Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 69(3): 451-464.e6, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358078

RESUMO

S-nitrosylation, the oxidative modification of Cys residues by nitric oxide (NO) to form S-nitrosothiols (SNOs), modifies all main classes of proteins and provides a fundamental redox-based cellular signaling mechanism. However, in contrast to other post-translational protein modifications, S-nitrosylation is generally considered to be non-enzymatic, involving multiple chemical routes. We report here that endogenous protein S-nitrosylation in the model organism E. coli depends principally upon the enzymatic activity of the hybrid cluster protein Hcp, employing NO produced by nitrate reductase. Anaerobiosis on nitrate induces both Hcp and nitrate reductase, thereby resulting in the S-nitrosylation-dependent assembly of a large interactome including enzymes that generate NO (NO synthase), synthesize SNO-proteins (SNO synthase), and propagate SNO-based signaling (trans-nitrosylases) to regulate cell motility and metabolism. Thus, protein S-nitrosylation by NO in E. coli is essentially enzymatic, and the potential generality of the multiplex enzymatic mechanism that we describe may support a re-conceptualization of NO-based cellular signaling.


Assuntos
Nitrosação/fisiologia , S-Nitrosotióis/metabolismo , Cisteína/metabolismo , Escherichia coli , Proteínas de Escherichia coli , Óxido Nítrico/metabolismo , Oxirredução , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas/metabolismo , Proteólise , Proteômica/métodos , Transdução de Sinais
2.
Planta ; 259(5): 111, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578466

RESUMO

MAIN CONCLUSION: The combined photoinhibitory and PSII-reaction centre quenching against light stress is an important mechanism that allows the green macroalga Ulva rigida to proliferate and form green tides in coastal ecosystems. Eutrophication of coastal ecosystems often stimulates massive and uncontrolled growth of green macroalgae, causing serious ecological problems. These green tides are frequently exposed to light intensities that can reduce their growth via the production of reactive oxygen species (ROS). To understand the physiological and biochemical mechanisms leading to the formation and maintenance of green tides, the interaction between inorganic nitrogen (Ni) and light was studied. In a bi-factorial physiological experiment simulating eutrophication under different light levels, the bloom-forming green macroalga Ulva rigida was exposed to a combination of ecologically relevant nitrate concentrations (3.8-44.7 µM) and light intensities (50-1100 µmol photons m-2 s-1) over three days. Although artificial eutrophication (≥ 21.7 µM) stimulated nitrate reductase activity, which regulated both nitrate uptake and vacuolar storage by a feedback mechanism, nitrogen assimilation remained constant. Growth was solely controlled by the light intensity because U. rigida was Ni-replete under oligotrophic conditions (3.8 µM), which requires an effective photoprotective mechanism. Fast declining Fv/Fm and non-photochemical quenching (NPQ) under excess light indicate that the combined photoinhibitory and PSII-reaction centre quenching avoided ROS production effectively. Thus, these mechanisms seem to be key to maintaining high photosynthetic activities and growth rates without producing ROS. Nevertheless, these photoprotective mechanisms allowed U. rigida to thrive under the contrasting experimental conditions with high daily growth rates (12-20%). This study helps understand the physiological mechanisms facilitating the formation and persistence of ecologically problematic green tides in coastal areas.


Assuntos
Clorófitas , Algas Comestíveis , Alga Marinha , Ulva , Ecossistema , Nitratos , Espécies Reativas de Oxigênio , Nitrogênio
3.
J Exp Bot ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623889

RESUMO

Cassava is one of the most important tuber crops that is used for food, starch and bio-energy. However, cassava is susceptible to a number of diseases, especially cassava bacterial blight (CBB). Nitric oxide (NO) and hydrogen peroxide (H2O2) regulate plant growth and development, as well as stress responses. However, no direct relationships between the enzymes involved in the metabolic enzymes that produce and process these key signaling molecules has been demonstrated. Here, we provide evidence for the interaction between the nitrate reductase 2 (MeNR2) and catalase 1 (MeCAT1) proteins in vitro and in vivo, using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays, respectively. MeNR2 is a positive regulator and MeCAT1 is a negative regulator of CBB resistance. MeNR2 was localized in the nucleus, cell membrane and peroxisome, while MeCAT1 was localized in the peroxisomes. The interactions between MeNR2 and MeCAT1 also had effects of their respective enzyme activities. Taken together, the data presented here suggested that there is coordination between H2O2 and NO signaling in cassava disease resistance, through the interactions between MeCAT1 and MeNR2.

4.
J Exp Bot ; 75(2): 563-577, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37843034

RESUMO

A key feature in the establishment of symbiosis between plants and microbes is the maintenance of the balance between the production of the small redox-related molecule, nitric oxide (NO), and its cognate scavenging pathways. During the establishment of symbiosis, a transition from a normoxic to a microoxic environment often takes place, triggering the production of NO from nitrite via a reductive production pathway. Plant hemoglobins [phytoglobins (Phytogbs)] are a central tenant of NO scavenging, with NO homeostasis maintained via the Phytogb-NO cycle. While the first plant hemoglobin (leghemoglobin), associated with the symbiotic relationship between leguminous plants and bacterial Rhizobium species, was discovered in 1939, most other plant hemoglobins, identified only in the 1990s, were considered as non-symbiotic. From recent studies, it is becoming evident that the role of Phytogbs1 in the establishment and maintenance of plant-bacterial and plant-fungal symbiosis is also essential in roots. Consequently, the division of plant hemoglobins into symbiotic and non-symbiotic groups becomes less justified. While the main function of Phytogbs1 is related to the regulation of NO levels, participation of these proteins in the establishment of symbiotic relationships between plants and microorganisms represents another important dimension among the other processes in which these key redox-regulatory proteins play a central role.


Assuntos
Óxido Nítrico , Simbiose , Óxido Nítrico/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Bactérias/metabolismo , Hemoglobinas/metabolismo
5.
J Biol Inorg Chem ; 29(4): 395-405, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782786

RESUMO

Periplasmic nitrate reductase NapA from Campylobacter jejuni (C. jejuni) contains a molybdenum cofactor (Moco) and a 4Fe-4S cluster and catalyzes the reduction of nitrate to nitrite. The reducing equivalent required for the catalysis is transferred from NapC → NapB → NapA. The electron transfer from NapB to NapA occurs through the 4Fe-4S cluster in NapA. C. jejuni NapA has a conserved lysine (K79) between the Mo-cofactor and the 4Fe-4S cluster. K79 forms H-bonding interactions with the 4Fe-4S cluster and connects the latter with the Moco via an H-bonding network. Thus, it is conceivable that K79 could play an important role in the intramolecular electron transfer and the catalytic activity of NapA. In the present study, we show that the mutation of K79 to Ala leads to an almost complete loss of activity, suggesting its role in catalytic activity. The inhibition of C. jejuni NapA by cyanide, thiocyanate, and azide has also been investigated. The inhibition studies indicate that cyanide inhibits NapA in a non-competitive manner, while thiocyanate and azide inhibit NapA in an uncompetitive manner. Neither inhibition mechanism involves direct binding of the inhibitor to the Mo-center. These results have been discussed in the context of the loss of catalytic activity of NapA K79A variant and a possible anion binding site in NapA has been proposed.


Assuntos
Campylobacter jejuni , Lisina , Nitrato Redutase , Lisina/metabolismo , Lisina/química , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Nitrato Redutase/metabolismo , Nitrato Redutase/química , Nitrato Redutase/genética , Periplasma/metabolismo , Periplasma/enzimologia , Biocatálise
6.
Arch Microbiol ; 206(7): 310, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896324

RESUMO

The RNA-Seq profiling of Herbaspirillum seropedicae SmR1 wild-type and ntrC mutant was performed under aerobic and three nitrogen conditions (ammonium limitation, ammonium shock, and nitrate shock) to identify the major metabolic pathways modulated by these nitrogen sources and those dependent on NtrC. Under ammonium limitation, H. seropedicae scavenges nitrogen compounds by activating transporter systems and metabolic pathways to utilize different nitrogen sources and by increasing proteolysis, along with genes involved in carbon storage, cell protection, and redox balance, while downregulating those involved in energy metabolism and protein synthesis. Growth on nitrate depends on the narKnirBDHsero_2899nasA operon responding to nitrate and NtrC. Ammonium shock resulted in a higher number of genes differently expressed when compared to nitrate. Our results showed that NtrC activates a network of transcriptional regulators to prepare the cell for nitrogen starvation, and also synchronizes nitrogen metabolism with carbon and redox balance pathways.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Herbaspirillum , Nitratos , Nitrogênio , Herbaspirillum/metabolismo , Herbaspirillum/genética , Nitratos/metabolismo , Nitrogênio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Compostos de Amônio/metabolismo , Adaptação Fisiológica , Redes e Vias Metabólicas/genética , Carbono/metabolismo
7.
Physiol Mol Biol Plants ; 30(1): 33-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38435849

RESUMO

Nitric oxide plays a significant role in the defense signaling during pathogen interaction in plants. Quick wilt disease is a devastating disease of black pepper, and leads to sudden mortality of pepper vines in plantations. In this study, the role of nitric oxide was studied during Phytophthora capsici infection in black pepper variety Panniyur-1. Nitric oxide was detected from the different histological sections of P. capsici infected leaves. Furthermore, the genome-wide transcriptome analysis characterized typical domain architect and structural features of nitrate reductase (NR) and nitric oxide associated 1 (NOA1) gene that are involved in nitric oxide biosynthesis in black pepper. Despite the upregulation of nitrate reductase (Pn1_NR), a reduced expression of Pn1_NOA1 was detected in the P. capsici infected black pepper leaf. Subsequent sRNAome-assisted in silico analysis revealed possible microRNA mediated regulation of Pn1_NOA mRNAs. Furthermore, sRNA/miRNA mediated cleavage on Pn1_NOA1 mRNA was validated through modified 5' RLM RACE experiments. Several hormone-responsive cis-regulatory elements involved in stress response was detected from the promoter regions of Pn_NOA1, Pn_NR1 and Pn_NR2 genes. Our results revealed the role of nitric oxide during stress response of P. capsici infection in black pepper, and key genes involved in nitric oxide biosynthesis and their post-transcriptional regulatory mechanisms. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01414-z.

8.
BMC Plant Biol ; 23(1): 78, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36740685

RESUMO

BACKGROUND: Brown macroalgae dominate temperate coastal ecosystems, and their productivity is typically limited by nitrate availability. As an economically important kelp, Saccharina japonica is the most productive farmed seaweed and needs to be supplemented with sufficient nitrate throughout the cultivation process. However, molecular characterization of genes involved in nitrogen assimilation has not been conducted in brown macroalgae. RESULTS: Here, we described the identification of the nitrate reductase (NR) gene from S. japonica (SjNR). Using two different cloning methods for SjNR, i.e. rapid amplification of cDNA ends (RACE) and cDNA cloning alone, a single fragment was obtained respectively. According to results of sequence analysis between these two fragments, the tentative coding sequence in two clones, SjNR-L and SjNR-S, were suggested to represent two transcripts of the single copy SjNR, and the ATG of SjNR-S was located inside the third exon of SjNR-L. In the 5' upstream sequence of each transcript, promoter core elements, response elements, especially multiple N response elements which occurred in microalgal NR, were all predicted. Further sequence analysis revealed that both transcripts encoded all five domains conserved in eukaryotic plant NRs. RT-qPCR results showed that the transcription level of SjNR in juvenile sporophytes could be significantly induced by nitrate and inhibited by ammonium, which was in line with plant NRs. The recombinant SjNR-L and SjNR-S were all proved to have NR activity, suggesting that the single-copy gene SjNR might be regulated on transcription level based on alternative promoters and multiple transcriptional start sites. Moreover, both NADH and NADPH were found to be able to act as electron donors for SjNR alone, which is the first confirmation that brown algal NR has a NAD(P)H-bispecific form. CONCLUSION: These results will provide a scientific basis for understanding the N demand of kelp in various stages of cultivation and evaluating the environmental remediation potential of kelp in eutrophic sea areas.


Assuntos
Laminaria , Nitrato Redutase , Alga Marinha , Clonagem Molecular , DNA Complementar/genética , Ecossistema , Laminaria/enzimologia , Laminaria/genética , Nitrato Redutase/genética , Nitratos , Alga Marinha/enzimologia , Alga Marinha/genética
9.
Plant Cell Environ ; 46(8): 2492-2506, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37303286

RESUMO

The site of nitric oxide (NO) production in mitochondrial cytochrome c oxidase and the role of NO in mitochondrial biogenesis are not known in plants. By imposing osmotic stress and recovery on Arabidopsis seedlings we investigated the site of NO production and its role in mitochondrial biogenesis. Osmotic stress reduced growth and mitochondrial number while increasing NO production. During the recovery phase the mitochondrial number increased and this increase was higher in wild type and the high NO-producing Pgb1 silencing line in comparison to the NO-deficient nitrate reductase double mutant (nia1/nia2). Application of nitrite stimulated NO production and mitochondrial number in the nia1/nia2 mutant. Osmotic stress induced COX6b- 3 and COA6-L genes encoding subunits of COX. The mutants cox6b-3 and coa6-l were impaired both in NO production and mitochondrial number during stress to recovery suggesting the involvement of these subunits in nitrite-dependent NO production. Transcripts encoding the mitochondrial protein import machinery showed reduced expression in cox6b-3 and coa6-l mutants. Finally, COX6b-3 and COA6-L interacted with the VQ27 motif-containing protein in the presence of NO. The vq27 mutant was impaired in mitochondrial biogenesis. Our results suggest the involvement of COX derived NO in mitochondrial biogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Biogênese de Organelas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
10.
Crit Rev Toxicol ; 53(10): 658-701, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38050998

RESUMO

Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.


Assuntos
Neoplasias , Nitrosaminas , Tabaco sem Fumaça , Humanos , Carcinógenos/toxicidade , Mutagênicos , Neoplasias/induzido quimicamente , Nitratos , Nitritos , Nitrosaminas/toxicidade , Nitrosaminas/química , Nitrosaminas/metabolismo , Tabaco sem Fumaça/toxicidade
11.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511393

RESUMO

Nitric oxide (NO) is an endogenous signaling molecule that plays an important role in plant ontogenesis and responses to different stresses. The most widespread abiotic stress factors limiting significantly plant growth and crop yield are drought, salinity, hypo-, hyperthermia, and an excess of heavy metal (HM) ions. Data on the accumulation of endogenous NO under stress factors and on the alleviation of their negative effects under exogenous NO treatments indicate the perspectives of its practical application to improve stress resistance and plant productivity. This requires fundamental knowledge of the NO metabolism and the mechanisms of its biological action in plants. NO generation occurs in plants by two main alternative mechanisms: oxidative or reductive, in spontaneous or enzymatic reactions. NO participates in plant development by controlling the processes of seed germination, vegetative growth, morphogenesis, flower transition, fruit ripening, and senescence. Under stressful conditions, NO contributes to antioxidant protection, osmotic adjustment, normalization of water balance, regulation of cellular ion homeostasis, maintenance of photosynthetic reactions, and growth processes of plants. NO can exert regulative action by inducing posttranslational modifications (PTMs) of proteins changing the activity of different enzymes or transcriptional factors, modulating the expression of huge amounts of genes, including those related to stress tolerance. This review summarizes the current data concerning molecular mechanisms of NO production and its activity in plants during regulation of their life cycle and adaptation to drought, salinity, temperature stress, and HM ions.


Assuntos
Óxido Nítrico , Plantas , Óxido Nítrico/metabolismo , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico/fisiologia , Desenvolvimento Vegetal/genética , Fotossíntese
12.
Mol Biol (Mosk) ; 57(6): 916-924, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38062949

RESUMO

NO is a gaseous signaling redox-active molecule that functions in various eukaryotes. However, its synthesis, turnover, and effects in cells are specific in plants in several aspects. Compared with higher plants, the role of NO in Chlorophyta has not been investigated enough. However, some of the mechanisms for controlling the levels of this signaling molecule have been characterized in model green algae. In Chlamydomonas reinhardtii, NO synthesis is carried out by a dual system of nitrate reductase and NO-forming nitrite reductase. Other mechanisms that might produce NO from nitrite are associated with components of the mitochondrial electron-transport chain. In addition, NO formation in some green algae proceeds by an oxidative mechanism similar to that in mammals. The recent discovery of L-arginine-dependent NO synthesis in the colorless alga Polytomella parva suggests the existence of a protein complex with enzyme activities that are similar to animal nitric oxide synthase. This latter finding paves the way for further research into potential members of the NO synthases family in Chlorophyta. Beyond synthesis, the regulatory processes to maintain intracellular NO levels are also an integral part for its function in cells. Members of the truncated hemoglobins family with dioxygenase activity can convert NO to nitrate, as was shown for C. reinhardtii. In addition, the implication of NO reductases in NO scavenging has also been described. Even more intriguing, unlike in animals, the typical NO/cGMP signaling module appears not to be used by green algae. S-nitrosylated glutathione, which is considered the main reservoir for NO, provides NO signals to proteins. In Chlorophyta, protein S-nitrosation is one of the key mechanisms of action of the redox molecule. In this review, we discuss the current state-of-the-art and possible future directions related to the biology of NO in green algae.


Assuntos
Clorófitas , Óxido Nítrico , Animais , Óxido Nítrico/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Biologia , Mamíferos
13.
BMC Plant Biol ; 22(1): 559, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460955

RESUMO

BACKGROUND: A potential solution for recycling and reusing the massively produced sewage water (SW) is to irrigate certain plants instead of highly cost recycling treatment. Although the extensive and irrational application of SW may cause environmental pollution thus, continual monitoring of the redox status of the receiver plant and the feedback on its growth under application becomes an emergent instance. The impact of SW, along with well water (WW) irrigation of medicinal plant, Datura innoxia, was monitored by some physio-biochemical indices. RESULTS: The SW application amplified the growth, yield, minerals uptake, and quality of D. innoxia plants compared to the WW irrigated plants. The total chlorophyll, carotenoid, non-enzymatic antioxidants, viz. anthocyanin, flavonoids, phenolic compounds, and total alkaloids increased by 85, 38, 81, 50, 19, and 37%, respectively, above WW irrigated plants. The experiment terminated in enhanced leaf content of N, P, and K by 43, 118, and 48%, respectively. Moreover, stimulation of carbon and nitrogen metabolites in terms of proteins, soluble sugars, nitrate reductase (NR) activity, and nitric oxide (NO) content showed significant earliness in flowering time. The SW application improved not only Datura plants' quality but also soil quality. After four weeks of irrigation, the WW irrigated plants encountered nutrient deficiency-induced stress evidenced by the high level of proline, H2O2, and MDA as well as high enzyme capabilities. Application of SW for irrigation of D. innoxia plant showed the improvement of secondary metabolites regulating enzyme phenylalanine ammonia-lyase (PAL), restored proline content, and cell redox status reflecting high optimal condition for efficient cellular metabolism and performance along the experiment duration. CONCLUSIONS: These evidences approved the benefits of practicing SW to improve the yield and quality of D. innoxia and the feasibility of generalization on multipurpose plants grown in poor soil.


Assuntos
Datura , Areia , Solo , Esgotos , Peróxido de Hidrogênio , Água , Prolina
14.
Planta ; 255(5): 94, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35347454

RESUMO

MAIN CONCLUSION: Genetic analysis reveals a previously unknown role for ethylene signaling in regulating Arabidopsis thaliana nitrogen metabolism. Nitrogen (N) is essential for plant growth, and assimilation of soil nitrate (NO3-) and ammonium ions is an important route of N acquisition. Although N import and assimilation are subject to multiple regulatory inputs, the extent to which ethylene signaling contributes to this regulation remains poorly understood. Here, our analysis of Arabidopsis thaliana ethylene signaling mutants advances that understanding. We show that the loss of CTR1 function ctr1-1 mutation confers resistance to the toxic effects of the NO3- analogue chlorate (ClO3-), and reduces the activity of the nitrate reductase (NR) enzyme of NO3- assimilation. Our further analysis indicates that the lack of the downstream EIN2 component (conferred by novel ein2 mutations) suppresses the effect of ctr1-1, restoring ClO3- sensitivity and NR activity to normal. Collectively, our observations indicate an important role for ethylene signaling in regulating Arabidopsis thaliana NO3- metabolism. We conclude that ethylene signaling enables environmentally responsive coordination of plant growth and N metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Nitratos/metabolismo , Transdução de Sinais
15.
J Exp Bot ; 73(16): 5596-5611, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35595516

RESUMO

In most algae, NO3- assimilation is tightly controlled and is often inhibited by the presence of NH4+. In the marine, non-colonial, non-diazotrophic cyanobacterium Synechococcus UTEX 2380, NO3- assimilation is sensitive to NH4+ only when N does not limit growth. We sequenced the genome of Synechococcus UTEX 2380, studied the genetic organization of the nitrate assimilation related (NAR) genes, and investigated expression and kinetics of the main NAR enzymes, under N or light limitation. We found that Synechococcus UTEX 2380 is a ß-cyanobacterium with a full complement of N uptake and assimilation genes and NAR regulatory elements. The nitrate reductase of our strain showed biphasic kinetics, previously observed only in freshwater or soil diazotrophic Synechococcus strains. Nitrite reductase and glutamine synthetase showed little response to our growth treatments, and their activity was usually much higher than that of nitrate reductase. NH4+ insensitivity of NAR genes may be associated with the stimulation of the binding of the regulator NtcA to NAR gene promoters by the high 2-oxoglutarate concentrations produced under N limitation. NH4+ sensitivity in energy-limited cells fits with the fact that, under these conditions, the use of NH4+ rather than NO3- decreases N-assimilation cost, whereas it would exacerbate N shortage under N limitation.


Assuntos
Synechococcus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
16.
Arch Microbiol ; 204(9): 562, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35980477

RESUMO

Statistical optimization of aeration conditions viz. aerobic, microaerobic and anaerobic, was performed using response surface methodology (RSM) utilizing soybean meal as medium to enhance the production of laccase from Rheinheimera sp. Maximum laccase yield (18.48 × 105 U/L) was obtained under microaerobic (static) conditions sustained for 12 h in tandem with 26 h aerobically (150 rpm) grown culture, which was 17.03-fold higher than laccase production in the starting M162 medium under aerobic conditions (150 rpm). The reduction in incubation time from 72 to 38 h and utilization of cost-effective soybean meal as medium, which is easily available from local market, have provided a promising, eco-friendly method of laccase enzyme production. Enhanced expression of laccase gene under microaerobic conditions corresponded to the increased expression of fnr (fumarate nitrate reductase) gene, the oxygen sensing global regulator. The putative FNR-binding site upstream of laccase transcription initiation site was predicted to play an imperative role in Rheinheimera sp. adaptation from aerobic to microaerobic conditions and for enhanced laccase production.


Assuntos
Chromatiaceae , Lacase , Lacase/genética , Lacase/metabolismo , Nitrato Redutase , Nitratos , Oxigênio
17.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613517

RESUMO

In the present study, Chlamydomonas sp. MACC-216 was used to investigate total nitrate removal in TAP medium with sodium nitrate as the sole nitrogen source under several light conditions made up of permuted combinations of three light colors (referred to as blue, red, and white light) and three light intensities (50 µmol m-2 s-1, 100 µmol m-2 s-1, and 250 µmol m-2 s-1). It was observed that nitrate removal efficiency is influenced by light color as well as light intensity. Additionally, Chlamydomonas sp. MACC-216 was cultivated in synthetic wastewater under four light conditions, namely, Blue 250, Blue 125 + Red 125, Red 250, and White 250, where it showed the highest nitrate removal efficiency and nitrate reductase activity under the Blue 125 + Red 125 light condition. To observe the impact of light color on the nitrate removal capacity of Chlamydomonas sp. MACC-216, the expression of five genes participating in nitrate transport and reduction (NRT1, NRT2.1, NRT2.2, NIA, and MCP) was also analyzed; these genes showed the highest expression under the Blue 125 + Red 125 light condition. Based on the above-mentioned findings, the blue + red light combination emerged as a promising light combination for nitrate removal. Hence, our study suggests the importance of the blue + red light combination together with high light intensity, as the optimal light condition for nitrate removal from synthetic wastewater in comparison to other monochromatic lights with high light intensity.


Assuntos
Chlamydomonas , Microalgas , Nitratos/metabolismo , Águas Residuárias , Microalgas/metabolismo , Chlamydomonas/metabolismo , Luz
18.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499563

RESUMO

In response to environmental stress, plants activate complex signalling, including being dependent on reactive oxygen-nitrogen-sulphur species. One of the key abiotic stresses is drought. As a result of drought, changes in the level of hydration of the plant occur, which obviously entails various metabolic alternations. The primary aim of this study was to determine the relationship between the response of barley to drought and the intensity of stress, therefore investigations were performed under various levels of water saturation deficit (WSD) in leaves at 15%, 30%, and 50%. In barley subjected to drought, most significant changes occurred under a slight dehydration level at 15%. It was observed that the gene expression of 9-cis-epoxycarotenoid dioxygenases, enzymes involved in ABA biosynthesis, increased significantly, and led to a higher concentration of ABA. This was most likely the result of an increase in the gene expression and enzyme activity of L-cysteine desulfhydrase, which is responsible for H2S synthesis. Our results suggest that the differential water deficit in leaves underlies the activation of an appropriate defence, with ABA metabolism at the centre of these processes. Furthermore, at 15% WSD, a dominant contribution of H2O2-dependent signalling was noted, but at 30% and 50% WSD, significant NO-dependent signalling occurred.


Assuntos
Hordeum , Hordeum/metabolismo , Ácido Abscísico/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estresse Fisiológico/genética
19.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328804

RESUMO

Nitrous oxide (N2O) is a powerful greenhouse gas that contributes to climate change. Denitrification is one of the largest sources of N2O in soils. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model for rhizobial denitrification studies since, in addition to fixing N2, it has the ability to grow anaerobically under free-living conditions by reducing nitrate from the medium through the complete denitrification pathway. This bacterium contains a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a Cu-dependent nitrous oxide reductase (Nos) encoded by the napEDABC, nirK, norCBQD and nosRZDFYLX genes, respectively. In this work, an integrated study of the role of Cu in B. diazoefficiens denitrification has been performed. A notable reduction in nirK, nor, and nos gene expression observed under Cu limitation was correlated with a significant decrease in NirK, NorC and NosZ protein levels and activities. Meanwhile, nap expression was not affected by Cu, but a remarkable depletion in Nap activity was found, presumably due to an inhibitory effect of nitrite accumulated under Cu-limiting conditions. Interestingly, a post-transcriptional regulation by increasing Nap and NirK activities, as well as NorC and NosZ protein levels, was observed in response to high Cu. Our results demonstrate, for the first time, the role of Cu in transcriptional and post-transcriptional control of B. diazoefficiens denitrification. Thus, this study will contribute by proposing useful strategies for reducing N2O emissions from agricultural soils.


Assuntos
Bradyrhizobium , Cobre , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Cobre/metabolismo , Cobre/farmacologia , Desnitrificação/genética , Nitratos/metabolismo , Nitratos/farmacologia , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Óxidos de Nitrogênio/metabolismo , Solo
20.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012676

RESUMO

Nitrous oxide (N2O) is a powerful greenhouse gas and an ozone-depleting compound whose synthesis and release have traditionally been ascribed to bacteria and fungi. Although plants and microalgae have been proposed as N2O producers in recent decades, the proteins involved in this process have been only recently unveiled. In the green microalga Chlamydomonas reinhardtii, flavodiiron proteins (FLVs) and cytochrome P450 (CYP55) are two nitric oxide (NO) reductases responsible for N2O synthesis in the chloroplast and mitochondria, respectively. However, the molecular mechanisms feeding these NO reductases are unknown. In this work, we use cavity ring-down spectroscopy to monitor N2O and CO2 in cultures of nitrite reductase mutants, which cannot grow on nitrate or nitrite and exhibit enhanced N2O emissions. We show that these mutants constitute a very useful tool to study the rates and kinetics of N2O release under different conditions and the metabolism of this greenhouse gas. Our results indicate that N2O production, which was higher in the light than in the dark, requires nitrate reductase as the major provider of NO as substrate. Finally, we show that the presence of nitrate reductase impacts CO2 emissions in both light and dark conditions, and we discuss the role of NO in the balance between CO2 fixation and release.


Assuntos
Chlamydomonas reinhardtii , Gases de Efeito Estufa , Microalgas , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Microalgas/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Óxido Nitroso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA