RESUMO
Animals interact with nutrient cycles by consuming and depositing nutrients, interactions studied separately in nutritional ecology and zoogeochemistry. Recent theoretical work bridges these disciplines, highlighting that animal-driven nutrient recycling could be crucial in helping animals meet their nutritional needs. When animals exhibit site fidelity, they consistently deposit nutrients, potentially improving vegetation quality. We investigated this potential feedback by analysing changes in forage nitrogen stocks following simulated caribou calving. We found that forage nitrogen stocks increased after 2 weeks and remained elevated after 1 year, a change due to increased forage quality, not quantity. We also developed a nutrient budget within calving grounds, demonstrating that natal fluid and calf carcasses contribute substantial nitrogen subsidies. We, thus, highlight a positive zoogeochemical feedback whereby nutrients deposited during calving become bioavailable during lactation and provide evidence that site fidelity creates a biogeochemical boomerang in which animals deposit nutrients that can be reused later.
Assuntos
Nitrogênio , Animais , Feminino , Nitrogênio/análise , Nitrogênio/metabolismo , Lactação , Cervos/fisiologia , Fenômenos Fisiológicos da Nutrição AnimalRESUMO
AbstractHow communities assemble and restructure is of critical importance to ecological theory, evolutionary theory, and conservation, but long-term perspectives on the patterns and processes of community assembly are rarely integrated into traditional community ecology, and the utility of communities as an ecological concept has been repeatedly questioned in part because of a lack of temporal perspective. Through a synthesis of paleontological and neontological data, I reconstruct Caribbean frugivore communities over the Quaternary (2.58 million years ago to present). Numerous Caribbean frugivore lineages arise during periods coincident with the global origins of plant-frugivore mutualisms. The persistence of many of these lineages into the Quaternary is indicative of long-term community stability, but an analysis of Quaternary extinctions reveals a nonrandom loss of large-bodied mammalian and reptilian frugivores. Anthropogenic impacts, including human niche construction, underlie the recent reorganization of frugivore communities, setting the stage for continued declines and evolutionary responses in plants that have lost mutualistic partners. These impacts also support ongoing and future introductions of invader complexes: introduced plants and frugivores that further exacerbate native biodiversity loss by interacting more strongly with one another than with native plants or frugivores. This work illustrates the importance of paleontological data and perspectives in conceptualizing ecological communities, which are dynamic and important entities.
Assuntos
Herbivoria , Região do Caribe , Animais , Fósseis , Biodiversidade , Evolução Biológica , Simbiose , EcossistemaRESUMO
Diverse organisms actively manipulate their (sym)biotic and physical environment in ways that feed back on their own development. However, the degree to which these processes affect microevolution remains poorly understood. The gazelle dung beetle both physically modifies its ontogenetic environment and structures its biotic interactions through vertical symbiont transmission. By experimentally eliminating (i) physical environmental modifications and (ii) the vertical inheritance of microbes, we assess how environment modifying behaviour and microbiome transmission shape heritable variation and evolutionary potential. We found that depriving larvae of symbionts and environment modifying behaviours increased additive genetic variance and heritability for development time but not body size. This suggests that larvae's ability to manipulate their environment has the potential to modify heritable variation and to facilitate the accumulation of cryptic genetic variation. This cryptic variation may become released and selectable when organisms encounter environments that are less amenable to organismal manipulation or restructuring. Our findings also suggest that intact microbiomes, which are commonly thought to increase genetic variation of their hosts, may instead reduce and conceal heritable variation. More broadly, our findings highlight that the ability of organisms to actively manipulate their environment may affect the potential of populations to evolve when encountering novel, stressful conditions.
Assuntos
Besouros , Microbiota , Animais , Besouros/genética , Microbiota/genética , Larva/genética , Evolução Biológica , Variação GenéticaRESUMO
In natural systems, different plant species have been shown to modulate specific nitrogen (N) cycling processes so as to meet their N demand, thereby potentially influencing their own niche. This phenomenon might go beyond plant interactions with symbiotic microorganisms and affect the much less explored plant interactions with free-living microorganisms involved in soil N cycling, such as nitrifiers and denitrifiers. Here, we investigated variability in the modulation of soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively), and their ratio (NEA : DEA), across 193 Arabidopsis thaliana accessions. We studied the genetic and environmental determinants of such plant-soil interactions, and effects on plant biomass production in the next generation. We found that NEA, DEA, and NEA : DEA varied c. 30-, 15- and 60-fold, respectively, among A. thaliana genotypes and were related to genes linked with stress response, flowering, and nitrate nutrition, as well as to soil parameters at the geographic origin of the analysed genotypes. Moreover, plant-mediated N cycling activities correlated with the aboveground biomass of next-generation plants in home vs away nonautoclaved soil, suggesting a transgenerational impact of soil biotic conditioning on plant performance. Altogether, these findings suggest that nutrient-based plant niche construction may be much more widespread than previously thought.
Assuntos
Arabidopsis , Biomassa , Ciclo do Nitrogênio , Microbiologia do Solo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Nitrogênio/metabolismo , Solo/química , Genótipo , Nitrificação , Desnitrificação , EcossistemaRESUMO
The brain in the genus Homo expanded rapidly during evolution, accelerated by a reciprocated interaction between neural, cognitive, and ecological niches (triadic niche construction, or TNC). This biologically costly expansion incubated latent cognitive capabilities that, with a quick and inexpensive rewiring of brain areas in a second phase of TNC, provided the basis for Homo sapiens specific abilities. The neural demands for perception of the human body in interaction with tools and the environment required highly integrated sensorimotor domains, inducing the parietal lobe expansion seen in humans. These newly expanded brain areas allowed connecting the sensations felt in the body to the actions in the world through the cognitive function of "projection". In this opinion article, we suggest that as a relationship of equivalence between body parts, tools and their external effects was established, mental mechanisms of self-objectification might have emerged as described previously, grounding notions of spatial organization, idealized objects, and their transformations, as well as socio-emotional states in the sensing agent through a self-in-the-world map. Therefore, human intelligence and its features such as symbolic thought, language, mentalizing, and complex technical and social behaviors could have stemmed from the explicit awareness of the causal relationship between the self and intentional modifications to the environment.
Assuntos
Encéfalo , Humanos , Animais , Encéfalo/fisiologia , Primatas/fisiologia , Evolução Biológica , Cognição/fisiologiaRESUMO
What are social niches, and how do they arise and change? Our first goal in the present article is to clarify the concept of an individualized social niche and to distinguish it from related concepts, such as a social environment and a social role. We argue that focal individuals are integral parts of individualized social niches and that social interactions with conspecifics are further core elements of social niches. Our second goal in the present article is to characterize three types of processes-social niche construction, conformance, and choice (social NC3 processes)-that explain how individualized social niches originate and change. Our approach brings together studies of behavior, ecology, and evolution and integrates social niches into the broader concept of an individualized ecological niche. We show how clarifying the concept of a social niche and recognizing the differences between the three social NC3 processes enhance and stimulate empirical research.
RESUMO
Interactions between humans, animals, and the environment facilitate zoonotic spillover-the transmission of pathogens from animals to humans. Narratives that cast modern humans as exogenous and disruptive forces that encroach upon "natural" disease systems limit our understanding of human drivers of disease. This review leverages theory from evolutionary anthropology that situates humans as functional components of disease ecologies, to argue that human adaptive strategies to resource acquisition shape predictable patterns of high-risk human-animal interactions, (2) humans construct ecological processes that facilitate spillover, and (3) contemporary patterns of epidemiological risk are emergent properties of interactions between human foraging ecology and niche construction. In turn, disease ecology serves as an important vehicle to link what some cast as opposing bodies of theory in human ecology. Disease control measures should consider human drivers of disease as rational, adaptive, and dynamic and capitalize on our capacity to influence ecological processes to mitigate risk.
Assuntos
Ecologia , Zoonoses , Animais , Humanos , Antropologia , Evolução BiológicaRESUMO
We begin this article by delineating the explanatory gaps left by prevailing gene-focused approaches in our understanding of phenotype determination, inheritance, and the origin of novel traits. We aim not to diminish the value of these approaches but to highlight where their implementation, despite best efforts, has encountered persistent limitations. We then discuss how each of these explanatory gaps can be addressed by expanding research foci to take into account biological agency-the capacity of living systems at various levels to participate in their own development, maintenance, and function by regulating their structures and activities in response to conditions they encounter. Here we aim to define formally what agency and agents are and-just as importantly-what they are not, emphasizing that agency is an empirical property connoting neither intention nor consciousness. Lastly, we discuss how incorporating agency helps to bridge explanatory gaps left by conventional approaches, highlight scientific fields in which implicit agency approaches are already proving valuable, and assess the opportunities and challenges of more systematically incorporating biological agency into research programs.
Assuntos
Evolução Biológica , Estado de Consciência , FenótipoRESUMO
Do animals set the course for the evolution of their lineage when manipulating their environment? This heavily disputed question is empirically unexplored but critical to interpret phenotypic diversity. Here, we tested whether the macroevolutionary rates of body morphology correlate with the use of built artifacts in a megadiverse clade comprising builders and nonbuilders-spiders. By separating the inferred building-dependent rates from background effects, we found that variation in the evolution of morphology is poorly explained by artifact use. Thus natural selection acting directly on body morphology rather than indirectly via construction behavior is the dominant driver of phenotypic diversity.
Assuntos
Adaptação Fisiológica/genética , Comportamento Animal/fisiologia , Simulação por Computador , Modelos Biológicos , Aranhas/fisiologia , Animais , Evolução Biológica , Cadeias de Markov , Método de Monte Carlo , Aranhas/genéticaRESUMO
BACKGROUND: Aedes aegypti, the main arboviral mosquito vector, is attracted to human dwellings and makes use of human-generated breeding sites. Past research has shown that bacterial communities associated with such sites undergo compositional shifts as larvae develop and that exposure to different bacteria during larval stages can have an impact on mosquito development and life-history traits. Based on these facts, we hypothesized that female Ae. aegypti shape the bacteria communities of breeding sites during oviposition as a form of niche construction to favor offspring fitness. RESULTS: To test this hypothesis, we first verified that gravid females can act as mechanical vectors of bacteria. We then elaborated an experimental scheme to test the impact of oviposition on breeding site microbiota. Five different groups of experimental breeding sites were set up with a sterile aqueous solution of larval food, and subsequently exposed to (1) the environment alone, (2) surface-sterilized eggs, (3) unsterilized eggs, (4) a non-egg laying female, or (5) oviposition by a gravid female. The microbiota of these differently treated sites was assessed by amplicon-oriented DNA sequencing once the larvae from the sites with eggs had completed development and formed pupae. Microbial ecology analyses revealed significant differences between the five treatments in terms of diversity. In particular, between-treatment shifts in abundance profiles were detected, showing that females induce a significant decrease in microbial alpha diversity through oviposition. In addition, indicator species analysis pinpointed bacterial taxa with significant predicting values and fidelity coefficients for the samples in which single females laid eggs. Furthermore, we provide evidence regarding how one of these indicator taxa, Elizabethkingia, exerts a positive effect on the development and fitness of mosquito larvae. CONCLUSIONS: Ovipositing females impact the composition of the microbial community associated with a breeding site, promoting certain bacterial taxa over those prevailing in the environment. Among these bacteria, we found known mosquito symbionts and showed that they can improve offspring fitness if present in the water where eggs are laid. We deem this oviposition-mediated bacterial community shaping as a form of niche construction initiated by the gravid female.
Assuntos
Aedes , Animais , Humanos , Feminino , Mosquitos Vetores , Água , Bactérias/genética , Oviposição , LarvaRESUMO
Disability studies have been successfully focusing on individuals' lived experiences, the personalization of goals, and the constitution of the individual in defining disease and restructuring public understandings of disability. Although they had a strong influence in the policy making and medical modeling of disease, their framework has not been translated to traditional naturalistic accounts of disease. I will argue that, using new developments in evolutionary biology (Extended Evolutionary Synthesis [EES] about questions of proper function) and behavioral ecology (Niche conformance and construction about the questions of reference classes in biostatistics accounts), the main elements of the framework of disability studies can be used to represent life histories at the conceptual level of the two main "non-normative" accounts of disease. I chose these accounts since they are related to medicine in a more descriptive way. The success of the practical aspects of disability studies this way will be communicated without causing injustice to the individual since they will represent the individuality of the patient in two main naturalistic accounts of disease: the biostatistical account and the evolutionary functional account. Although most accounts criticizing the concept of disease as value-laden do not supply a positive element, disability studies can supply a good point for descriptive extension of the concept through inclusion of epistemic agency.
Assuntos
Pessoas com Deficiência , Humanos , Pessoas com Deficiência/psicologia , Filosofia Médica , Bioestatística , Evolução Biológica , Doença/psicologiaRESUMO
Microbial life in low-energy ecosystems relies on individual energy conservation, optimizing energy use in response to interspecific competition and mutualistic interspecific syntrophy. Our study proposes a novel community-level strategy for increasing energy use efficiency. By utilizing an oxidation-reduction (redox) reaction network model that represents microbial redox metabolic interactions, we investigated multiple species-level competition and cooperation within the network. Our results suggest that microbial functional diversity allows for metabolic handoffs, which in turn leads to increased energy use efficiency. Furthermore, the mutualistic division of labour and the resulting complexity of redox pathways actively drive material cycling, further promoting energy exploitation. Our findings reveal the potential of self-organized ecological interactions to develop efficient energy utilization strategies, with important implications for microbial ecosystem functioning and the co-evolution of life and Earth.
Assuntos
Ecossistema , Simbiose , Simbiose/fisiologia , TermodinâmicaRESUMO
An agent-based perspective in the study of complex systems is well established in diverse disciplines, yet is only beginning to be applied to evolutionary developmental biology. In this essay, we begin by defining agency and associated terminology formally. We then explore the assumptions and predictions of an agency perspective, apply these to select processes and key concept areas relevant to practitioners of evolutionary developmental biology, and consider the potential epistemic roles that an agency perspective might play in evo devo. Throughout, we discuss evidence supportive of agential dynamics in biological systems relevant to evo devo and explore where agency thinking may enrich the explanatory reach of research efforts in evolutionary developmental biology.
Assuntos
Evolução Biológica , Biologia do Desenvolvimento , AnimaisRESUMO
The accelerating pace of emerging zoonotic diseases in the twenty-first century has motivated cross-disciplinary collaboration on One Health approaches, combining microbiology, veterinary and environmental sciences, and epidemiology for outbreak prevention and mitigation. Such outbreaks are often caused by spillovers attributed to human activities that encroach on wildlife habitats and ecosystems, such as land use change, industrialized food production, urbanization and animal trade. While the origin of anthropogenic effects on animal ecology and biogeography can be traced to the Late Pleistocene, the archaeological record-a long-term archive of human-animal-environmental interactions-has largely been untapped in these One Health approaches, thus limiting our understanding of these dynamics over time. In this review, we examine how humans, as niche constructors, have facilitated new host species and 'disease-scapes' from the Late Pleistocene to the Anthropocene, by viewing zooarchaeological, bioarchaeological and palaeoecological data with a One Health perspective. We also highlight how new biomolecular tools and advances in the '-omics' can be holistically coupled with archaeological and palaeoecological reconstructions in the service of studying zoonotic disease emergence and re-emergence.
Assuntos
Ecossistema , Saúde Única , Animais , Humanos , Arqueologia , Zoonoses/epidemiologia , EcologiaRESUMO
Health perceptions and health-related behaviors can change at the population level as cultures evolve. In the last decade, despite the proven efficacy of vaccines, the developed world has seen a resurgence of vaccine-preventable diseases (VPDs) such as measles, pertussis, and polio. Vaccine hesitancy, which is influenced by historical, political, and socio-cultural forces, is believed to be a primary factor responsible for decreasing vaccine coverage, thereby increasing the risk and occurrence of VPD outbreaks. Behavior change models have been increasingly employed to understand disease dynamics and intervention effectiveness. However, since health behaviors are culturally influenced, it is valuable to examine them within a cultural evolution context. Here, using a mathematical modeling framework, we explore the effects of cultural evolution on vaccine hesitancy and vaccination behavior. With this model, we shed light on facets of cultural evolution (vertical transmission, community influences, homophily, etc.) that promote the spread of vaccine hesitancy, ultimately affecting levels of vaccination coverage and VPD outbreak risk in a population. In addition, we present our model as a generalizable framework for exploring cultural evolution when humans' beliefs influence, but do not strictly dictate, their behaviors. This model offers a means of exploring how parents' potentially conflicting beliefs and cultural traits could affect their children's health and fitness. We show that vaccine confidence and vaccine-conferred benefits can both be driving forces of vaccine coverage. We also demonstrate that an assortative preference among vaccine-hesitant individuals can lead to increased vaccine hesitancy and lower vaccine coverage.
Assuntos
Evolução Cultural , Vacinas , Criança , Humanos , Hesitação Vacinal , Aceitação pelo Paciente de Cuidados de Saúde , Modelos Teóricos , VacinaçãoRESUMO
The evolution of a cultural trait may be affected by niche construction, or changes in the selective environment of that trait due to the inheritance of other cultural traits that make up a cultural background. This study investigates the evolution of a cultural trait, such as the acceptance of the idea of contraception, that is both vertically and horizontally transmitted within a homogeneous social network. Individuals may conform to the norm, and adopters of the trait have fewer progeny than others. In addition, adoption of this trait is affected by a vertically transmitted aspect of the cultural background, such as the preference for high or low levels of education. Our model shows that such cultural niche construction can facilitate the spread of traits with low Darwinian fitness while providing an environment that counteracts conformity to norms. In addition, niche construction can facilitate the 'demographic transition' by making reduced fertility socially accepted.
Assuntos
Anticoncepcionais , Evolução Cultural , Humanos , Fertilidade , Cultura , Comportamento SocialRESUMO
A population experiencing habitat loss can avoid extinction by undergoing genetic adaptation-a process known as evolutionary rescue. Here we analytically approximate the probability of evolutionary rescue via a niche-constructing mutation that allows carriers to convert a novel, unfavorable reproductive habitat to a favorable state at a cost to their fecundity. We analyze competition between mutants and non-niche-constructing wild types, who ultimately require the constructed habitats to reproduce. We find that over-exploitation of the constructed habitats by wild types can generate damped oscillations in population size shortly after mutant invasion, thereby decreasing the probability of rescue. Such post-invasion extinction is less probable when construction is infrequent, habitat loss is common, the reproductive environment is large, or the population's carrying capacity is small. Under these conditions, wild types are less likely to encounter the constructed habitats and, consequently, mutants are more likely to fix. These results suggest that, without a mechanism that deters wild type inheritance of the constructed habitats, a population undergoing rescue via niche construction may remain prone to short-timescale extinction despite successful mutant invasion.
Assuntos
Evolução Biológica , Ecossistema , Mutação , Adaptação Fisiológica/genética , Conservação dos Recursos NaturaisRESUMO
Humans have made profound changes to the Earth. The resulting societal challenges of the Anthropocene (e.g., climate change and impacts, renewable energy, adaptive infrastructure, disasters, pandemics, food insecurity, and biodiversity loss) are complex and systemic, with causes, interactions, and consequences that cascade across a globally connected system of systems. In this Critical Review, we turn to our "origin story" for insight, briefly tracing the formation of the Universe and the Earth, the emergence of life, the evolution of multicellular organisms, mammals, primates, and humans, as well as the more recent societal transitions involving agriculture, urbanization, industrialization, and computerization. Focusing on the evolution of the Earth, genetic evolution, the evolution of the brain, and cultural evolution, which includes technological evolution, we identify a nested evolutionary sequence of geophysical, biophysical, sociocultural, and sociotechnical systems, emphasizing the causal mechanisms that first formed, and then transformed, Earth systems into Anthropocene systems. Describing how the Anthropocene systems coevolved, and briefly illustrating how the ensuing societal challenges became tightly integrated across multiple spatial, temporal, and organizational scales, we conclude by proposing an evolutionary, system-of-systems, convergence paradigm for the entire family of interdependent societal challenges of the Anthropocene.
Assuntos
Agricultura , Biodiversidade , Animais , Humanos , Urbanização , MamíferosRESUMO
Phylogenetic trees describe both the evolutionary process and community diversity. Recent work has established that they exhibit scale-invariant topology, which quantifies the fact that their branching lies in between the two extreme cases of balanced binary trees and maximally unbalanced ones. In addition, the backbones of phylogenetic trees exhibit bursts of diversification on all timescales. Here, we present a simple, coarse-grained statistical model of niche construction coupled to speciation. Finite-size scaling analysis of the dynamics shows that the resultant phylogenetic tree topology is scale-invariant due to a singularity arising from large niche construction fluctuations that follow extinction events. The same model recapitulates the bursty pattern of diversification in time. These results show how dynamical scaling laws of phylogenetic trees on long timescales can reflect the indelible imprint of the interplay between ecological and evolutionary processes.
Assuntos
Evolução Biológica , Ecologia/estatística & dados numéricos , Especiação Genética , Filogenia , Animais , Humanos , Modelos GenéticosRESUMO
In the mid-1950s Western Desert of Australia, Aboriginal populations were in decline as families left for ration depots, cattle stations, and mission settlements. In the context of reduced population density, an ideal free-distribution model predicts landscape use should contract to the most productive habitats, and people should avoid areas that show more signs of extensive prior use. However, ecological or social facilitation due to Allee effects (positive density dependence) would predict that the intensity of past habitat use should correlate positively with habitat use. We analyzed fire footprints and fire mosaics from the accumulation of several years of landscape use visible on a 35,300-km2 mosaic of aerial photographs covering much of contemporary Indigenous Martu Native Title Lands imaged between May and August 1953. Structural equation modeling revealed that, consistent with an Allee ideal free distribution, there was a positive relationship between the extent of fire mosaics and the intensity of recent use, and this was consistent across habitats regardless of their quality. Fire mosaics build up in regions with low cost of access to water, high intrinsic food availability, and good access to trade opportunities; these mosaics (constrained by water access during the winter) then draw people back in subsequent years or seasons, largely independent of intrinsic habitat quality. Our results suggest that the positive feedback effects of landscape burning can substantially change the way people value landscapes, affecting mobility and settlement by increasing sedentism and local population density.