Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.813
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 179(5): 1068-1083.e21, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730850

RESUMO

Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms. VIDEO ABSTRACT.


Assuntos
Regulação da Expressão Gênica , Metagenoma , Oceanos e Mares , Transcriptoma/genética , Geografia , Microbiota/genética , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água do Mar/microbiologia , Temperatura
2.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856043

RESUMO

The function of medial entorhinal cortex layer II (MECII) excitatory neurons has been recently explored. MECII dysfunction underlies deficits in spatial navigation and working memory. MECII neurons comprise two major excitatory neuronal populations, pyramidal island and stellate ocean cells, in addition to the inhibitory interneurons. Ocean cells express reelin and surround clusters of island cells that lack reelin expression. The influence of reelin expression by ocean cells and interneurons on their own morphological differentiation and that of MECII island cells has remained unknown. To address this, we used a conditional reelin knockout (RelncKO) mouse to induce reelin deficiency postnatally in vitro and in vivo. Reelin deficiency caused dendritic hypertrophy of ocean cells, interneurons and only proximal dendritic compartments of island cells. Ca2+ recording showed that both cell types exhibited an elevation of calcium frequencies in RelncKO, indicating that the hypertrophic effect is related to excessive Ca2+ signalling. Moreover, pharmacological receptor blockade in RelncKO mouse revealed malfunctioning of GABAB, NMDA and AMPA receptors. Collectively, this study emphasizes the significance of reelin in neuronal growth, and its absence results in dendrite hypertrophy of MECII neurons.


Assuntos
Moléculas de Adesão Celular Neuronais , Dendritos , Córtex Entorrinal , Proteínas da Matriz Extracelular , Camundongos Knockout , Proteínas do Tecido Nervoso , Proteína Reelina , Serina Endopeptidases , Animais , Córtex Entorrinal/metabolismo , Dendritos/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Camundongos , Interneurônios/metabolismo , Neurônios/metabolismo , Sinalização do Cálcio
3.
Proc Natl Acad Sci U S A ; 121(27): e2406032121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913904

RESUMO

The Toarcian Oceanic Anoxic Event (T-OAE; ~183 Mya) was a globally significant carbon-cycle perturbation linked to widespread deposition of organic-rich sediments, massive volcanic CO2 release, marine faunal extinction, sea-level rise, a crisis in carbonate production related to ocean acidification, and elevated seawater temperatures. Despite recognition of the T-OAE as a potential analog for future ocean deoxygenation, current knowledge on the severity of global ocean anoxia is limited largely to studies of the trace element and isotopic composition of black shales, which are commonly affected by local processes. Here, we present the first carbonate-based uranium isotope (δ238U) record of the T-OAE from open marine platform limestones of the southeastern Tethys Ocean as a proxy for global seawater redox conditions. A significant negative δ238U excursion (~0.4‰) is recorded just prior to the onset of the negative carbon isotope excursion comprised within the T-OAE, followed by a long-lived recovery of δ238U values, thus confirming that the T-OAE represents a global expansion of marine anoxia. Using a Bayesian inverse isotopic mass balance model, we estimate that anoxic waters covered ~6 to 8% of the global seafloor during the peak of the T-OAE, which represents 28 to 38 times the extent of anoxia in the modern ocean. These data, combined with δ238U-based estimates of seafloor anoxic area for other CO2-driven Phanerozoic OAEs, suggest a common response of ocean anoxia to carbon release, thus improving prediction of future anthropogenically induced ocean deoxygenation.

4.
Proc Natl Acad Sci U S A ; 121(27): e2322163121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917014

RESUMO

Turbulent mixing in the ocean exerts an important control on the rate and structure of the overturning circulation. However, the balance of processes underpinning this mixing is subject to significant uncertainties, limiting our understanding of the overturning's deep upwelling limb. Here, we investigate the hitherto primarily neglected role of tens of thousands of seamounts in sustaining deep-ocean upwelling. Dynamical theory indicates that seamounts may stir and mix deep waters by generating lee waves and topographic wake vortices. At low latitudes, stirring and mixing are predicted to be enhanced by a layered vortex regime in the wakes. Using three realistic regional simulations spanning equatorial to middle latitudes, we show that layered wake vortices and elevated mixing are widespread around seamounts. We identify scalings that relate mixing rate within seamount wakes to topographic and hydrographic parameters. We then apply such scalings to a global seamount dataset and an ocean climatology to show that seamount-generated mixing makes an important contribution to the upwelling of deep waters. Our work thus brings seamounts to the fore of the deep-ocean mixing problem and urges observational, theoretical, and modeling efforts toward incorporating the seamounts' mixing effects in conceptual and numerical ocean circulation models.

5.
Proc Natl Acad Sci U S A ; 121(10): e2304613121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408243

RESUMO

Marine particulate organic carbon (POC) contributes to carbon export, food webs, and sediments, but uncertainties remain in its origins. Globally, variations in stable carbon isotope ratios (δ13C values) of POC between the upper and lower euphotic zones (LEZ) indicate either varying aspects of photosynthetic communities or degradative alteration of POC. During summertime in the subtropical north Atlantic Ocean, we find that δ13C values of the photosynthetic product phytol decreased by 6.3‰ and photosynthetic carbon isotope fractionation (εp) increased by 5.6‰ between the surface and the LEZ-variation as large as that found in the geologic record during major carbon cycle perturbations, but here reflecting vertical variation in δ13C values of photosynthetic communities. We find that simultaneous variations in light intensity and phytoplankton community composition over depth may be important factors not fully accounted for in common models of photosynthetic carbon isotope fractionation. Using additional isotopic and cell count data, we estimate that photosynthetic and non-photosynthetic material (heterotrophs or detritus) contribute relatively constant proportions of POC throughout the euphotic zone but are isotopically more distinct in the LEZ. As a result, the large vertical differences in εp result in significant, but smaller, differences in the δ13C values of total POC across the same depths (2.7‰). Vertical structuring of photosynthetic communities and export potential from the LEZ may vary across current and past ocean ecosystems; thus, LEZ photosynthesis may influence the exported and/or sedimentary δ13C values of both phytol and total organic carbon and affect interpretations of εp over geologic time.


Assuntos
Carbono , Ecossistema , Isótopos de Carbono/análise , Fotossíntese , Fitol , Oceanos e Mares
6.
Proc Natl Acad Sci U S A ; 121(31): e2402120121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042680

RESUMO

Disentangling inputs of aeolian dust, ice-rafted debris (IRD), and eroded continental detritus delivered by ocean currents to marine sediments provide important insights into Earth System processes and climate. This study uses Sr-Nd-Pb isotope ratios of the continent-derived (lithogenic) fraction in deep-sea core TN057-6 from the subantarctic Southern Ocean southwest of Africa over the past 150,000 y to identify source regions and quantify their relative contributions and fluxes utilizing a mixing model set in a Bayesian framework. The data are compared with proxies from parallel core Ocean Drilling Program Site 1090 and newly presented data from potential South America aeolian dust source areas (PSAs), allowing for an integrated investigation into atmospheric, oceanic, and cryospheric dynamics. PSA inputs varied on glacial/interglacial timescales, with southern South American sources dominating up to 88% of the lithogenic fraction (mainly Patagonia, which provided up to 68%) during cold periods, while southern African sources were more important during interglacials. During the warmer Marine Isotope Stage (MIS) 3 of the last glacial period, lithogenic fluxes were twice that of colder MIS2 and MIS4 at times, and showed unique isotope ratios best explained by Antarctic-derived IRD, likely from the Weddell Sea. The IRD intrusions contributed up to 41% at times and followed Antarctic millennial warming events that raised temperatures, causing instability of icesheet margins. High IRD was synchronous with increased bioavailable iron, nutrient utilization, high biological productivity, and decreased atmospheric CO2. Overall, TN057-6 sediments record systematic Southern Hemisphere climate shifts and cryospheric changes that impacted biogeochemical cycling on both glacial/interglacial and subglacial timescales.

7.
Proc Natl Acad Sci U S A ; 121(29): e2400355121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976732

RESUMO

The ongoing and projected retreat of Arctic sea ice has garnered international interest toward the utilization of Arctic maritime corridors for shipping, tourism, and development. Yet, with potential for increasing traffic in Arctic regions, it's important to consider additional environmental variables affected by climate change which may threaten maritime operations. Here, we use four climate model projections to produce ocean wave simulations and investigate the future magnitude and seasonality of sea ice risk coupled with wave hazards. Analyzing the potential 5 mo shipping season spanning July to November along the Northwest Passage maritime route between 2020 and 2070, our results show a substantial decline in sea ice risk over the analysis time period, resulting in near open-water conditions along the route for a 5 mo period by 2070. However, as seasonal ice coverage retreats, there is a significant upward trend in wave heights along the route during July and November, with the timing of the greatest wave height shifting away from September toward later in the season. This result is pertinent as the possibility of seasonally unprecedented extreme waves coupled with subfreezing late fall temperatures makes for an especially hazardous environment, thus emphasizing the importance of considering the interaction between evolving sea ice and interdependent hazards when predicting the risks and challenges faced by Arctic maritime operations.

8.
Proc Natl Acad Sci U S A ; 121(35): e2401498121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39159374

RESUMO

Estuaries, as connectors between land and ocean, have complex interactions of river and tidal flows that affect the transport of buoyant materials like floating plastics, oil spills, organic matter, and larvae. This study investigates surface-trapped buoyant particle transport in estuaries by using idealized and realistic numerical simulations along with a theoretical model. While river discharge and estuarine exchange flow are usually expected to export buoyant particles to the ocean over subtidal timescales, this study reveals a ubiquitous physical transport mechanism that causes retention of buoyant particles in estuaries. Tidally varying surface convergence fronts affect the aggregation of buoyant particles, and the coupling between particle aggregation and oscillatory tidal currents leads to landward transport at subtidal timescales. Landward transport and retention of buoyant particles is greater in small estuaries, while large estuaries tend to export buoyant particles to the ocean. A dimensionless width parameter incorporating the tidal radian frequency and lateral velocity distinguishes small and large estuaries at a transitional value of around 1. Additionally, higher river flow tends to shift estuaries toward seaward transport and export of buoyant particles. These findings provide insights into understanding the distribution of buoyant materials in estuaries and predicting their fate in the land-sea exchange processes.

9.
Proc Natl Acad Sci U S A ; 121(11): e2321595121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437551

RESUMO

Polynyas, areas of open water embedded within sea ice, are a key component of ocean-atmosphere interactions that act as hotspots of sea-ice production, bottom-water formation, and primary productivity. The specific drivers of polynya dynamics remain, however, elusive and coupled climate models struggle to replicate Antarctic polynya activity. Here, we leverage a 44-y time series of Antarctic sea ice to elucidate long-term trends. We identify Antarctic-wide linear increases and a hitherto undescribed cyclical pattern of polynya activity across the Ross Sea region that potentially arises from interactions between the Amundsen Sea Low and Southern Annular Mode. While their specific drivers remain unknown, identifying these emerging patterns augments our capacity to understand the processes that influence sea ice. As we enter a potentially new age of Antarctic sea ice, this advance in understanding will, in turn, lead to more accurate predictions of environmental change, and its implications for Antarctic ecosystems.

10.
Proc Natl Acad Sci U S A ; 121(22): e2404766121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768351

RESUMO

Warm water from the Southern Ocean has a dominant impact on the evolution of Antarctic glaciers and in turn on their contribution to sea level rise. Using a continuous time series of daily-repeat satellite synthetic-aperture radar interferometry data from the ICEYE constellation collected in March-June 2023, we document an ice grounding zone, or region of tidally controlled migration of the transition boundary between grounded ice and ice afloat in the ocean, at the main trunk of Thwaites Glacier, West Antarctica, a strong contributor to sea level rise with an ice volume equivalent to a 0.6-m global sea level rise. The ice grounding zone is 6 km wide in the central part of Thwaites with shallow bed slopes, and 2 km wide along its flanks with steep basal slopes. We additionally detect irregular seawater intrusions, 5 to 10 cm in thickness, extending another 6 km upstream, at high tide, in a bed depression located beyond a bedrock ridge that impedes the glacier retreat. Seawater intrusions align well with regions predicted by the GlaDS subglacial water model to host a high-pressure distributed subglacial hydrology system in between lower-pressure subglacial channels. Pressurized seawater intrusions will induce vigorous melt of grounded ice over kilometers, making the glacier more vulnerable to ocean warming, and increasing the projections of ice mass loss. Kilometer-wide, widespread seawater intrusion beneath grounded ice may be the missing link between the rapid, past, and present changes in ice sheet mass and the slower changes replicated by ice sheet models.

11.
Proc Natl Acad Sci U S A ; 121(24): e2311980121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830092

RESUMO

Multiple abrupt warming events ("hyperthermals") punctuated the Early Eocene and were associated with deep-sea temperature increases of 2 to 4 °C, seafloor carbonate dissolution, and negative carbon isotope (δ13C) excursions. Whether hyperthermals were associated with changes in the global ocean overturning circulation is important for understanding their driving mechanisms and feedbacks and for gaining insight into the circulation's sensitivity to climatic warming. Here, we present high-resolution benthic foraminiferal stable isotope records (δ13C and δ18O) throughout the Early Eocene Climate Optimum (~53.26 to 49.14 Ma) from the deep equatorial and North Atlantic. Combined with existing records from the South Atlantic and Pacific, these indicate consistently amplified δ13C excursion sizes during hyperthermals in the deep equatorial Atlantic. We compare these observations with results from an intermediate complexity Earth system model to demonstrate that this spatial pattern of δ13C excursion size is a predictable consequence of global warming-induced changes in ocean overturning circulation. In our model, transient warming drives the weakening of Southern Ocean-sourced overturning circulation, strengthens Atlantic meridional water mass aging gradients, and amplifies the magnitude of negative δ13C excursions in the equatorial to North Atlantic. Based on model-data consistency, we conclude that Eocene hyperthermals coincided with repeated weakening of the global overturning circulation. Not accounting for ocean circulation impacts on δ13C excursions will lead to incorrect estimates of the magnitude of carbon release driving hyperthermals. Our finding of weakening overturning in response to past transient climatic warming is consistent with predictions of declining Atlantic Ocean overturning strength in our warm future.

12.
Proc Natl Acad Sci U S A ; 121(25): e2401440121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38875145

RESUMO

At fast-spreading centers, faults develop within the axial summit trough (AST; 0 to 250 m around the axis) primarily by diking-induced deformation originating from the axial magma lens (AML). The formation of the prominent abyssal-hill-bounding faults beyond the axial high (>2,000 m) is typically associated with the unbending of the lithosphere as it cools and spreads away from the AST. The presence of faults is rarely mapped between these two thermally distinct zones, where the lithosphere is still too hot for the faults to be linked with the process of thermal cooling and outside of the AST where the accretional diking process dominates the ridge axis. Here, we reveal a remarkable vertical alignment between the distinct morphological features of the magma body and the orientation of these faults, by comparison of 3-D seismic imagery and bathymetry data collected at the East Pacific Rise (EPR) 9°50'N. The spatial coincidence and asymmetric nucleation mode of the mapped faults represent the most direct evidence for magmatically induced faulting near the ridge axis, providing pathways for hydrothermalism and magma emplacement, helping to build the crust outside of the AST. The high-resolution seafloor and subsurface images also enable revised tectonic strain estimates, which shows that the near-axis tectonic component of seafloor spreading at the EPR is an order of magnitude smaller than previously thought with close to negligible contribution of lava buried faults to spreading.

13.
Proc Natl Acad Sci U S A ; 121(12): e2302983121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437529

RESUMO

Terrestrial glacial records from the Patagonian Andes and New Zealand Alps document quasi-synchronous Southern Hemisphere-wide glacier advances during the late Quaternary. However, these records are inherently incomplete. Here, we provide a continuous marine record of western-central Patagonian ice sheet (PIS) extent over a complete glacial-interglacial cycle back into the penultimate glacial (~140 ka). Sediment core MR16-09 PC03, located at 46°S and ~150 km offshore Chile, received high terrestrial sediment and meltwater input when the central PIS extended westward. We use biomarkers, foraminiferal oxygen isotopes, and major elemental data to reconstruct terrestrial sediment and freshwater input related to PIS variations. Our sediment record documents three intervals of general PIS marginal fluctuations, during Marine Isotope Stage (MIS) 6 (140 to 135 ka), MIS 4 (~70 to 60 ka), and late MIS 3 to MIS 2 (~40 to 18 ka). These higher terrigenous input intervals occurred during sea-level low stands, when the western PIS covered most of the Chilean fjords, which today retain glaciofluvial sediments. During these intervals, high-amplitude phases of enhanced sediment supply occur at millennial timescales, reflecting increased ice discharge most likely due to a growing PIS. We assign the late MIS 3 to MIS 2 phases and, by inference, older advances to Antarctic cold stages. We conclude that the increased sediment/meltwater release during Southern Hemisphere millennial-scale cold phases was likely related to higher precipitation caused by enhanced westerly winds at the northwestern margin of the PIS. Our records complement terrestrial archives and provide evidence for PIS climate sensitivity.

14.
Proc Natl Acad Sci U S A ; 121(5): e2315124121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252827

RESUMO

The discrepancy between the observed lack of surface warming in the eastern equatorial Pacific and climate model projections of an El Niño-like warming pattern confronts the climate research community. While anthropogenic aerosols have been suggested as a cause, the prolonged cooling trend over the equatorial Pacific appears in conflict with Northern Hemisphere aerosol emission reduction since the 1980s. Here, using CESM, we show that the superposition of fast and slow responses to aerosol emission change-an increase followed by a decrease-can sustain the La Niña-like condition for a longer time than expected. The rapid adjustment of Hadley Cell to aerosol reduction triggers joint feedback between low clouds, wind, evaporation, and sea surface temperature in the Southeast Pacific, leading to a wedge-shaped cooling that extends to the central equatorial Pacific. Meanwhile, the northern subtropical cell gradually intensifies, resulting in equatorial subsurface cooling that lasts for decades.

15.
Proc Natl Acad Sci U S A ; 121(13): e2305030121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38517975

RESUMO

During wildfires and fossil fuel combustion, biomass is converted to black carbon (BC) via incomplete combustion. BC enters the ocean by rivers and atmospheric deposition contributing to the marine dissolved organic carbon (DOC) pool. The fate of BC is considered to reside in the marine DOC pool, where the oldest BC 14C ages have been measured (>20,000 14C y), implying long-term storage. DOC is the largest exchangeable pool of organic carbon in the oceans, yet most DOC (>80%) remains molecularly uncharacterized. Here, we report 14C measurements on size-fractionated dissolved BC (DBC) obtained using benzene polycarboxylic acids as molecular tracers to constrain the sources and cycling of DBC and its contributions to refractory DOC (RDOC) in a site in the North Pacific Ocean. Our results reveal that the cycling of DBC is more dynamic and heterogeneous than previously believed though it does not comprise a single, uniformly "old" 14C age. Instead, both semilabile and refractory DBC components are distributed among size fractions of DOC. We report that DBC cycles within DOC as a component of RDOC, exhibiting turnover in the ocean on millennia timescales. DBC within the low-molecular-weight DOC pool is large, environmentally persistent and constitutes the size fraction that is responsible for long-term DBC storage. We speculate that sea surface processes, including bacterial remineralization (via the coupling of photooxidation of surface DBC and bacterial co-metabolism), sorption onto sinking particles and surface photochemical oxidation, modify DBC composition and turnover, ultimately controlling the fate of DBC and RDOC in the ocean.

16.
Proc Natl Acad Sci U S A ; 120(25): e2218127120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37314935

RESUMO

Reduced nitrogen (N) is central to global biogeochemistry, yet there are large uncertainties surrounding its sources and rate of cycling. Here, we present observations of gas-phase urea (CO(NH2)2) in the atmosphere from airborne high-resolution mass spectrometer measurements over the North Atlantic Ocean. We show that urea is ubiquitous in the lower troposphere in the summer, autumn, and winter but was not detected in the spring. The observations suggest that the ocean is the primary emission source, but further studies are required to understand the responsible mechanisms. Urea is also observed aloft due to long-range transport of biomass-burning plumes. These observations alongside global model simulations point to urea being an important, and currently unaccounted for, component of reduced-N to the remote marine atmosphere. Airborne transfer of urea between nutrient-rich and -poor parts of the ocean can occur readily and could impact ecosystems and oceanic uptake of carbon dioxide, with potentially important climate implications.

17.
Proc Natl Acad Sci U S A ; 120(39): e2302292120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722044

RESUMO

As a major sink of anthropogenic heat and carbon, the Southern Ocean experienced pronounced warming with increasing extreme temperature events over the past decades. Mesoscale eddies that strongly influence the uptake, redistribution, and storage of heat in the ocean are expected to play important roles in these changes, yet observational evidence remains limited. Here, we employ a comprehensive analysis of over 500,000 historical hydrographic profile measurements combined with satellite-based eddy observations to show enhanced thermal eddy imprints in the Southern Ocean. Our observations reveal that anticyclonic (cyclonic) eddies are responsible for nearly half of the subsurface high (low)-temperature extremes detected, although only 10% of the profiles are located in eddy interiors. Over the past decade (2006 to 2019), both mean and extreme temperature anomalies within eddies in the Antarctic Circumpolar Current increased significantly, promoting the rise in subsurface ocean temperature variability. This enhanced role of eddies is likely a result of enhanced eddy pumping due to the increase in eddy intensity and ocean stratification caused by ocean warming. Our analysis underscores the crucial role of eddies in amplifying ocean temperature variability and extremes, with their effects expected to be even more pronounced as global warming persists.

18.
Proc Natl Acad Sci U S A ; 120(26): e2301664120, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339203

RESUMO

Turbulence-enhanced mixing of upper ocean heat allows interaction between the tropical atmosphere and cold water masses that impact climate at higher latitudes thereby regulating air-sea coupling and poleward heat transport. Tropical cyclones (TCs) can drastically enhance upper ocean mixing and generate powerful near-inertial internal waves (NIWs) that propagate down into the deep ocean. Globally, downward mixing of heat during TC passage causes warming in the seasonal thermocline and pumps 0.15 to 0.6 PW of heat into the unventilated ocean. The final distribution of excess heat contributed by TCs is needed to understand subsequent consequences for climate; however, it is not well constrained by current observations. Notably, whether or not excess heat supplied by TCs penetrates deep enough to be kept in the ocean beyond the winter season is a matter of debate. Here, we show that NIWs generated by TCs drive thermocline mixing weeks after TC passage and thus greatly deepen the extent of downward heat transfer induced by TCs. Microstructure measurements of the turbulent diffusivity ([Formula: see text]) and turbulent heat flux (J[Formula: see text]) in the Western Pacific before and after the passage of three TCs indicate that mean thermocline values of [Formula: see text] and J[Formula: see text] increased by factors of 2 to 7 and 2 to 4 (95% confidence level), respectively, after TC passage. Excess mixing is shown to be associated with the vertical shear of NIWs, demonstrating that studies of TC-climate interactions ought to represent NIWs and their mixing to accurately capture TC effects on background ocean stratification and climate.

19.
Proc Natl Acad Sci U S A ; 120(39): e2307638120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722052

RESUMO

Photosynthetic carbon (C) fixation by phytoplankton in the Southern Ocean (SO) plays a critical role in regulating air-sea exchange of carbon dioxide and thus global climate. In the SO, photosynthesis (PS) is often constrained by low iron, low temperatures, and low but highly variable light intensities. Recently, proton-pumping rhodopsins (PPRs) were identified in marine phytoplankton, providing an alternate iron-free, light-driven source of cellular energy. These proteins pump protons across cellular membranes through light absorption by the chromophore retinal, and the resulting pH energy gradient can then be used for active membrane transport or for synthesis of adenosine triphosphate. Here, we show that PPR is pervasive in Antarctic phytoplankton, especially in iron-limited regions. In a model SO diatom, we found that it was localized to the vacuolar membrane, making the vacuole a putative alternative phototrophic organelle for light-driven production of cellular energy. Unlike photosynthetic C fixation, which decreases substantially at colder temperatures, the proton transport activity of PPR was unaffected by decreasing temperature. Cellular PPR levels in cultured SO diatoms increased with decreasing iron concentrations and energy production from PPR photochemistry could substantially augment that of PS, especially under high light intensities, where PS is often photoinhibited. PPR gene expression and high retinal concentrations in phytoplankton in SO waters support its widespread use in polar environments. PPRs are an important adaptation of SO phytoplankton to growth and survival in their cold, iron-limited, and variable light environment.


Assuntos
Diatomáceas , Rodopsina , Rodopsina/genética , Fitoplâncton/genética , Prótons , Regiões Antárticas , Transporte de Íons , Diatomáceas/genética
20.
Proc Natl Acad Sci U S A ; 120(48): e2306275120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983488

RESUMO

Big data and large-scale machine learning have had a profound impact on science and engineering, particularly in fields focused on forecasting and prediction. Yet, it is still not clear how we can use the superior pattern-matching abilities of machine learning models for scientific discovery. This is because the goals of machine learning and science are generally not aligned. In addition to being accurate, scientific theories must also be causally consistent with the underlying physical process and allow for human analysis, reasoning, and manipulation to advance the field. In this paper, we present a case study on discovering a symbolic model for oceanic rogue waves from data using causal analysis, deep learning, parsimony-guided model selection, and symbolic regression. We train an artificial neural network on causal features from an extensive dataset of observations from wave buoys, while selecting for predictive performance and causal invariance. We apply symbolic regression to distill this black-box model into a mathematical equation that retains the neural network's predictive capabilities, while allowing for interpretation in the context of existing wave theory. The resulting model reproduces known behavior, generates well-calibrated probabilities, and achieves better predictive scores on unseen data than current theory. This showcases how machine learning can facilitate inductive scientific discovery and paves the way for more accurate rogue wave forecasting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA