prevotella copri (P. copri). P. copri has been shown to have antioxidant effects in various diseases. Meanwhile, guanosine (GUO) is a metabolite of intestinal microbiota that can alleviate oxidative stress after TBI by activating the PI3K/Akt pathway. In this study, we investigated the effect of P. copri transplantation on TBI and its relationship with GUO-PI3K/Akt pathway. METHODS: In this study, a controlled cortical impact (CCI) model was used to induce TBI in adult male C57BL/6J mice. Subsequently, P. copri was transplanted by intragastric gavage for 7 consecutive days. To investigate the effect of the GUO-PI3K/Akt pathway in P. copri transplantation therapy, guanosine (GUO) was administered 2 h after TBI for 7 consecutive days, and PI3K inhibitor (LY294002) was administered 30 min before TBI. Various techniques were used to assess the effects of these interventions, including quantitative PCR, neurological behavior tests, metabolite analysis, ELISA, Western blot analysis, immunofluorescence, Evans blue assays, transmission electron microscopy, FITC-dextran permeability assay, gastrointestinal transit assessment, and 16 S rDNA sequencing. RESULTS: P. copri abundance was significantly reduced after TBI. P. copri transplantation alleviated motor and cognitive deficits tested by the NSS, Morris's water maze and open field test. P. copri transplantation attenuated oxidative stress and blood-brain barrier damage and reduced neuronal apoptosis after TBI. In addition, P. copri transplantation resulted in the reshaping of the intestinal flora, improved gastrointestinal motility and intestinal permeability. Metabolomics and ELISA analysis revealed a significant increase in GUO levels in feces, serum and injured brain after P. copri transplantation. Furthermore, the expression of p-PI3K and p-Akt was found to be increased after P. copri transplantation and GUO treatment. Notably, PI3K inhibitor LY294002 treatment attenuated the observed improvements. CONCLUSIONS: We demonstrate for the first time that P. copri transplantation can improve GI functions and alter gut microbiota dysbiosis after TBI. Additionally, P. copri transplantation can ameliorate neurological deficits, possibly via the GUO-PI3K/Akt signaling pathway after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Animais , Camundongos , Masculino , Reabilitação Neurológica/métodos , Prevotella , Microbioma Gastrointestinal/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo
4.
Mov Disord ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984716

RESUMO

BACKGROUND: One of the more challenging daily-life actions for Parkinson's disease patients is starting to stand from a sitting position. Parkinson's disease patients are known to have difficulty with self-initiated movements and benefit from external cues. However, the brain processes underlying external cueing as an aid remain unknown. The advent of mobile electroencephalography (EEG) now enables the investigation of these processes in dynamic sit-to-stand movements. OBJECTIVE: To identify cortical correlates of the mechanisms underlying auditory cued sit-to-stand movement in Parkinson's disease. METHODS: Twenty-two Parkinson's disease patients and 24 healthy age-matched participants performed self-initiated and externally cued sit-to-stand movements while cortical activity was recorded through 32-channel mobile EEG. RESULTS: Overall impaired integration of sensory and motor information can be seen in the Parkinson's disease patients exhibiting less modulation in the θ band during movement compared to healthy age-matched controls. How Parkinson's disease patients use external cueing of sit-to-stand movements can be seen in larger high ß power over sensorimotor brain areas compared to healthy controls, signaling sensory integration supporting the maintenance of motor output. This appears to require changes in cognitive processing to update the motor plan, reflected in frontal θ power increases in Parkinson's disease patients when cued. CONCLUSION: These findings provide the first neural evidence for why and how cueing improves motor function in sit-to-stand movement in Parkinson's disease. The Parkinson's disease patients' neural correlates indicate that cueing induces greater activation of motor cortical areas supporting the maintenance of a more stable motor output, but involves the use of cognitive resources to update the motor plan. © 2024 International Parkinson and Movement Disorder Society.

5.
Cerebellum ; 23(4): 1678-1696, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38280142

RESUMO

This study aimed to investigate the potential therapeutic effects of cerebellar transcranial magnetic stimulation (TMS) on balance and limb motor impairments in stroke patients. A meta-analysis of randomized controlled trials was conducted to assess the effects of cerebellar TMS on balance and motor impairments in stroke patients. Additionally, an activation likelihood estimation (ALE) meta-analysis was performed on resting-state functional magnetic resonance imaging (fMRI) studies to compare spontaneous neural activity differences between stroke patients and healthy controls using measures including the amplitude of low frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo). The analysis included 10 cerebellar TMS studies and 18 fMRI studies. Cerebellar TMS treatment demonstrated significant improvements in the Berg Balance Scale score (p < 0.0001) and the Fugl-Meyer Assessment lower extremity score (p < 0.0001) compared to the control group in stroke patients. Additionally, spontaneous neural activity alterations were identified in motor-related regions after stroke, including the precentral gyrus, putamen, thalamus, and paracentral lobule. Cerebellar TMS shows promise as a therapeutic intervention to enhance balance and lower limb motor function in stroke patients. It is easy for clinical application and addresses the limitations of insufficient direct stimulation depth on the leg area of the cortex. However, further research combining neuroimaging outcomes with clinical measurements is necessary to validate these findings.


Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Equilíbrio Postural , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Imageamento por Ressonância Magnética/métodos , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/fisiopatologia , Equilíbrio Postural/fisiologia , Descanso , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento
6.
Muscle Nerve ; 69(3): 354-361, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38156498

RESUMO

INTRODUCTION/AIMS: People with Charcot-Marie-Tooth Disease (CMT) frequently report problems with balance, which lead to an increased risk of falls. Evidence is emerging of training interventions to improve balance for people with CMT, but to date all have relied on clinic-based treatment and equipment. This proof-of-concept study explored whether a multi-modal program of proprioceptive rehabilitation and strength training can be delivered at home, to improve balance performance in people with CMT Type 1A. METHODS: Fourteen participants with CMT Type 1A were recruited into this randomized, two-arm study. Baseline assessments included measures of disease severity, posturography, physical function, and patient-reported outcome measurements. All participants received one falls education session. Participants were randomized to either 12 weeks of balance training or 12 weeks of usual activities. The intervention comprised a home-based, multi-sensory balance training and proximal strengthening program, supported by three home visits from a physiotherapist. RESULTS: Thirteen participants completed the study. The intervention was successfully implemented and well tolerated, with high participation levels. Functional measures of balance and walking showed strong effect sizes in favor of the training group. Posturography testing demonstrated moderate improvements in postural stability favoring the intervention group. Inconsistent changes were seen in lower limb strength measures. DISCUSSION: The intervention was feasible to implement and safe, with some evidence of improvement in balance performance. This supports future studies to expand this intervention to larger trials of pragmatic, home-delivered programs through current community rehabilitation services and supported self-management pathways.


Assuntos
Doença de Charcot-Marie-Tooth , Treinamento Resistido , Humanos , Doença de Charcot-Marie-Tooth/terapia , Terapia por Exercício , Estudo de Prova de Conceito , Modalidades de Fisioterapia , Equilíbrio Postural
7.
Muscle Nerve ; 69(5): 643-646, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488222

RESUMO

INTRODUCTION/AIMS: Mental rotation (MR), a tool of implicit motor imagery, is the ability to rotate mental representations of two- or three-dimensional objects. Although many reports have described changes in brain activity during MR tasks, it is not clear whether the excitability of anterior horn cells in the spinal cord can be changed. In this study, we examined whether MR tasks of hand images affect the excitability of anterior horn cells using F-wave analysis. METHODS: Right-handed, healthy participants were recruited for this study. F-waves of the right abductor pollicis brevis were recorded after stimulation of the right median nerve at rest, during a non-MR task, and during an MR task. The F-wave persistence and the F/M amplitude ratio were calculated and analyzed. RESULTS: Twenty participants (11 men and 9 women; mean age, 29.2 ± 4.4 years) were initially recruited, and data from the 18 that met the inclusion criteria were analyzed. The F-wave persistence was significantly higher in the MR task than in the resting condition (p = .001) or the non-MR task (p = .012). The F/M amplitude ratio was significantly higher in the MR task than in the resting condition (p = .019). DISCUSSION: The MR task increases the excitability of anterior horn cells corresponding to the same body part. MR tasks may have the potential for improving motor function in patients with reduced excitability of the anterior horn cells, although this methodology must be further verified in a clinical setting.


Assuntos
Células do Corno Anterior , Corpo Humano , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Células do Corno Anterior/fisiologia , Músculo Esquelético/fisiologia , Medula Espinal , Nervo Mediano/fisiologia , Potencial Evocado Motor/fisiologia , Eletromiografia
8.
J Neurooncol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044115

RESUMO

PURPOSE: The objective of this prospective, single-centre case series was to investigate feasibility, clinical outcomes, and neural correlates of non-invasive Neuromodulation-Induced Cortical Prehabilitation (NICP) before brain tumor surgery. Previous studies have shown that gross total resection is paramount to increase life expectancy but is counterbalanced by the need of preserving critical functional areas. NICP aims at expanding functional margins for extensive tumor resection without functional sequelae. Invasive NICP (intracranial neuromodulation) was effective but characterized by elevated costs and high rate of adverse events. Non-invasive NICP (transcranial neuromodulation) may represent a more feasible alternative. Nonetheless, up to this point, non-invasive NICP has been examined in only two case reports, yielding inconclusive findings. METHODS: Treatment sessions consisted of non-invasive neuromodulation, to transiently deactivate critical areas adjacent to the lesion, coupled with intensive functional training, to activate alternative nodes within the same functional network. Patients were evaluated pre-NICP, post-NICP, and at follow-up post-surgery. RESULTS: Ten patients performed the intervention. Feasibility criteria were met (retention, adherence, safety, and patient's satisfaction). Clinical outcomes showed overall stability and improvements in motor and executive function from pre- to post-NICP, and at follow-up. Relevant plasticity changes (increase in the distance between tumor and critical area) were observed when the neuromodulation target was guided by functional neuroimaging data. CONCLUSION: This is the first case series demonstrating feasibility of non-invasive NICP. Neural correlates indicate that neuroimaging-guided target selection may represent a valid strategy to leverage neuroplastic changes before neurosurgery. Further investigations are needed to confirm such preliminary findings.

9.
BMC Neurol ; 24(1): 233, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965499

RESUMO

BACKGROUND: Body weight unloaded treadmill training has shown limited efficacy in further improving functional capacity after subacute rehabilitation of ischemic stroke patients. Dynamic robot assisted bodyweight unloading is a novel technology that may provide superior training stimuli and continued functional improvements in individuals with residual impairments in the chronic phase after the ischemic insult. The aim of the present study is to investigate the effect of dynamic robot-assisted versus standard training, initiated 6 months post-stroke, on motor function, physical function, fatigue, and quality of life in stroke-affected individuals still suffering from moderate-to-severe disabilities after subacute rehabilitation. METHODS: Stroke-affected individuals with moderate to severe disabilities will be recruited into a prospective cohort with measurements at 3-, 6-, 12- and 18-months post-stroke. A randomised controlled trial (RCT) will be nested in the prospective cohort with measurements pre-intervention (Pre), post-intervention (Post) and at follow-up 6 months following post-intervention testing. The present RCT will be conducted as a multicentre parallel-group superiority of intervention study with assessor-blinding and a stratified block randomisation design. Following pre-intervention testing, participants in the RCT study will be randomised into robot-assisted training (intervention) or standard training (active control). Participants in both groups will train 1:1 with a physiotherapist two times a week for 6 months (groups are matched for time allocated to training). The primary outcome is the between-group difference in change score of Fugl-Meyer Lower Extremity Assessment from pre-post intervention on the intention-to-treat population. A per-protocol analysis will be conducted analysing the differences in change scores of the participants demonstrating acceptable adherence. A priori sample size calculation allowing the detection of the minimally clinically important between-group difference of 6 points in the primary outcome (standard deviation 6 point, α = 5% and ß = 80%) resulted in 34 study participants. Allowing for dropout the study will include 40 participants in total. DISCUSSION: For stroke-affected individuals still suffering from moderate to severe disabilities following subacute standard rehabilitation, training interventions based on dynamic robot-assisted body weight unloading may facilitate an appropriate intensity, volume and task-specificity in training leading to superior functional recovery compared to training without the use of body weight unloading. TRIAL REGISTRATION: ClinicalTrials.gov. NCT06273475. TRIAL STATUS: Recruiting. Trial identifier: NCT06273475. Registry name: ClinicalTrials.gov. Date of registration on ClinicalTrials.gov: 22/02/2024.


Assuntos
AVC Isquêmico , Robótica , Reabilitação do Acidente Vascular Cerebral , Humanos , Robótica/métodos , Robótica/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Reabilitação do Acidente Vascular Cerebral/instrumentação , AVC Isquêmico/reabilitação , AVC Isquêmico/fisiopatologia , Estudos Prospectivos , Terapia por Exercício/métodos , Terapia por Exercício/instrumentação , Recuperação de Função Fisiológica/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Resultado do Tratamento , Estudos de Coortes , Adulto , Atividade Motora/fisiologia
10.
BMC Neurol ; 24(1): 200, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872109

RESUMO

BACKGROUND: In the United States, there are over seven million stroke survivors, with many facing gait impairments due to foot drop. This restricts their community ambulation and hinders functional independence, leading to several long-term health complications. Despite the best available physical therapy, gait function is incompletely recovered, and this occurs mainly during the acute phase post-stroke. Therapeutic options are limited currently. Novel therapies based on neurobiological principles have the potential to lead to long-term functional improvements. The Brain-Computer Interface (BCI) controlled Functional Electrical Stimulation (FES) system is one such strategy. It is based on Hebbian principles and has shown promise in early feasibility studies. The current study describes the BCI-FES clinical trial, which examines the safety and efficacy of this system, compared to conventional physical therapy (PT), to improve gait velocity for those with chronic gait impairment post-stroke. The trial also aims to find other secondary factors that may impact or accompany these improvements and establish the potential of Hebbian-based rehabilitation therapies. METHODS: This Phase II clinical trial is a two-arm, randomized, controlled, longitudinal study with 66 stroke participants in the chronic (> 6 months) stage of gait impairment. The participants undergo either BCI-FES paired with PT or dose-matched PT sessions (three times weekly for four weeks). The primary outcome is gait velocity (10-meter walk test), and secondary outcomes include gait endurance, range of motion, strength, sensation, quality of life, and neurophysiological biomarkers. These measures are acquired longitudinally. DISCUSSION: BCI-FES holds promise for gait velocity improvements in stroke patients. This clinical trial will evaluate the safety and efficacy of BCI-FES therapy when compared to dose-matched conventional therapy. The success of this trial will inform the potential utility of a Phase III efficacy trial. TRIAL REGISTRATION: The trial was registered as "BCI-FES Therapy for Stroke Rehabilitation" on February 19, 2020, at clinicaltrials.gov with the identifier NCT04279067.


Assuntos
Interfaces Cérebro-Computador , Terapia por Estimulação Elétrica , Transtornos Neurológicos da Marcha , Reabilitação do Acidente Vascular Cerebral , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Crônica , Terapia por Estimulação Elétrica/métodos , Marcha/fisiologia , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia , Método Simples-Cego , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento
11.
Brain Cogn ; 175: 106123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183905

RESUMO

Motivational deficits in patients recovering from stroke are common and can reduce active participation in rehabilitation and thereby impede functional recovery. We investigated whether stroke patients with clinically reduced drive, initiation, and endurance during functional rehabilitative training (n = 30) display systematic alterations in effort-based decision making compared to age, sex, and severity-matched stroke patients (n = 30) whose drive appeared unaffected. Notably, the two groups did not differ in self-reported ratings of apathy and depression. However, on an effort-based decision-making task, stroke patients with clinically apparent drive impairment showed intact willingness to accept effort for reward, but were more likely to fail to execute the required effort compared to patients without apparent drive impairments. In other words, the decision behavioural assessment revealed that stroke patients that displayed reduced drive, initiation, and endurance during inpatient neurorehabilitation failed to persist in goal-directed effort production, even over very short periods. These findings indicate that reduced drive during rehabilitative therapy in post-stroke patients is not due to a diminished motivation to invest physical effort, but instead is related to a reduced persistence with effortful behaviour.


Assuntos
Apatia , Tomada de Decisões , Humanos , Cognição , Motivação , Recompensa
12.
Age Ageing ; 53(6)2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38935531

RESUMO

BACKGROUND: This article introduces a novel index aimed at uncovering specific brain connectivity patterns associated with Alzheimer's disease (AD), defined according to neuropsychological patterns. METHODS: Electroencephalographic (EEG) recordings of 370 people, including 170 healthy subjects and 200 mild-AD patients, were acquired in different clinical centres using different acquisition equipment by harmonising acquisition settings. The study employed a new derived Small World (SW) index, SWcomb, that serves as a comprehensive metric designed to integrate the seven SW parameters, computed across the typical EEG frequency bands. The objective is to create a unified index that effectively distinguishes individuals with a neuropsychological pattern compatible with AD from healthy ones. RESULTS: Results showed that the healthy group exhibited the lowest SWcomb values, while the AD group displayed the highest SWcomb ones. CONCLUSIONS: These findings suggest that SWcomb index represents an easy-to-perform, low-cost, widely available and non-invasive biomarker for distinguishing between healthy individuals and AD patients.


Assuntos
Doença de Alzheimer , Eletroencefalografia , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Feminino , Masculino , Idoso , Estudos de Casos e Controles , Testes Neuropsicológicos , Encéfalo/fisiopatologia , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Ondas Encefálicas
13.
Arch Phys Med Rehabil ; 105(3): 604-610, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37657530

RESUMO

Psychologists have been applying neurorehabilitation models of care for many years. These practitioners come from different training backgrounds and use a variety of titles to refer to themselves despite considerable overlap in practice patterns, professional identification, and salary. Titles like 'neurorehabilitation psychologist' and 'rehabilitation neuropsychologist' are sometimes used by practitioners in the field to indicate their specialty area, but are not formally recognized by the American Psychological Association, the American Board of Professional Psychology, or by training councils in clinical neuropsychology (CN) or rehabilitation psychology (RP). Neither the CN or RP specialties alone fully address or define the competencies, skill sets, and clinical experiences required to provide high quality, comprehensive neurorehabilitation psychology services across settings. Therefore, irrespective of practice setting, we believe that both clinical neuropsychologists and rehabilitation psychologists should ideally have mastery of specific, overlapping competencies and a philosophical approach to care that we call neurorehabilitation psychology in this paper. Trainees and early career professionals who aspire to practice in this arena are often pressured to prioritize either CN or RP pathways over the other, with anxiety about perceived and real potential for falling short in their training goals. In the absence of an explicit training path or formal guidelines, these professionals emerge only after the opportunity, privilege, or frank luck of working with specific mentors or in exceptional patient care settings that lend themselves to obtaining integrated competencies in neurorehabilitation psychology. This paper reflects the efforts of 7 practitioners to preliminarily define the practice and philosophies of neurorehabilitation psychology, the skill sets and competencies deemed essential for best practice, and essential training pathway elements. We propose competencies designed to maximize the integrity of training and provide clear guideposts for professional development.


Assuntos
Reabilitação Neurológica , Humanos , Ansiedade , Mentores , Pressão , Salários e Benefícios
14.
Artigo em Inglês | MEDLINE | ID: mdl-38579958

RESUMO

OBJECTIVE: To determine the efficacy of neural interface-based neurorehabilitation, including brain-computer interface, through conventional and individual patient data (IPD) meta-analysis and to assess clinical parameters associated with positive response to neural interface-based neurorehabilitation. DATA SOURCES: PubMed, EMBASE, and Cochrane Library databases up to February 2022 were reviewed. STUDY SELECTION: Studies using neural interface-controlled physical effectors (functional electrical stimulation and/or powered exoskeletons) and reported Fugl-Meyer Assessment-upper-extremity (FMA-UE) scores were identified. This meta-analysis was prospectively registered on PROSPERO (#CRD42022312428). PRISMA guidelines were followed. DATA EXTRACTION: Changes in FMA-UE scores were pooled to estimate the mean effect size. Subgroup analyses were performed on clinical parameters and neural interface parameters with both study-level variables and IPD. DATA SYNTHESIS: Forty-six studies containing 617 patients were included. Twenty-nine studies involving 214 patients reported IPD. FMA-UE scores increased by a mean of 5.23 (95% confidence interval [CI]: 3.85-6.61). Systems that used motor attempt resulted in greater FMA-UE gain than motor imagery, as did training lasting >4 vs ≤4 weeks. On IPD analysis, the mean time-to-improvement above minimal clinically important difference (MCID) was 12 weeks (95% CI: 7 to not reached). At 6 months, 58% improved above MCID (95% CI: 41%-70%). Patients with severe impairment (P=.042) and age >50 years (P=.0022) correlated with the failure to improve above the MCID on univariate log-rank tests. However, these factors were only borderline significant on multivariate Cox analysis (hazard ratio [HR] 0.15, P=.08 and HR 0.47, P=.06, respectively). CONCLUSION: Neural interface-based motor rehabilitation resulted in significant, although modest, reductions in poststroke impairment and should be considered for wider applications in stroke neurorehabilitation.

15.
Artif Organs ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825886

RESUMO

BACKGROUND: Functional Electrical Stimulation (FES) represents a promising technique for promoting functional recovery in individuals with neuromuscular diseases. Traditionally, current pulses are delivered through self-adhesive hydrogel Ag/AgCl electrodes, which allow a good contact with the skin, are easy-to-use and have a moderate cost. However, skin adherence decreases after a few uses and skin irritations can originate. Recently, textile electrodes have become an attractive alternative as they assure increased durability, easy integration into clothes and can be conveniently cleaned, improving the wearability of FES. However, as various manufacture processes were attempted, their clear validation is lacking. This proof-of-concept study proposes a novel set of ink-based printed textile electrodes and compares them to adhesive hydrogel electrodes in terms of impedance, stimulation performance and perceived comfort. METHODS: The skin-electrode impedance was evaluated for both types of electrodes under different conditions. These electrodes were then used to deliver FES to the Rectus Femoris of 14 healthy subjects to induce its contraction in both isometric and dynamic conditions. This allowed to compare the two types of electrodes in terms of sensory, motor, maximum and pain thresholds, FES-induced range of motion during dynamic tests, FES-induced torque during isometric tests and perceived stimulation comfort. RESULTS: No statistically significant differences were found both in terms of stimulation performance (Wilcoxon test) and comfort (Generalized Linear Mixed Model). CONCLUSION: The results showed that the proposed ink-based printed textile electrodes can be effectively used as alternative to hydrogel ones. Further experiments are needed to evaluate their durability and their response to sterilizability and stretching tests.

16.
Clin Rehabil ; : 2692155241258740, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863234

RESUMO

OBJECTIVE: This study aimed to assess the efficacy of radial extracorporeal shock wave therapy in treating upper limb spasticity after a stroke. DESIGN: Randomized controlled trial. SETTING: Zhujiang Hospital of Southern Medical University. SUBJECTS: This study included 95 people with stroke. INTERVENTION: The active (n = 47) and sham-placebo (n = 48) radial extracorporeal shockwave therapy groups received three treatment sessions (every third day). MAIN MEASURES: The Modified Ashworth Scale, Hmax/Mmax ratio, root mean square, co-contraction ratio, mechanical parameters of the muscle and temperature were measured at baseline and days 2, 5 and 8. RESULTS: Among the 135 potential participants screened, 100 were enrolled and allocated randomly, with 95 participants ultimately being included in the intent-to-treat analysis dataset. The active group showed significantly better improvements in upper limb spasticity and muscle function than did the sham-placebo group. Greater improvements in the Modified Ashworth Scale were observed in the active group than in the sham-placebo group (difference, -0.45; 95% CI, -0.69 to -0.22; P < 0.001). Moreover, significant differences in root mean square, co-contraction ratio and Hmax/Mmax ratio were observed between the two groups (all P < 0.001). The mechanical parameters of the biceps muscle were significantly better in the active group than in the sham-placebo group (P < 0.001). The active group had a higher temperature than the sham-placebo group, although the difference was not significant (P = 0.070). CONCLUSIONS: This study revealed that the treatment with extracorporeal shockwave therapy can relieve upper limb spasticity in people with stroke.

17.
J Med Internet Res ; 26: e51245, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285489

RESUMO

BACKGROUND: People with acquired brain injury (ABI) may be more susceptible to scams owing to postinjury cognitive and psychosocial consequences. Cyberscams result in financial loss and debilitating psychological impacts such as shame and mistrust, interference with neurorehabilitation, and reduced independence. Despite these significant consequences, there are no psychological treatments to support cyberscam survivors. There is limited evidence regarding how the current workforce is addressing post-ABI cyberscams. OBJECTIVE: This study aims to understand the perspectives and needs of clinicians and service providers in addressing post-ABI cyberscams. METHODS: Overall, 20 multidisciplinary clinicians and service providers were recruited through purposive sampling across Australia. Semistructured interviews explored post-ABI scam experiences and vulnerabilities, treatments and their efficacy, and recommendations for future cybersafety recovery interventions. Reflexive thematic analysis was used. RESULTS: In total, 8 themes encompassing a biopsychosocial understanding of scam vulnerabilities and impacts were identified: "genuine lack of awareness: cognitive-executive difficulties"; "not coping with the loss of it all"; "needing trust and connection"; "strong reactions of trusted others"; "nothing structured to do"; "financial stress and independence"; "cyberability"; and "scammer persuasion." Each theme informed clinical recommendations including the need to provide psychological and cognitive support, enhance financial and cybersafety skills, promote meaningful social engagement, and foster collaboration between families and clinical support teams. CONCLUSIONS: The multifaceted range of scam vulnerabilities and impacts highlighted the need for individualized, comprehensive, and targeted treatments using a biopsychosocial approach to enable cyberscam recovery among people with ABI. These findings will guide the development of a co-designed intervention.


Assuntos
Lesões Encefálicas , Humanos , Austrália , Lesões Encefálicas/terapia , Capacidades de Enfrentamento , Estresse Financeiro , Estudos Interdisciplinares
18.
J Neuroeng Rehabil ; 21(1): 83, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802939

RESUMO

BACKGROUND: Gait deficits are very common after stroke and therefore an important aspect in poststroke rehabilitation. A currently little used method in gait rehabilitation after stroke is the activation of the flexor reflex (FR) by electrical stimulation of the sole of foot while walking. The aim of this study was to investigate the effect of FR stimulation on gait performance and gait parameters in participants with stroke within a single session of flexor reflex stimulation using Incedo™. METHODS: Twenty-five participants with subacute (n = 14) and chronic (n = 11) stroke were enrolled in the study. Motor functions were tested with a 10-m walk test (10mWT), a 2-min walk test (2minWT), and a gait analysis. These tests were performed with and without Incedo™ within a single session in randomized order. RESULTS: In the 10mWT, a significant difference was found between walking with Incedo™ (15.0 ± 8.5 s) versus without Incedo™ (17.0 ± 11.4 s, p = 0.01). Similarly, the 2minWT showed a significant improvement with Incedo™ use (90.0 ± 36.4 m) compared to without Incedo™ (86.3 ± 36.8 m, p = 0.03). These results indicate that while the improvements are statistically significant, they are modest and should be considered in the context of their clinical relevance. The gait parameters remained unchanged except for the step length. A subgroup analysis indicated that participants with subacute and chronic stroke responded similarly to the stimulation. There was a correlation between the degree of response to electrostimulation while walking and degree of improvement in 2minWT (r = 0.50, p = 0.01). CONCLUSIONS: This study is the first to examine FR activation effects in chronic stroke patients and suggests that stimulation effects are independent of the time since stroke. A larger controlled clinical trial is warranted that addresses issues as the necessary number of therapeutical sessions and for how long stimulation-induced improvements outlast the treatment period. TRIAL REGISTRATION: The trial was retrospectively registered in German Clinical Trials Register. CLINICAL TRIAL REGISTRATION NUMBER: DRKS00021457. Date of registration: 29 June 2020.


Assuntos
Terapia por Estimulação Elétrica , Transtornos Neurológicos da Marcha , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Masculino , Reabilitação do Acidente Vascular Cerebral/métodos , Feminino , Pessoa de Meia-Idade , Idoso , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/reabilitação , Terapia por Estimulação Elétrica/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Marcha/fisiologia , Reflexo/fisiologia , Adulto
19.
J Neuroeng Rehabil ; 21(1): 18, 2024 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311729

RESUMO

Practicing clinicians in neurorehabilitation continue to lack a systematic evidence base to personalize rehabilitation therapies to individual patients and thereby maximize outcomes. Computational modeling- collecting, analyzing, and modeling neurorehabilitation data- holds great promise. A key question is how can computational modeling contribute to the evidence base for personalized rehabilitation? As representatives of the clinicians and clinician-scientists who attended the 2023 NSF DARE conference at USC, here we offer our perspectives and discussion on this topic. Our overarching thesis is that clinical insight should inform all steps of modeling, from construction to output, in neurorehabilitation and that this process requires close collaboration between researchers and the clinical community. We start with two clinical case examples focused on motor rehabilitation after stroke which provide context to the heterogeneity of neurologic injury, the complexity of post-acute neurologic care, the neuroscience of recovery, and the current state of outcome assessment in rehabilitation clinical care. Do we provide different therapies to these two different patients to maximize outcomes? Asking this question leads to a corollary: how do we build the evidence base to support the use of different therapies for individual patients? We discuss seven points critical to clinical translation of computational modeling research in neurorehabilitation- (i) clinical endpoints, (ii) hypothesis- versus data-driven models, (iii) biological processes, (iv) contextualizing outcome measures, (v) clinical collaboration for device translation, (vi) modeling in the real world and (vii) clinical touchpoints across all stages of research. We conclude with our views on key avenues for future investment (clinical-research collaboration, new educational pathways, interdisciplinary engagement) to enable maximal translational value of computational modeling research in neurorehabilitation.


Assuntos
Reabilitação Neurológica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Avaliação de Resultados em Cuidados de Saúde
20.
J Neuroeng Rehabil ; 21(1): 73, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705999

RESUMO

BACKGROUND: Exoskeletons are increasingly applied during overground gait and balance rehabilitation following neurological impairment, although optimal parameters for specific indications are yet to be established. OBJECTIVE: This systematic review aimed to identify dose and dosage of exoskeleton-based therapy protocols for overground locomotor training in spinal cord injury/disease. METHODS: A systematic review was conducted in accordance with the Preferred Reporting Items Systematic Reviews and Meta-Analyses guidelines. A literature search was performed using the CINAHL Complete, Embase, Emcare Nursing, Medline ALL, and Web of Science databases. Studies in adults with subacute and/or chronic spinal cord injury/disease were included if they reported (1) dose (e.g., single session duration and total number of sessions) and dosage (e.g., frequency of sessions/week and total duration of intervention) parameters, and (2) at least one gait and/or balance outcome measure. RESULTS: Of 2,108 studies identified, after removing duplicates and filtering for inclusion, 19 were selected and dose, dosage and efficacy were abstracted. Data revealed a great heterogeneity in dose, dosage, and indications, with overall recommendation of 60-min sessions delivered 3 times a week, for 9 weeks in 27 sessions. Specific protocols were also identified for functional restoration (60-min, 3 times a week, for 8 weeks/24 sessions) and cardiorespiratory rehabilitation (60-min, 3 times a week, for 12 weeks/36 sessions). CONCLUSION: This review provides evidence-based best practice recommendations for overground exoskeleton training among individuals with spinal cord injury/disease based on individual therapeutic goals - functional restoration or cardiorespiratory rehabilitation. There is a need for structured exoskeleton clinical translation studies based on standardized methods and common therapeutic outcomes.


Assuntos
Terapia por Exercício , Exoesqueleto Energizado , Equilíbrio Postural , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/reabilitação , Humanos , Equilíbrio Postural/fisiologia , Terapia por Exercício/métodos , Terapia por Exercício/instrumentação , Marcha/fisiologia , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA