Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(7): 2165-2174, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329906

RESUMO

Magnetic nanoarrays promise to enable new energy-efficient computations based on spintronics or magnonics. In this work, we present a block copolymer-assisted strategy for fabricating ordered magnetic nanostructures on silicon and permalloy substrates. Block copolymer micelle-like structures were used as a template in which polyoxometalate (POM) clusters could assemble in an opal-like structure. A combination of microscopy and scattering techniques was used to confirm the structural and organizational features of the fabricated materials. The magnetic properties of these materials were investigated by polarized neutron reflectometry, nuclear magnetic resonance, and magnetometry measurements. The data show that a magnetic structural design was achieved and that a thin layer of patterned POMs strongly influenced an underlying permalloy layer. This work demonstrates that the bottom-up pathway is a potentially viable method for patterning magnetic substrates on a sub-100 nm scale, toward the magnetic nanostructures needed for spintronic or magnonic crystal devices.

2.
Small ; 20(6): e2305052, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798622

RESUMO

The rapid increase and spread of Gram-negative bacteria resistant to many or all existing treatments threaten a return to the preantibiotic era. The presence of bacterial polysaccharides that impede the penetration of many antimicrobials and protect them from the innate immune system contributes to resistance and pathogenicity. No currently approved antibiotics target the polysaccharide regions of microbes. Here, describe monolaurin-based niosomes, the first lipid nanoparticles that can eliminate bacterial polysaccharides from hypervirulent Klebsiella pneumoniae, are described. Their combination with polymyxin B shows no cytotoxicity in vitro and is highly effective in combating K. pneumoniae infection in vivo. Comprehensive mechanistic studies have revealed that antimicrobial activity proceeds via a multimodal mechanism. Initially, lipid nanoparticles disrupt polysaccharides, then outer and inner membranes are destabilized and destroyed by polymyxin B, resulting in synergistic cell lysis. This novel lipidic nanoparticle system shows tremendous promise as a highly effective antimicrobial treatment targeting multidrug-resistant Gram-negative pathogens.


Assuntos
Nanopartículas , Polimixina B , Polimixina B/farmacologia , Lipossomos/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Klebsiella pneumoniae , Polissacarídeos Bacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
3.
Sci Technol Adv Mater ; 25(1): 2315015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455384

RESUMO

We report investigations of the magnetic textures in periodic multilayers [Pt(1 nm)/(CoFeB(0.8 nm)/Ru(1.4 nm)]10 using polarised neutron reflectometry (PNR) and small-angle neutron scattering (SANS). The multilayers are known to host skyrmions stabilized by Dzyaloshinskii-Moriya interactions induced by broken inversion symmetry and spin-orbit coupling at the asymmetric interfaces. From depth-dependent PNR measurements, we observed well-defined structural features and obtained the layer-resolved magnetization profiles. The in-plane magnetization of the CoFeB layers calculated from fitting of the PNR profiles is found to be in excellent agreement with magnetometry data. Using SANS as a bulk probe of the entire multilayer, we observe long-period magnetic stripe domains and skyrmion ensembles with full orientational disorder at room temperature. No sign of skyrmions is found below 250 K, which we suggest is due to an increase of an effective magnetic anisotropy in the CoFeB layer on cooling that suppresses skyrmion stability. Using polarised SANS at room temperature, we prove the existence of pure Néel-type windings in both stripe domain and skyrmion regimes. No Bloch-type winding admixture, i.e. an indication for hybrid windings, is detected within the measurement sensitivity, in good agreement with expectations according to our micromagnetic modelling of the multilayers. Our findings using neutron techniques provide valuable microscopic insights into the rich magnetic behavior of skyrmion-hosting multilayers, which are essential for the advancement of future skyrmion-based spintronic devices.


The study presents a unique investigation of [Pt/CoFeB/Ru]10 multilayers, revealing suppressed skyrmion phases, intricate magnetic domain structures, and Néel-type domain walls, providing crucial insights for spintronic applications.

4.
Nano Lett ; 23(4): 1273-1279, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36729943

RESUMO

Regulating the magnetic properties of multiferroics lays the foundation for their prospective application in spintronic devices. Single-phase multiferroics, such as rare-earth ferrites, are promising candidates; however, they typically exhibit weak magnetism at room temperature (RT). Here, we significantly boosted the RT ferromagnetism of a representative ferrite, EuFeO3, by oxygen defect engineering. Polarized neutron reflectometry and magnetometry measurements reveal that saturation magnetization reaches 0.04 µB/Fe, which is approximately 5 times higher than its bulk phase. Combining the annular bright-field images with theoretical assessment, we unravel the underlying mechanism for magnetic enhancement, in which the decrease in Fe-O-Fe bond angles caused by oxygen vacancies (VO) strengthens magnetic interactions and tilts Fe spins. Furthermore, the internal relationship between magnetism and VO was established by illustrating how the magnetic structure and magnitude change with VO configuration and concentration. Our strategy for regulating magnetic properties can be applied to numerous functional oxide materials.

5.
Macromol Rapid Commun ; 44(9): e2300035, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36815590

RESUMO

Time-of-flight neutron reflectometry (ToF-NR) performed under different relative humidity conditions demonstrates that polymer brushes constituted by hydrophilic, cyclic macromolecules exhibit a more compact conformation with lower roughness as compared to linear brush analogues, due to the absence of dangling chain ends extending at the polymer-vapor interface. In addition, cyclic brushes feature a larger swelling ratio and an increased solvent uptake with respect to their linear counterparts as a consequence of the increased interchain steric repulsions. It is proposed that differences in swelling ratios between linear and cyclic brushes come from differences in osmotic pressure experienced by each brush topology. These differences stem from entropic constraints. The findings suggest that to correlate the equilibrium swelling ratios at different relative humidity for different topologies a new form of the Flory-like expression for equilibrium thicknesses of grafted brushes is needed.


Assuntos
Polímeros , Substâncias Macromoleculares , Solventes , Conformação Molecular , Interações Hidrofóbicas e Hidrofílicas
6.
Proc Natl Acad Sci U S A ; 117(39): 24258-24268, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32913056

RESUMO

The small GTPase KRAS is localized at the plasma membrane where it functions as a molecular switch, coupling extracellular growth factor stimulation to intracellular signaling networks. In this process, KRAS recruits effectors, such as RAF kinase, to the plasma membrane where they are activated by a series of complex molecular steps. Defining the membrane-bound state of KRAS is fundamental to understanding the activation of RAF kinase and in evaluating novel therapeutic opportunities for the inhibition of oncogenic KRAS-mediated signaling. We combined multiple biophysical measurements and computational methodologies to generate a consensus model for authentically processed, membrane-anchored KRAS. In contrast to the two membrane-proximal conformations previously reported, we identify a third significantly populated state using a combination of neutron reflectivity, fast photochemical oxidation of proteins (FPOP), and NMR. In this highly populated state, which we refer to as "membrane-distal" and estimate to comprise ∼90% of the ensemble, the G-domain does not directly contact the membrane but is tethered via its C-terminal hypervariable region and carboxymethylated farnesyl moiety, as shown by FPOP. Subsequent interaction of the RAF1 RAS binding domain with KRAS does not significantly change G-domain configurations on the membrane but affects their relative populations. Overall, our results are consistent with a directional fly-casting mechanism for KRAS, in which the membrane-distal state of the G-domain can effectively recruit RAF kinase from the cytoplasm for activation at the membrane.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular
7.
Nano Lett ; 22(14): 5735-5741, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35850534

RESUMO

Topological surface states are a new class of electronic states with novel properties, including the potential for annihilation between surface states from two topological insulators at a common interface. Here, we report the annihilation and creation of topological surface states in the SnTe/Crx(BiSb)2-xTe3 (CBST) heterostructures as evidenced by magneto-transport, polarized neutron reflectometry, and first-principles calculations. Our results show that topological surface states are induced in the otherwise topologically trivial two-quintuple-layers thick CBST when interfaced with SnTe, as a result of the surface state annihilation at the SnTe/CBST interface. Moreover, we unveiled systematic changes in the transport behaviors of the heterostructures with respect to changing Fermi level and thickness. Our observation of surface state creation and annihilation demonstrates a promising way of designing and engineering topological surface states for dissipationless electronics.

8.
Nano Lett ; 21(7): 3146-3154, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33750141

RESUMO

Manipulation of octahedral distortion at atomic scale is an effective means to tune the ground states of functional oxides. Previous work demonstrates that strain and film thickness are variable parameters to modify the octahedral parameters. However, selective control of bonding geometry by structural propagation from adjacent layers is rarely studied. Here we propose a new route to tune the ferromagnetism in SrRuO3 (SRO) ultrathin layers by oxygen coordination of adjacent SrCuO2 (SCO) layers. The infinite-layered CuO2 exhibits a structural transformation from "planar-type" to "chain-type" with reduced film thickness. Two orientations dramatically modify the polyhedral connectivity at the interface, thus altering the octahedral distortion of SRO. The local structural variation changes the spin state of Ru and orbital hybridization strength, leading to a significant change in the magnetoresistance and anomalous Hall resistivity. These findings could launch investigations into adaptive control of functionalities in quantum oxide heterostructures using oxygen coordination.

9.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269583

RESUMO

The fourth enzymatic reaction in the de novo pyrimidine biosynthesis, the oxidation of dihydroorotate to orotate, is catalyzed by dihydroorotate dehydrogenase (DHODH). Enzymes belonging to the DHODH Class II are membrane-bound proteins that use ubiquinones as their electron acceptors. We have designed this study to understand the interaction of an N-terminally truncated human DHODH (HsΔ29DHODH) and the DHODH from Escherichia coli (EcDHODH) with ubiquinone (Q10) in supported lipid membranes using neutron reflectometry (NR). NR has allowed us to determine in situ, under solution conditions, how the enzymes bind to lipid membranes and to unambiguously resolve the location of Q10. Q10 is exclusively located at the center of all of the lipid bilayers investigated, and upon binding, both of the DHODHs penetrate into the hydrophobic region of the outer lipid leaflet towards the Q10. We therefore show that the interaction between the soluble enzymes and the membrane-embedded Q10 is mediated by enzyme penetration. We can also show that EcDHODH binds more efficiently to the surface of simple bilayers consisting of 1-palmitoyl, 2-oleoyl phosphatidylcholine, and tetraoleoyl cardiolipin than HsΔ29DHODH, but does not penetrate into the lipids to the same degree. Our results also highlight the importance of Q10, as well as lipid composition, on enzyme binding.


Assuntos
Di-Hidro-Orotato Desidrogenase/química , Di-Hidro-Orotato Desidrogenase/metabolismo , Escherichia coli/enzimologia , Bicamadas Lipídicas/metabolismo , Ubiquinona/metabolismo , Cardiolipinas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fosfatidilcolinas/metabolismo , Conformação Proteica , Domínios Proteicos
10.
Small ; 17(51): e2104356, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34791798

RESUMO

Oxygen diffusivity and surface exchange kinetics underpin the ionic, electronic, and catalytic functionalities of complex multivalent oxides. Towards understanding and controlling the kinetics of oxygen transport in emerging technologies, it is highly desirable to reveal the underlying lattice dynamics and ionic activities related to oxygen variation. In this study, the evolution of oxygen content is identified in real-time during the progress of a topotactic phase transition in La0.7 Sr0.3 MnO3-δ epitaxial thin films, both at the surface and throughout the bulk. Using polarized neutron reflectometry, a quantitative depth profile of the oxygen content gradient is achieved, which, alongside atomic-resolution scanning transmission electron microscopy, uniquely reveals the formation of a novel structural phase near the surface. Surface-sensitive X-ray spectroscopies further confirm a significant change of the electronic structure accompanying the transition. The anisotropic features of this novel phase enable a distinct oxygen diffusion pathway in contrast to conventional observation of oxygen motion at moderate temperatures. The results provide insights furthering the design of solid oxygen ion conductors within the framework of topotactic phase transitions.

11.
Biochem Soc Trans ; 49(4): 1537-1546, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34240735

RESUMO

Neutron reflectometry (NR) is a large-facility technique used to examine structure at interfaces. In this brief review an introduction to the utilisation of NR in the study of protein-lipid interactions is given. Cold neutron beams penetrate matter deeply, have low energies, wavelengths in the Ångstrom regime and are sensitive to light elements. High differential hydrogen sensitivity (between protium and deuterium) enables solution and sample isotopic labelling to be utilised to enhance or diminish the scattering signal of individual components within complex biological structures. The combination of these effects means NR can probe buried structures such as those at the solid-liquid interface and encode molecular level structural information on interfacial protein-lipid complexes revealing the relative distribution of components as well as the overall structure. Model biological membrane sample systems can be structurally probed to examine phenomena such as antimicrobial mode of activity, as well as structural and mechanistic properties peripheral/integral proteins within membrane complexes. Here, the example of the antimicrobial protein α1-purothionin binding to a model Gram negative bacterial outer membrane is used to highlight the utilisation of this technique, detailing how changes in the protein/lipid distributions across the membrane before and after the protein interaction can be easily encoded using hydrogen isotope labelling.


Assuntos
Lipídeos de Membrana/química , Proteínas de Membrana/química , Nêutrons , Marcação por Isótopo , Estrutura Molecular , Ligação Proteica , Espalhamento de Radiação
12.
Eur Biophys J ; 50(7): 1025-1035, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34357445

RESUMO

The effect of melatonin and/or cholesterol on the structural properties of a model lipid bilayer prepared from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) has been investigated both experimentally and via molecular dynamics (MD) simulations. Neutron reflectometry experiments performed with single supported membranes revealed changes in lipid bilayer thickness upon the introduction of additional components. While the presence of cholesterol led to an increase in membrane thickness, the opposite effect was observed in the case of melatonin. The results obtained are in a good agreement with MD simulations which provided further information on the organization of components within the systems examined, indicating a mechanism underlying the membranes' thickness changes due to cholesterol and melatonin that had been observed experimentally. Cholesterol and melatonin preferentially accumulate in different membrane regions, presumably affecting the conformation of lipid hydrophobic moieties differently, and in turn having distinct impacts on the structure of the entire membrane. Our findings may be relevant for understanding the effects of age-related changes in cholesterol and melatonin concentrations, including those in the brains of individuals with Alzheimer's disease.


Assuntos
Melatonina , Colesterol , Humanos , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Fosfatidilcolinas
13.
Proc Natl Acad Sci U S A ; 115(32): E7587-E7594, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30037998

RESUMO

The outer membrane (OM) of Gram-negative bacteria is a robust, impermeable, asymmetric bilayer of outer lipopolysaccharides (LPSs) and inner phospholipids containing selective pore proteins which confer on it the properties of a molecular sieve. This structure severely limits the variety of antibiotic molecules effective against Gram-negative pathogens and, as antibiotic resistance has increased, so has the need to solve the OM permeability problem. Polymyxin B (PmB) represents those rare antibiotics which act directly on the OM and which offer a distinct starting point for new antibiotic development. Here we investigate PmB's interactions with in vitro OM models and show how the physical state of the lipid matrix of the OM is a critical factor in regulating the interaction with the antimicrobial peptide. Using neutron reflectometry and infrared spectroscopy, we reveal the structural and chemical changes induced by PmB on OM models of increasing complexity. In particular, only a tightly packed model reproduced the temperature-controlled disruption of the asymmetric lipid bilayer by PmB observed in vivo. By measuring the order of outer-leaflet LPS and inner-leaflet phospholipids, we show that PmB insertion is dependent on the phase transition of LPS from the gel to the liquid crystalline state. The demonstration of a lipid phase transition in the physiological temperature range also supports the hypothesis that bacteria grown at different temperatures adapt their LPS structures to maintain a homeoviscous OM.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/metabolismo , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/fisiologia , Polimixina B/farmacologia , Membrana Celular/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Bicamadas Lipídicas/química , Lipopolissacarídeos/química , Lipopolissacarídeos/fisiologia , Cristais Líquidos/química , Modelos Químicos , Transição de Fase , Fosfolipídeos/química , Fosfolipídeos/fisiologia , Análise Espectral , Temperatura
14.
Proc Natl Acad Sci U S A ; 114(18): E3622-E3631, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28420794

RESUMO

Dimeric tubulin, an abundant water-soluble cytosolic protein known primarily for its role in the cytoskeleton, is routinely found to be associated with mitochondrial outer membranes, although the structure and physiological role of mitochondria-bound tubulin are still unknown. There is also no consensus on whether tubulin is a peripheral membrane protein or is integrated into the outer mitochondrial membrane. Here the results of five independent techniques-surface plasmon resonance, electrochemical impedance spectroscopy, bilayer overtone analysis, neutron reflectometry, and molecular dynamics simulations-suggest that α-tubulin's amphipathic helix H10 is responsible for peripheral binding of dimeric tubulin to biomimetic "mitochondrial" membranes in a manner that differentiates between the two primary lipid headgroups found in mitochondrial membranes, phosphatidylethanolamine and phosphatidylcholine. The identification of the tubulin dimer orientation and membrane-binding domain represents an essential step toward our understanding of the complex mechanisms by which tubulin interacts with integral proteins of the mitochondrial outer membrane and is important for the structure-inspired design of tubulin-targeting agents.


Assuntos
Materiais Biomiméticos/química , Membranas Mitocondriais/química , Tubulina (Proteína)/química , Animais , Materiais Biomiméticos/metabolismo , Bovinos , Membranas Mitocondriais/metabolismo , Ligação Proteica , Domínios Proteicos , Tubulina (Proteína)/metabolismo
15.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167440

RESUMO

The physiological and pathological roles of nascent amyloid beta (Aß) monomers are still debated in the literature. Their involvement in the pathological route of Alzheimer's Disease (AD) is currently considered to be the most relevant, triggered by their aggregation into structured oligomers, a toxic species. Recently, it has been suggested that nascent Aß, out of the amyloidogenic pathway, plays a physiological and protective role, especially in the brain. In this emerging perspective, the study presented in this paper investigated whether the organization of model membranes is affected by contact with Aß in the nascent state, as monomers. The outcome is that, notably, the rules of engagement and the resulting structural outcome are dictated by the composition and properties of the membrane, rather than by the Aß variant. Interestingly, Aß monomers are observed to favor the tightening of adjacent complex membranes, thereby affecting a basic structural event for cell-cell adhesion and cell motility.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Membranas/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/fisiologia , Precursor de Proteína beta-Amiloide/fisiologia , Humanos , Membranas/fisiologia , Modelos Biológicos , Fragmentos de Peptídeos/metabolismo , Ligação Proteica
16.
Small ; 15(23): e1805046, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31012268

RESUMO

Understanding the molecular mechanisms governing nanoparticle-membrane interactions is of prime importance for drug delivery and biomedical applications. Neutron reflectometry (NR) experiments are combined with atomistic and coarse-grained molecular dynamics (MD) simulations to study the interaction between cationic gold nanoparticles (AuNPs) and model lipid membranes composed of a mixture of zwitterionic di-stearoyl-phosphatidylcholine (DSPC) and anionic di-stearoyl-phosphatidylglycerol (DSPG). MD simulations show that the interaction between AuNPs and a pure DSPC lipid bilayer is modulated by a free energy barrier. This can be overcome by increasing temperature, which promotes an irreversible AuNP incorporation into the lipid bilayer. NR experiments confirm the encapsulation of the AuNPs within the lipid bilayer at temperatures around 55 °C. In contrast, the AuNP adsorption is weak and impaired by heating for a DSPC-DSPG (3:1) lipid bilayer. These results demonstrate that both the lipid charge and the temperature play pivotal roles in AuNP-membrane interactions. Furthermore, NR experiments indicate that the (negative) DSPG lipids are associated with lipid extraction upon AuNP adsorption, which is confirmed by coarse-grained MD simulations as a lipid-crawling effect driving further AuNP aggregation. Overall, the obtained detailed molecular view of the interaction mechanisms sheds light on AuNP incorporation and membrane destabilization.


Assuntos
Cátions/farmacocinética , Ouro/farmacocinética , Bicamadas Lipídicas/metabolismo , Nanopartículas Metálicas , Temperatura , Adsorção , Transporte Biológico , Cátions/química , Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Nanopartículas Metálicas/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Propriedades de Superfície
17.
Artigo em Inglês | MEDLINE | ID: mdl-32831460

RESUMO

The solid electrolyte interphase (SEI) remains a central challenge to lithium-ion battery durability, in part due to poor understanding of the basic chemistry responsible for its formation and evolution. In this study, the SEI on a non-intercalating tungsten anode is measured by operando neutron reflectometry and quartz crystal microbalance. A dual-layer SEI is observed, with a 3.7 nm thick inner layer and a 15.4 nm thick outer layer. Such structures have been proposed in the literature, but have not been definitively observed via neutron reflectometry. The SEI mass per area was 1207.2 ng/cm2, and QCM provides insight into the SEI formation dynamics during a negative-going voltage sweep and its evolution over multiple cycles. Monte Carlo simulations identify SEI chemical compositions consistent with the combined measurements. The results are consistent with a primarily inorganic, dense inner layer and a primarily organic, porous outer layer, directly confirming structures proposed in the literature. Further refinement of techniques presented herein, coupled with additional complementary measurements and simulations, can give quantitative insight into SEI formation and evolution as a function of battery materials and cycling conditions. This, in turn, will enable scientifically-guided design of durable, conductive SEI layers for Li-ion batteries for a range of applications.

18.
Molecules ; 24(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739471

RESUMO

Bare interfaces between water and hydrophobic media like air or oil are of fundamental scientific interest and of great relevance for numerous applications. A number of observations involving water/hydrophobic interfaces have, however, eluded a consensus mechanistic interpretation so far. Recent theoretical studies ascribe these phenomena to an interfacial accumulation of charged surfactant impurities in water. In the present work, we show that identifying surfactant accumulation with X-ray reflectometry (XRR) or neutron reflectometry (NR) is challenging under conventional contrast configurations because interfacial surfactant layers are then hardly visible. On the other hand, both XRR and NR become more sensitive to surfactant accumulation when a suitable scattering length contrast is generated by using fluorinated oil. With this approach, significant interfacial accumulation of surfactant impurities at the bare oil/water interface is observed in experiments involving standard cleaning procedures. These results suggest that surfactant impurities may be a limiting factor for the investigation of fundamental phenomena involving water/hydrophobic interfaces.


Assuntos
Fluorocarbonos/química , Tensoativos/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
19.
J Biol Chem ; 292(43): 17746-17759, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28893902

RESUMO

Interactions between lipid bilayers and the membrane-proximal regions of membrane-associated proteins play important roles in regulating membrane protein structure and function. The T-cell antigen receptor is an assembly of eight single-pass membrane-spanning subunits on the surface of T lymphocytes that initiates cytosolic signaling cascades upon binding antigens presented by MHC-family proteins on antigen-presenting cells. Its ζ-subunit contains multiple cytosolic immunoreceptor tyrosine-based activation motifs involved in signal transduction, and this subunit by itself is sufficient to couple extracellular stimuli to intracellular signaling events. Interactions of the cytosolic domain of ζ (ζcyt) with acidic lipids have been implicated in the initiation and regulation of transmembrane signaling. ζcyt is unstructured in solution. Interaction with acidic phospholipids induces structure, but its disposition when bound to lipid bilayers is controversial. Here, using surface plasmon resonance and neutron reflection, we characterized the interaction of ζcyt with planar lipid bilayers containing mixtures of acidic and neutral lipids. We observed two binding modes of ζcyt to the bilayers in dynamic equilibrium: one in which ζcyt is peripherally associated with lipid headgroups and one in which it penetrates deeply into the bilayer. Such an equilibrium between the peripherally bound and embedded forms of ζcyt apparently controls accessibility of the immunoreceptor tyrosine-based activation signal transduction pathway. Our results reconcile conflicting findings of the ζ structure reported in previous studies and provide a framework for understanding how lipid interactions regulate motifs to tyrosine kinases and may regulate the T-cell antigen receptor biological activities for this cell-surface receptor system.


Assuntos
Lipídeos de Membrana/química , Receptores de Antígenos de Linfócitos T/química , Motivos de Aminoácidos , Humanos , Lipídeos de Membrana/metabolismo , Ligação Proteica , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
20.
Nano Lett ; 17(3): 1665-1669, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28146633

RESUMO

The ability to control magnetism of materials via electric field enables a myriad of technological innovations in information storage, sensing, and computing. We use ionic-liquid-assisted ferroelectric switching to demonstrate reversible modulation of interfacial magnetism in a multiferroic heterostructure composed of ferromagnetic (FM) La0.8Sr0.2MnO3 and ferroelectric (FE) PbZr0.2Ti0.8O3. It is shown that ionic liquids can be used to persistently and reversibly switch a large area of a FE film. This is a prerequisite for polarized neutron reflectometry (PNR) studies that are conducted to directly probe magnetoelectric coupling of the FE polarization to the interfacial magnetization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA